
 1 

 

 

How Fast Fast-Folding Proteins Fold in Silico  

 

Yuan-Ping Pang 

Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN 55905, USA.  

 

Correspondence should be addressed to pang@mayo.edu.  

 

Keywords: folding kinetics; folding rate; folding time; protein folding; protein simulation; 

molecular dynamics; survival analysis; FF12MC; CLN025; Trp-cage. 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/088849doi: bioRxiv preprint 

https://doi.org/10.1101/088849
http://creativecommons.org/licenses/by/4.0/


 2 

Abstract 

In reported microcanonical molecular dynamics simulations, fast-folding proteins CLN025 and 

Trp-cage autonomously folded to experimentally determined native conformations. However, 

the folding times of these proteins derived from the simulations were more than 4–10 times 

longer than their experimental values. This article reports autonomous folding of CLN025 and 

Trp-cage in isobaric–isothermal molecular dynamics simulations with agreements within factors 

of 0.69–1.75 between simulated and experimental folding times at different temperatures. These 

results show that CLN025 and Trp-cage can now autonomously fold in silico as fast as in 

experiments and suggest that the accuracy of folding simulations for fast-folding proteins begins 

to overlap with the accuracy of folding experiments. This opens new prospects of developing 

computer algorithms that can predict both ensembles of conformations and their 

interconversion rates of a protein from its sequence for artificial intelligence on how and when a 

protein acts as a receiver, switch, and relay to facilitate various subcellular-to-tissue 

communications. Then the genetic information that encodes proteins can be better read in the 

context of intricate biological functions. 
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1. Introduction 

 How fast can fast-folding proteins autonomously fold in silico? This question is important 

because experimental folding times (τs) [1-3] are rigorous benchmarks that can be used to 

evaluate the accuracy of protein folding simulations. If accurate, such simulations offer not only 

insight into protein folding pathways and mechanisms [4-7] but also a means to determine 

ensembles of conformations and their interconversion rates of a protein, which are responsible 

for “proteins to act as receivers, switches, and relays and facilitate communication from the 

subcellular level through to the cell and tissue levels” [8]. Due to approximations in the 

empirical potential energy functions for the folding simulations, most simulated τs reported to 

date have been much longer than the corresponding experimental τs. For example, molecular 

dynamics (MD) simulations of fast-folding proteins using a distributed computing 

implementation with implicit solvation yielded τs that were consistent with the corresponding 

experimental values if Cα root mean square deviation (CαRMSD) cutoffs of 2.5–3.0 Å and 3.622 

Å were used to identify conformations that constitute the native structural ensembles [9,10]. 

However, according to the reported sensitivities of the simulated τs to CαRMSD cutoffs [9,10], 

the τs would be considerably longer than the experimental values, if typical CαRMSD cutoffs 

of <2.0 Å were used. For another example, advanced microcanonical MD simulations predicted 

τs of fast-folding proteins CLN025 [11] and Trp-cage [12] to be 600 ns at 343 K and 14 µs at 335 K, 

respectively [13]. These τs are of high quality as the τs were derived from the microcanonical 

MD simulations that resulted in the most populated conformations of CLN025 and Trp-cage 

with CαRMSDs of 1.0 and 1.4 Å from the experimental native conformations, respectively [13]. 

However, because the experimental τs of the two proteins reportedly increase as temperature 

decreases [1,2], the simulated τs at 300 K are conceivably more than 4–10 times longer than the 
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experimental τs. Therefore, how fast fast-folding proteins fold in silico equates to how accurate 

protein folding simulations can be. Most reported τs to date suggest that fast-folding proteins 

cannot autonomously fold in silico as fast as in experiments. This implies an accuracy gap 

between simulation and experiment for protein folding speed that is determined by folding 

mechanism or pathways [14]. 

 To narrow the accuracy gap, a new protein simulation method was accordingly developed. 

