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Abstract		

Assay-based	approaches	provide	a	detailed	view	of	the	adaptive	immune	system	by	profiling	T	

and	B	cell	receptor	repertoires.	However,	these	methods	come	at	a	high	cost	and	lack	the	scale	

of	 standard	 RNA	 sequencing	 (RNA-seq).	 Here	we	 report	 the	 development	 of	 ImReP,	 a	 novel	

computational	method	for	rapid	and	accurate	profiling	of	the	adaptive	immune	repertoire	from	

regular	RNA-Seq	data.	We	applied	it	to	8,555	samples	across	544	individuals	from	53	tissues	from	

the	Genotype-Tissue	Expression	(GTEx	v6)	project.	ImReP	is	able	to	efficiently	extract	TCR-	and	

BCR-	 derived	 reads	 from	 the	 RNA-Seq	 data	 and	 accurately	 assemble	 the	 complementarity	

determining	regions	3	(CDR3s),	the	most	variable	regions	of	B-	and	T-cell	receptors	determining	

their	antigen	specificity.	Using	 ImReP,	we	have	created	the	systematic	atlas	of	 immunological	

sequences	for	B-	and	T-cell	repertoires	across	a	broad	range	of	tissue	types,	most	of	which	have	

not	been	studied	for	B	and	T	cell	receptor	repertoires.		We	have	also	examined	the	compositional	

similarities	 of	 clonal	 populations	 between	 the	 GTEx	 tissues	 to	 track	 the	 flow	 of	 T-	 and	 B-

clonotypes	 across	 immune-related	 tissues,	 including	 secondary	 lymphoid	 organs	 and	 organs	

encompassing	 mucosal,	 exocrine,	 and	 endocrine	 sites.	 The	 atlas	 of	 T-	 and	 B-cell	 receptor	

receptors,	freely	available	at	https://sergheimangul.wordpress.com/atlas-immune-repertoires/,	

is	 the	 largest	 collection	of	CDR3	 sequences	and	 tissue	 types.	We	anticipate	 this	 recourse	will	

enhance	future	studies	in	areas	such	as	immunology	and	advance	development	of	therapies	for	

human	diseases.	ImReP	is	freely	available	at	https://sergheimangul.wordpress.com/imrep/	.	
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Introduction		

	

A	key	function	of	the	adaptive	immune	system,	which	is	composed	of	B-cells	and	T-cells,	 is	to	

mount	protective	memory	responses	 to	a	given	antigen.	B	and	T	cells	 recognize	their	specific	

antigens	 through	 their	 surface	 antigen	 receptors	 (B	 and	 T	 cell	 receptors,	 BCR	 and	 TCR,	

respectively),	which	are	unique	to	each	cell	and	its	progeny.	BCR	and	TCR	are	diversified	through	

somatic	recombination,	during	which	variable	(V),	diversity	(D),	and	joining	(J)	gene	segments	are	

randomly	recombined,	and	non-templated	bases	are	inserted	or	deleted	at	the	recombination	

junctions1	(Figure	1a).	The	resulting	DNA	sequences	are	then	translated	into	the	antigen	receptor	

proteins.	This	process	allows	for	an	astonishing	diversity	of	the	lymphocyte	repertoire	(i.e.,	the	

collection	of	antigen	receptors	of	a	given	 individual),	with	>1013	 theoretically	possible	distinct	

immunological	 receptors1.	 This	 diversity	 is	 key	 for	 the	 immune	 system	 to	 confer	 protection	

against	a	wide	variety	of	potential	pathogens2.	In	addition,	upon	activation	of	a	B-cell,	BCRs	are	

further	diversified	 in	their	variable	region	through	somatic	hypermutation.	These	changes	are	

mostly	 single-base	substitutions	occurring	at	extremely	high	 rates	 (10–5	 to	10–3	mutations	per	

base	 pair	 per	 generation)3.	 Another	 mechanism	 contributing	 to	 B-cell	 functional	 diversity	 is	

isotype	switching.	Here,	antigen	specificity	remains	unchanged	while	immunological	properties	

of	a	BCR	are	altered	as	the	heavy	chain	VDJ	regions	join	with	different	constant	(C)	regions,	such	

as	IgG,	IgA,	or	IgE	isotypes.		