This method uses uniformly scaled atomic masses to compress or expand MD simulation time 

for improving configurational sampling efficiency or temporal resolution [15-17]. Uniformly 

reducing all atomic masses of a simulation system by tenfold can compress the simulation time 

by a factor of 

 

10  and hence improve the configurational sampling efficiency of the low-mass 

simulations at temperatures of ≤340 K [16]. As detailed in Refs.  [16,17], this method facilitates 

protein folding simulations on personal computers (such as Apple Mac Pros) under isobaric–

isothermal conditions at which most experimental folding studies are performed. As explained 

in Ref.  [16], the kinetics of the low-mass simulation system can be converted to the kinetics of 

the standard-mass simulation system by simply scaling the low-mass time with a factor of 

 

10 . 

Subsequently, this low-mass simulation method led to the development of a revised AMBER 

forcefield that has shown improvements in (i) autonomously folding fast-folding proteins, (ii) 

simulating genuine localized disorders of folded globular proteins, and (iii) refining 

comparative models of monomeric globular proteins [18-20]. Hereafter the combination of the 

revised AMBER forcefield with the low-mass simulation method is termed FF12MC [18]. 

 Further, in performing zebrafish toxicology experiments for a different project, this author 

observed that the times-to-death of the 20 toxin-treated fish varied widely in each experiment, 

although all 20 fish with nearly the same body weights received an intraperitoneal injection of 

the same dose of the same batch of botulinum neurotoxin serotype A. Yet, the means of time-to-

death and their 95% confidence intervals (95%CIs) obtained from the open-source R survival 
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package [21] varied slightly among different experiments. The resemblance of the live and dead 

states of the zebrafish to the unfolded and folded states of a protein inspired the use of the R 

survival package to predict τs from sequences as follows [16,18]: Perform (i) ≥20 distinct and 

independent MD simulations to autonomously fold a fast-folding protein sequence using 

FF12MC, which results in ≥20 sets of instantaneous protein conformations in time, (ii) a cluster 

analysis of all instantaneous conformations from the ≥20 sets to obtain the average conformation 

of the largest cluster as the predicted native conformation of the protein, and (iii) a survival 

analysis using the ≥20 sets of conformations in time and the predicted native conformation to 

determine the mean τ and its 95%CI. As exemplified in Refs.  [16,18], one advantage of this 

survival analysis method is that the τ prediction does assume that the fast-folding protein must 

follow a two-state folding mechanism; another advantage is rigorous estimation of mean τ and 

95%CI from ≥20 simulations that are relatively short so that a few of these simulations may not 

capture a folding event. 

 As demonstrated below, use of the methods and forcefield outlined above resulted in 

accurate prediction of τs for CLN025 and Trp-cage (TC10b) and offered an answer to the 

question of how fast fast-folding protein fold in silico. A total of 160 distinct, independent, 

unrestricted, unbiased, isobaric–isothermal, microsecond MD simulations with a total 

aggregated simulation time of 1,011.2 µs were used the prediction. Hereafter, all simulations for 

each protein at a specified temperature are 40 distinct, independent, unrestricted, unbiased, and 

isobaric–isothermal MD simulations with FF12MC using a fully extended backbone 

conformation as the initial conformation of the protein for the 40 simulations. Also all 

simulation times described hereafter have been converted to standard-mass simulation times. 

 

2. Methods  
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2.1. Molecular dynamics simulations 

 A fast-folding protein in a fully extended backbone conformation was solvated with the 

TIP3P water [22] with surrounding counter ions and/or NaCls and then energy-minimized for 

100 cycles of steepest-descent minimization followed by 900 cycles of conjugate-gradient 

minimization to remove close van der Waals contacts using SANDER of AMBER 11 (University 

of California, San Francisco). The resulting system was heated from 5 to a temperature of 280–

300 K at a rate of 10 K/ps under constant temperature and constant volume, then equilibrated 

for 106 timesteps under constant temperature and constant pressure of 1 atm employing isotropic 

molecule-based scaling, and finally simulated in 40 distinct, independent, unrestricted, 

unbiased, and isobaric–isothermal MD simulations using PMEMD of AMBER 11 with a 

periodic boundary condition at 280–300 K and 1 atm. The fully extended backbone 

conformations (viz., anti-parallel β-strand conformations) were generated by MacPyMOL 