	

High-throughput	technologies	enable	unprecedented	accuracy	when	profiling	the	BCR	and	TCR	

repertoires.	Commonly	used	assay-based	approaches	provide	a	detailed	view	of	 the	adaptive	

immune	system	with	deep	sequencing	of	amplified	DNA	or	RNA	from	the	variable	region	of	BCR	

or	TCR	loci	(Rep-Seq)4.	Those	technologies	are	usually	restricted	to	one	chain,	and	the	majority	

of	 studies	 focus	 on	 the	 beta	 chain	 of	 TCRs	 and	 the	 heavy	 chain	 of	 BCRs.	 Recent	 studies2	

successfully	 applied	 assay-based	 approaches	 to	 characterize	 the	 immune	 repertoire	 of	 the	

peripheral	blood.	However,	little	is	known	about	the	immunological	repertoires	of	other	human	

tissues,	including	barrier	tissues	like	skin	and	mucosae.	Studies	involving	assay-based	protocols	
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usually	have	small	sample	sizes	and	are	not	suitable	for	analysis	of	intra-individual	variation	of	

immunological	receptors	across	diverse	human	tissues.		

	

RNA	Sequencing	(RNA-Seq)	traditionally	uses	the	reads	mapped	onto	human	genome	references	

to	 study	 the	 transcriptional	 landscape	 of	 both	 single	 cells	 and	 entire	 cellular	 populations.	 In	

contrast	to	assay-based	protocols	that	produce	reads	from	the	amplified	variable	region	of	BCR	

or	TCR	loci,	RNA-Seq	is	able	to	capture	the	entire	cellular	population	of	the	sample,	including	B	

and	T	cells.	However,	due	to	the	repetitive	nature	of	loci	encoding	for	BCRs	and	TCRs,	as	well	as	

the	extreme	level	of	diversity	in	BCR	and	TCR	transcripts,	most	mapping	tools	are	ill	equipped	to	

handle	 immune	 repertoire	 sequences.	 Despite	 this,	 BCR	 and	 TCR	 transcripts	 often	 occur	 in	

sufficient	 numbers	within	 the	 transcriptome	 of	many	 tissues	 to	 characterize	 their	 respective	

immunological	repertoires5.	

	

In	 this	 study,	 we	 developed	 ImReP,	 a	 novel	 computational	 method	 for	 rapid	 and	 accurate	

profiling	of	the	adaptive	immune	repertoire	from	regular	RNA-Seq	data.	We	applied	it	to	8,555	

samples	across	544	individuals	from	53	tissues	obtained	from	Genotype-Tissue	Expression	study	

(GTEx	v6)6.	The	data	was	derived	from	38	solid	organ	tissues,	11	brain	subregions,	whole	blood,	

and	three	cell	 lines.	 ImReP	 is	able	to	efficiently	extract	TCR-	and	BCR-	derived	reads	from	the	

RNA-Seq	 data	 and	 accurately	 assemble	 the	 complementarity	 determining	 regions	 3	 (CDR3s).	

CDR3	 are	 the	 most	 variable	 regions	 of	 B	 and	 T	 cell	 receptors	 and	 determines	 their	 antigen	

specificity.	Using	ImReP,	we	have	created	the	systematic	atlas	of	immunological	sequences	for	B-	

and	T-cell	repertories	across	a	broad	range	of	tissue	types,	most	of	which	have	not	been	studied	

for	B-	and	T-cell	 repertoires.	 	We	have	also	examined	 the	compositional	 similarities	of	 clonal	

populations	between	the	tissues	to	track	the	flow	of	T	and	B	clonotypes	across	immune	related	

tissues,	 including	 secondary	 lymphoid	 and	 organs	 encompassing	 mucosal,	 exocrine,	 and	

endocrine	sites.		
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Results		

	