Version 1.5.0 (Schrödinger LLC, Portland, OR). The numbers of TIP3P waters and surrounding 

ions, initial solvation box size, and ionizable residues are provided in Table S1. The 40 unique 

seed numbers for initial velocities of Simulations 1–40 are listed in Table S2. All simulations 

used (i) a dielectric constant of 1.0, (ii) the Berendsen coupling algorithm [23], (iii) the Particle 

Mesh Ewald method to calculate electrostatic interactions of two atoms at a separation of >8 

Å [24], (iv) Δt = 1.00 fs of the standard-mass time [18], (v) the SHAKE-bond-length constraints 

applied to all bonds involving hydrogen, (vi) a protocol to save the image closest to the middle 

of the “primary box” to the restart and trajectory files, (vii) a formatted restart file, (viii) the 

revised alkali and halide ions parameters [25], (ix) a cutoff of 8.0 Å for nonbonded interactions, 

(x) the atomic masses of the entire simulation system (both solute and solvent) were reduced 

uniformly by tenfold, and (xi) default values of all other inputs of the PMEMD module. The 

forcefield parameters of FF12MC are available in the Supporting Information of Ref.  [16]. All 

simulations were performed on an in-house cluster of 100 12-core Apple Mac Pros with Intel 

Westmere (2.40/2.93 GHz). 
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2.2. Folding time estimation 

 The τ of a fast-folding protein was estimated from the mean time-to-folding in 40 distinct, 

independent, unrestricted, unbiased, and isobaric–isothermal MD simulations using survival 

analysis methods [21] implemented in the R survival package Version 2.38-3 (http://cran.r-

project.org/package=survival). A CαβRMSD cutoff of 0.98 Å was used to identify conformations 

that constitute the native structural ensemble. For each simulation with conformations saved at 

every 105 timesteps, the first time-instant at which CαβRMSD reached ≤0.98 Å was recorded as 

an individual folding time (Table S3). Using the Kaplan-Meier estimator [26,27] [the Surv() 

function in the R survival package], the mean time-to-folding was first calculated from a first set 

of simulations each of which captured a folding event. If a parametric survival function mostly 

fell within the 95%CI of the Kaplan-Meier estimation for the first set of simulations, the 

parametric survival function [the Surreg() function in the R survival package] was then used to 

calculate both the mean time-to-folding of the first set of simulations and the mean time-to-

folding of a second set of simulations that were identical to the first set except that the 

simulation temperature of the second set was changed.  

 

2.3. Cluster analysis and data processing 

 The conformational cluster analyses of CLN025 and TC10b were performed using 

CPPTRAJ of AmberTools 16 with the average-linkage algorithm [28], epsilon of 2.0 Å, and root 

mean square coordinate deviation on all Cα and Cβ atoms (see Table S4). No energy 

minimization was performed on the average conformation of any cluster. The linear regression 

analysis was performed using the PRISM 5 program for Mac OS X, Version 5.0d (GraphPad 

Software, La Jolla, California).  
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3. Results and discussion 

3.1. Simulated folding times of β-protein CLN025 at different temperatures 

 To determine how fast β-protein CLN025 autonomously folds in silico, 40 3.16-µs MD 

simulations of CLN025 were performed at 300 K. A cluster analysis of these simulations 

revealed that the average conformation in the largest cluster adopted a β-hairpin conformation 

[Fig. 1(A)]. This average conformation had a CαRMSD of 0.87 Å and a Cα and Cβ root mean 

square deviation (CαβRMSD) of 0.94 Å relative to the average conformation of 20 NMR-

determined conformations of CLN025 [1] [Fig. 1(B)]. Using (i) the average conformation of the 

largest cluster as the predicted native conformation of CLN025 and (ii) CαβRMSD of ≤0.98 Å 

from the predicted native conformation to define the native structural ensemble of CLN025, the 

first time-instant at which CαβRMSD of the full-length CLN025 sequence reached ≤0.98 Å was 

recorded as an individual folding time for each of the 40 simulations (Table S3A). CαβRMSD 

was used here to determine the individual folding time because it is more stringent to measure 

structural similarity than CαRMSD due to inclusion of both main-chain and side-chain 

structural information in CαβRMSD. Plotting the natural logarithm of the nonnative state 

population of CLN025 versus time-to-folding revealed a linear relationship with r2 of 0.97 (Fig. 