ImReP:	a	two	stage	approach	for	adaptive	immune	repertoires	reconstruction	

	

We	applied	ImRep	to	0.6	trillion	RNA-Seq	reads	(92	Tbp)	from	8,555	samples	to	assemble	CDR3	

sequences	of	B	and	T	cell	receptors	(Table	S1).	The	RNA-Seq	data	was	generated	by	the	Genotype-

Tissue	 Expression	 Consortium	 (GTEx	 v6).	 First,	 we	 mapped	 RNA-Seq	 reads	 to	 the	 human	

reference	genome	using	a	 short-read	aligner	 (performed	by	GTEx	 consortium6)	 (Figure	1).	 To	

identify	reads	spanning	the	V(D)J	junction	of	B	and	T	cell	receptors	and	assemble	clonotypes	(a	

group	of	clones	with	identical	CDR3	amino	acid	sequences),	ImReP	used	0.02	trillion	high	quality	

reads	that	either	successfully	mapped	to	BCR	or	TCR	genes,	or	were	unmapped	reads	that	failed	

to	map	to	the	human	reference	genome	(Figures	1a	and	S1).	ImReP	is	a	two-stage	approach	to	

assemble	CDR3	sequences	and	detect	corresponding	V(D)J	recombinations	(Figure	1b).	In	the	first	

stage,	ImReP	utilizes	the	reads	that	simultaneously	overlap	V	and	J	gene	segments	to	infer	the	

CDR3	sequences.	We	define	the	CDR3	as	the	sequence	of	amino	acids	between	the	cysteine	on	

the	right	and	phenylalanine	(for	TCR)	or	tryptophan	(for	BCR)	on	the	left	of	the	junction.	In	the	

second	stage,	ImReP	utilizes	the	reads	overlapping	a	single	gene	segment	that	contains	a	partial	

CDR3	sequence.	ImReP	then	uses	a	suffix	tree	to	perform	the	pairwise	comparison	of	the	reads	

and	join	the	reads	based	on	overlap	in	the	CDR3	region.	Further,	ImReP	uses	a	CAST	clustering	

technique7	to	correct	assembled	clonotypes	for	PCR	and	sequencing	errors.	We	map	D	genes	(for	

IGH,	TCRB,	TCRG)	onto	assembled	CDR3	sequences	and	infer	corresponding	V(D)J	recombination.	

ImReP	is	freely	available	at	https://sergheimangul.wordpress.com/imrep/.		

	

To	 validate	 the	 feasibility	 of	 using	 RNA-Seq	 to	 study	 the	 adaptive	 immune	 repertoire,	 we	

simulated	RNA-Seq	data	as	a	mixture	of	transcriptomic	reads	and	reads	derived	from	BCR	and	

TCR	 transcripts	 (Figure	 S3).	 BCR	 and	 TCR	 transcripts	 are	 simulated	 based	 on	 random	

recombination	of	V	and	 J	gene	segments	 (obtained	 from	 IMGT	database8)	with	non-template	

insertion	at	the	recombination	junction	(Figure	S2).	We	then	apply	ImReP	to	a	simulated	RNA-

Seq	mixture	 to	 check	 the	 ability	 of	 ImReP	 to	 extract	 CDR3-derived	 reads	 from	 the	 RNA-Seq	
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mixture.	While	our	simulation	approach	may	not	accurately	recapitulate	the	various	nuances	and	

eccentricities	of	actual	immune	repertoires,	it	allows	us	to	assess	the	accuracy	of	our	tool.	ImReP	

is	able	to	identify	99%	CDR3-derived	reads	from	the	RNA-Seq	mixture,	suggesting	it	is	a	powerful	

tool	for	profiling	RNA-Seq	samples	of	immune-related	tissues.	Details	about	the	simulation	data	

are	provided	in	the	Extended	Experimental	Procedures.		

	

We	then	compared	methods	and	investigated	the	sequencing	depth	and	read	length	required	to	

reliably	assemble	TCR	and	BCR	sequences	from	RNA-Seq	data.	Our	simulations	suggest	that	both	

read	 length	 and	 sequencing	 depth	 have	 a	 major	 impact	 on	 precision-recall	 rates	 of	 CDR3	

sequence	assembly.	Average	CDR3	coverage	that	is	higher	than	8	allows	ImReP	to	archive	a	recall	

rate	close	to	90%	for	read	length	above	75bp	(Figure	2a).	ImReP	is	able	to	maintain	90%	precision	

rate	for	majority	of	simulated	scenarios.	Increasing	coverage	has	a	positive	effect	on	the	number	

of	assembled	clonotypes	for	ImReP,	with	a	slight	drop	in	the	precision	of	ImReP	given	an	increase	

of	 coverage	 (Figure	 2a-b).	 Alternative	 approaches,	 such	 as	 IMSEQ9	 and	 MiXCR10,	 cannot	 be	

applied	 to	 RNA-Seq	 reads,	 because	 they	 were	 originally	 designed	 for	 Rep-Seq,	 targeted	

sequencing	of	BCR	or	TCR	loci.	Thus,	those	tools	were	provided	with	only	the	simulated	immune	

reads	to	assess	accuracy	(Figure	S1).	IgBlast-based	pipeline11	was	supplied	with	the	original	RNA-

Seq	reads.	ImReP	consistently	outperformed	existing	methods	in	both	recall	and	precision	rates	

for	the	majority	of	simulated	parameters.	Notably,	ImReP	was	the	only	method	with	acceptable	

performance	at	50bp	read	 length,	reconstructing	with	higher	precision	rate	significantly	more	

CDR3	clonotypes	than	other	methods.		

	

We	further	validated	the	ability	of	ImRep	to	accurately	infer	the	proportion	of	immune	cells	in	

the	sampled	 tissue.	We	hypothesized	 that	 the	 fraction	of	B-	and	T-cells	 in	 the	sample	will	be	

proportional	with	the	fraction	of	receptor-derived	reads	in	our	RNA-seq	data.	We	employed	a	

transcriptome-based	computational	method,	SaVant12,	which	uses	cell-specific	gene	signatures	

(independent	of	BCR	or	TCR	transcripts)	to	infer	the	relative	abundance	of	B	or	T	cells	within	each	

tissue	 sample.	 We	 found	 that	 B	 and	 T	 cell	 signatures	 inferred	 by	 SaVant	 showed	 positive	

correlation	with	the	amount	of	BCR	(r	=	0.77,	P	<	0.001).	or	TCR	(r	=	0.86,	P	<	0.001)	transcripts,	
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respectively	 (Figure	 2c,d).	 	 An	 exception	 to	 this	 correlation	 was	 for	 tissues	 that	 contain	 the	

highest	density	of	B	or	T	cells:	spleen,	whole	blood,	small	 intestine	(terminal	 ileum),	 lung	and	

EBV-transformed	lymphocytes	(LCLs).	
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Figure	 1.	 Overview	 of	 ImReP.	 (a)	 Schematic	 representation	 of	 human	 adaptive	 immune	 repertoire.	 Adaptive	

immune	 repertoire	 consists	 of	 four	 T-cell	 receptor	 loci	 (blue	 color,	 T	 cell	 receptor	 alpha	 locus	 (TCRA);	 T-

cell	 receptor	beta	 locus	 (TCRB);	T-cell	 receptor	delta	 locus	 (TCRD);	and	T-cell	 receptor	gamma	 locus	 (TCRG))	and	

three	 immunoglobulin	 loci	 (red	 color,	 Immunoglobulin	 heavy	 locus	 (IGH);	 Immunoglobulin	 kappa	 locus	 (IGK);	