2), which indicates that CLN025 follows a two-state folding mechanism. Using the 40 individual 

folding times as times-to-folding, a survival analysis predicted the τ of CLN025 to be 198 ns 

(95%CI = 146–270 ns; n = 40) at 300 K (Table 1). These results agree with the experimental 

finding that the folding of CLN025 followed a two-state folding mechanism with a τ of 137 ns at 

300 K, where the τ was obtained from Fig. 6 of Ref.  [1]. To substantiate the agreement between 

the experimental and computational τs at 300 K, the 40 CLN025 simulations were repeated at 

293 K. Using the same CαβRMSD cutoff and the same predicted native conformation, a 
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survival analysis showed that CLN025 followed a two-state folding mechanism (r2 = 0.94; Fig. 2) 

with a τ of 279 ns (95%CI = 204–380 ns; n = 40) at 293 K (Table 1). This outcome again agrees 

with the experimental τ of 261 ns at 293 K that was also obtained from Fig. 6 of Ref.  [1].  

 

3.2. Simulated folding times of α-protein Trp-cage at different temperatures 

 To determine how fast α-protein Trp-cage autonomously folds in silico, 40 9.48-µs MD 

simulations of the Trp-cage (TC10b) sequence were performed at 280 K. The average 

conformation of the largest cluster of the simulations [Fig. 1(C)] had a CαRMSD of 1.69 Å and 

a CαβRMSD of 1.86 Å from the average conformation of 28 NMR-determined conformations of 

TC10b [12] [Fig. 1(D)]. Using the CαβRMSD cutoff of 0.98 Å and the average conformation of 

the largest cluster as the predicted native conformation, a survival analysis showed that TC10b 

followed a two-state folding mechanism (r2 = 0.94; Fig. 2) in the simulations with a τ of 2.4 µs 

(95%CI = 1.8–3.3 µs; n = 40) at 280 K (Table 1). These results are consistent with the 

experimentally determined two-state folding mechanism and a τ of 2.4 µs (95%CI = 1.6–3.2 µs) 

at 280 K for Trp-cage. The experimental τ was extrapolated from Fig. 4 of NMR lnkF in Ref.  [2]. 

The experimental 95%CI was calculated from the reported errors of ±0.18 for lnkF in the 12–14 

range [2] according to the standard method for propagation of errors of precision [29]. Repeating 

the 40 simulations of TC10b at 300 K and the survival analysis using the same predicted native 

conformation and the CαβRMSD cutoff of 0.98 Å revealed a two-state folding mechanism (r2 = 

0.96 in Fig. 2) and a τ of 0.8 µs (95%CI = 0.6–1.0 µs; n = 40; Table 1), which is also consistent 

with the experimental τ of 1.4 µs (95%CI = 0.8–2.0 µs) at 300 K [2].  

  

3.3. Convergence of the simulated folding times 
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 The simulated τ may not be converged and useful if insufficient numbers of simulations are 

used to predict the native conformations and τ or if lax CαRMSDs are used to define the native 

structural ensemble. To assess the convergence of the simulated τs of CLN025 and Trp-cage 

described above, the average conformations of the largest cluster (viz., the simulated native 

conformations) for CLN025 and Trp-cage shown in Fig. 1 and the corresponding simulated τs 

listed in Table 1 were re-generated using 20 or 30 simulations from Simulations 1–20 or 1–30, 

respectively. According to the CαβRMSDs in Table S4, the average conformation of the largest 

cluster of Simulations 1–40 for CLN025 is identical to the corresponding ones of Simulations 1–

20 and Simulations 1–30, and the same is true for Trp-cage. Further, the resulting changes in 

the mean and 95%CI of τ are negligible when the number of simulations increased from 20 to 

30 or 40 (Table S5). These results indicate that 40 simulations are sufficient.  

 In the present study, a stringent CαβRMSD of ≤0.98 Å for the full sequence of CLN025 or 

Trp-cage was used to define the native structural ensemble, in contrast to the use of CαRMSD 

for a fast-folding protein with truncations on terminal residues. However, using an “overly” 

stringent CαβRMSD cutoff of 0.98 Å may lengthen the simulated τ, whereas using the average 

rather than the representative conformation of the largest cluster as the predicted native 

conformation may shorten the simulated τ. To address these concerns, all τs in Table 1 were re-

estimated from the same simulations using both the average and representative conformations 

with CαβRMSD cutoffs that varied from 0.98 Å to 1.40 Å. As apparent from Table S6, the τs of 

CLN025 and Trp-cage are insensitive to the change from the average to the representative 

conformation, and these τs are also insensitive to the variation of the CαβRMSD cutoff within 

0.98–1.40 Å. In addition, all τs in Table 1 were determined from trajectories that revealed not 

only hazard functions of a two-state folding mechanism for both CLN025 and Trp-cage (Fig. 2) 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/088849doi: bioRxiv preprint 

https://doi.org/10.1101/088849
http://creativecommons.org/licenses/by/4.0/


 11 

but also their consistent folding events that are traceable in exemplary Videos S1 and S2. These 

theoretical mechanism and folding events are consistent with their experimentally determined 

folding mechanism and native conformations. These results indicate that the simulated τs in 

Table 1 are converged and therefore may be used to explain, confirm, or predict folding rates of 

CLN025 and Trp-cage.  

 

3.4. Significance of the simulated folding times 

 The present study shows that agreements within factors of 0.69–1.75 between the 

experimental and simulated τs have been achieved for CLN025 and Trp-cage (Table 1). These 

agreements indicate that fast-folding proteins CLN025 and Trp-cage can now autonomously 

fold in simulations as fast as in experiments and provide an answer to the question of how fast 

fast-folding proteins fold in silico. These agreements also suggest that the accuracy of folding 

simulations for fast-folding proteins is beginning to overlap with the accuracy of folding 

experiments. This opens new prospects of combining simulation with experiment to develop 

computer algorithms that predict ensembles of conformations and their interconversion rates of 

a protein from its sequence. Such algorithms can improve the artificial intelligence on how and 

when “proteins act as receivers, switches, and relays and facilitate communication from the 

subcellular level through to the cell and tissue levels” [8]. Then the genetic information that 

encodes proteins can be better read in the context of intricate biological functions. 
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Table 1. Experimental and computational folding times of CLN025 and Trp-cage (TC10b) 

Folding time (µs)  Fast-folding protein 
and temperature Experimentala Computationalb E/Cc 
 Mean 95%CId Mean 95%CId  
CLN025 at 293 K 0.261 — 0.279 0.204–0.380 0.94 
CLN025 at 300 K 0.137 — 0.198 0.146–0.270 0.69 
TC10b at 280 K 2.4 1.6–3.2 2.4 1.8–3.3 1.00 
TC10b at 300 K 1.4 0.8–2.0 0.8 0.6–1.1 1.75 

 

a The experimental folding times of CLN025 and TC10b were obtained from the Arrhenius plots 
of Refs. 1 and 2. b The computational folding time was predicted from 40 distinct, independent, 
unrestricted, unbiased, isobaric–isothermal, and 3.16-µs (for CLN025) or 9.48-µs (for TC10b) 
molecular dynamics simulations with FF12MC using a parametric survival function and a Cα-
and-Cβ root mean square deviation of 0.98 Å from the average conformation of the largest 
conformation cluster of the simulations. c E/C: Experimental folding time divided by 
computational folding time. d 95%CI: 95% confidence interval.  
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Fig. 1. Native conformations of CLN025 and Trp-cage (TC10b) derived from experiments and 

simulations. (A) The average CLN025 conformation of the largest cluster in the 

simulations using FF12MC. (B) The average of 20 CLN025 NMR structures. (C) The 

average Trp-cage conformation of the largest cluster in the simulations using FF12MC. 

(D) The average of 28 Trp-cage NMR structures. 
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Fig. 2. Plots of the natural logarithm of the nonnative state population of CLN025 and Trp-

cage (TC10b) over time-to-folding. The individual folding times were taken from Table 

S3A. 
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