Immunoglobulin	lambda	locus	(IGL).	Alternative	name	–	BCR,	B	cell	receptor).	B-	and	T-cell	receptors	contain	multiple	

variable	 (V,	green	color),	diversity	 (D,	present	only	 in	 IGH,	TCRB,	TCRG,	violet	color),	 joining	(J,	yellow	color)	and	

constant	(C,	blue	color)	gene	segments.	V(D)J	gene	segments	are	randomly	 jointed	and	non-templated	bases	(N,	

dark	red	color)	are	inserted	at	the	recombination	junctions.	The	resulting	spliced	T-	or	B-cell	repertoire	transcript	

incorporates	the	C	segment	and	is	translated	into	the	antigen	receptor	proteins.	RNA-Seq	reads	are	derived	from	

the	 rearranged	 immunoglobulin	 IG	 and	 TCR	 loci.	 Reads	 entirely	 aligned	 to	 genes	 of	 B-	 and	 T-cell	 receptors	 are	

inferred	from	mapped	reads	(black	color).	Reads	with	extensive	somatic	hypermutations	and	reads	spanning	the	

V(D)J	 recombination	are	 inferred	 from	the	unmapped	reads	 (grey	color).	Complementarity	determining	 region	3	

(CDR3)	is	the	most	variable	region	of	the	three	CDR	regions	and	is	used	to	identify	T/B-cell	receptor	clonotypes—a	

group	 of	 clones	 with	 identical	 CDR3	 amino	 acid	 sequences.	 (b)	 Receptor	 derived	 reads	 spanning	 V(D)J	

recombinations	are	 identified	 from	unmapped	reads	and	assembled	 into	 the	CDR3	sequences.	We	first	 scan	the	

amino	acid	sequences	of	the	read	and	determine	the	putative	CDR3	boundaries	defined	by	last	conserved	cysteine	

encoded	by	 the	V	gene	and	 the	conserved	phenylalanine	 (for	TCR)	or	 tryptophan	 (for	BCR)	of	 J	gene.	Given	 the	

putative	CDR3	boundaries,	we	check	the	prefix	and	suffix	of	the	read	to	match	the	suffix	of	V	and	prefix	of	J	genes,	

respectively.	(c-d)	In	case	a	read	overlaps	with	only	the	V	or	J	gene,	we	perform	the	second	stage	of	ImReP	to	match	

such	reads	based	on	the	overlap	of	CDR3	sequence	using	suffix	tree.		
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Figure	2.	Evaluation	of	ImReP.	(a-b)	Evaluation	of	ImReP	based	on	the	number	of	assembled	CDR3	sequences	and	

comparison	to	existing	methods.	(c-d)	Correspondence	of	ImRep-derived	reads	from	B-cell	(BCR)	and	T-cell	(TCR)	

receptors	 	 to	the	relative	abundance	B-	and	T-cells	 inferred	from	cell-specific	gene	expression	profiles.	 (a)	Recall	

rates	for	ImReP	(red),	MiXCR	(blue),	IMSEQ	(green),	and	IgBlast	(yellow)	on	simulated	data	for	immunoglobulin	heavy	

(IGH)	 transcripts	 are	 reported	 for	 various	 reads	 length	 (separate	 plots)	 and	 per	 transcript	 coverages	

(1,2,4,8,16,32,64,128)	(x-axis).	(b)	Precision	rates	for	ImReP	(red),	MiXCR	(blue),	IMSEQ	(green),	and	IgBlast	(yellow)	

on	simulated	data	for	immunoglobulin	heavy	(IGH)	transcripts	are	reported	for	various	reads	length	(separate	plots)	
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and	per	 transcript	 coverages	 (1,2,4,8,16,32,64,128)	 (x-axis).	 (c)	 Scatterplot	of	 the	number	of	all	BCR	 reads	per	1	

million	RNA-Seq	reads	(y-axis)	and	B-cell	signature	score	inferred	by	SaVant	(x-axis).	(d)	Scatterplot	of	the	number	of	

all	TCR	reads	per	1	million	RNA-Seq	reads	 (y-axis)	and	B-cell	 signature	score	 inferred	by	SaVant	 (x-axis).	Pearson	

correlation	coefficient	(r)	and	P-value	are	reported.		

	

	

Characterizing	the	adaptive	immune	repertoire	across	53	GTEx	tissues		

	

ImRep	 identified	 over	 26	million	 reads	 overlapping	 3.8	million	 distinct	 CDR3	 sequences	 that	

originate	from	diverse	human	tissues.	The	majority	of	assembled	CDR3	sequences	derived	from	

BCRs,	 with	 1.7	 million	 from	 the	 immunoglobulin	 heavy	 chain	 (IGH),	 0.9	 million	 from	 the	

immunoglobulin	kappa	chain	(IGK),	and	1.0	million	from	the	immunoglobulin	lambda	chain	(IGL).	

A	smaller	fraction	of	CDR3	sequences	derived	from	TCRs,	with	0.2	million	sequences	from	alpha	

and	beta	TCRs	(TCRA	and	TCRB).	The	vast	majority	of	all	assembled	CDR3s	had	a	low	frequency	

in	the	data.	98%	of	CDR3	sequences	had	a	count	of	 less	than	10	reads,	and	the	median	CDR3	

sequence	count	was	1.4.	CDR3	sequences	derived	from	IGK	were	the	most	abundant	across	all	

tissues,	accounting	on	average	for	54%	of	the	entire	B-cell	population	(Figure	S4).	In	the	T-cell	

population,	alpha	and	beta	jointly	accounted	for	83%	of	the	population.	Delta	T-cell	population	

was	the	rarest,	accounting	for	less	than	one	percent	of	the	entire	T	cell	population	(Figure	S5).		

	

We	 compared	 the	 length	 and	 amino	 acid	 composition	 of	 the	 assembled	 CDR3	 sequences	 of	

immunoglobulin	and	T-cell	receptor	chains	(Figure	3a-g).	Consistent	with	previous	studies,	we	

observed	that	immunoglobulin	light	chains	have	notably	shorter	and	less	variable	CDR3	lengths	

compared	to	heavy	chains13	(Fig.	3h).	The	tissue	type	appears	to	have	no	effect	on	the	length	

distribution	of	CDR3	sequences	of	BCRs	(Figure	S6).	Differences	in	the	CDR3	length	distributions	

for	 TCRs	 cannot	 be	 estimated	 due	 to	 the	 small	 number	 of	 available	 TCRs.	 Sequencing	

composition14	of	CDR3	regions	of	beta	T-cells	assembled	by	ImReP	recapitulates	one	detected	by	

TCR	sequencing2	from	the	whole	blood	with	two	dominant	CASS	and	CSAR	motifs	in	the	beginning	

of	 the	 sequence	 (Fig.	 3f).	 In	 line	 with	 other	 studies15,	 both	 light	 chains	 exhibited	 a	 reduced	

amount	of	sequencing	diversity	(Fig.	3b-c).		
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Figure	3.	Length	and	amino	acid	composition	of	 the	assembled	CDR3	sequences	of	 immunoglobulin	and	T-cell	

receptor	chains.	The	sequence	logo	(using	WebLogo)	of	amino	acid	composition	representation	for	CDR3	sequences	

with	mean	 length.	The	height	of	the	amino	acid	within	the	stack	 indicates	the	relative	frequency.	Distribution	of	

CDR3	sequence	length	is	estimated	using	s	kernel	density.	(a)	Sequence	logo	of	15-amino-acid	CDR3	sequence	of	

IGH.	(b)	Sequence	logo	of	11-amino-acid	CDR3	of	IGK.	(c)	Sequence	logo	of	12-amino-acid	CDR3	sequence	of	IGL.	(d)	

Sequence	 logo	of	14-amino-acid	CDR3	sequence	of	TCRA.	(e)	Sequence	 logo	of	14-amino-acid	CDR3	sequence	of	

TCRB.	 (f)	 Sequence	 logo	 of	 17-amino-acid	 CDR3	 sequence	 of	 TCRD.	 (g)	 Sequence	 logo	 of	 13-amino-acid	 CDR3	

sequence	of	TCRG.	(h)	Distribution	of	CDR3	sequence	length	is	estimated	using	s	kernel	density	separately	for	each	

chain	of	T-	and	B-cell	receptors.	
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We	 observed	 per	 sample	 an	 average	 of	 1331	 distinct	 clonotypes	 for	 BCRs	 and	 20	 distinct	

clonotypes	sequences	for	TCRs.	We	normalized	the	number	of	distinct	clonotypes	by	the	total	

number	of	RNA-Seq	reads,	which	we	call	number	of	clonotypes	per	one	million	reads	(CPM).	As	

the	number	of	distinct	clonotypes	does	not	 increase	 linearly	with	the	sequencing	depth,	CPM	

metric	should	not	be	used	in	studies	comparing	clonotype	diversity	across	various	phenotypes.	

Instead,	CPM	is	intended	to	be	an	informative	measure	of	clonal	diversity	adjusted	for	sequencing	

depth.		

	
We	 used	 per	 sample	 alpha	 diversity	 (Shannon	 entropy)	 to	 incorporate	 the	 total	 number	 of	

distinct	clonotypes	and	their	relative	frequencies	into	a	single	diversity	metric.	Among	all	tissues,	

spleen	has	the	largest	B-cell	population,	with	a	median	of	1301	BCR-derived	reads	per	one	million	

RNA-Seq	reads.	It	also	has	the	most	diverse	population	of	B	cells	with	median	per	sample	alpha	

diversity	of	7.6	corresponding	to	1025	CPM	(Figure	4	and	Table	S1).	Whole	blood	has	both	the	

largest	and	most	diverse	T-cell	population	(Figure	4	and	Table	S1).	Organs	that	possess	mucosal,	

exocrine,	and	endocrine	sites	(n=24)	harbor	a	rich	clonotype	population	with	a	median	of	87	CPM	

per	sample.	Minor	salivary	glands	have	the	highest	 immune	diversity	 in	the	group	(alpha=7.1)	

and	surpass	the	diversity	of	the	terminal	Ileum	containing	Peyer’s	Patches,	which	are	secondary	

lymphoid	organs	(Table	S1).		

	

Tissues	not	related	to	the	immune	system,	including	adipose,	muscle,	and	the	organs	from	the	

central	nervous	system,	contained	a	median	of	6	CPM	per	sample,	which	are	most	likely	due	to	

the	blood	content	of	the	tissues16.	The	highest	number	of	distinct	CDR3	sequences	among	non-

lymphoid	organs	was	present	 in	 the	omentum,	a	membranous	double	 layer	of	adipose	tissue	

containing	fat-associated	lymphoid	clusters.	As	expected17,	Epstein	bar	virus	(EBV)-transformed	

lymphocytes	(LCL)	harbored	a	large	homogeneous	population	of	B-cell	clonotypes	(Table	S1	and	

Figure	S6).		
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Figure	 4.	Adaptive	 immune	 repertoires	 across	multiple	 human	 tissues.	 Adaptive	 immune	 repertoires	 of	 8,555	

samples	across	544	individuals	from	53	body	sites	obtained	from	Genotype-Tissue	Expression	study	(GTEx	v6).	We	

group	the	tissues	by	their	relationship	to	the	immune	system.	The	first	group	includes	the	lymphoid	tissues	(n=2,	red	

colors).	The	second	group	includes	blood	associated	sites	including	whole	blood	and	blood	vessel	(n=4,	red	color).	

The	third	group	are	the	organs	that	encompasses	mucosal,	exocrine	and	endocrine	organs	(n=21,	lavender	color).	

The	 fourth	 group	 are	 cell	 lines	 (n=3,	 grey	 color).	 The	 filth	 group	 are	 adipose	 or	 muscle	 tissues	 and	 the	

gastroesophageal	junction	(n=7,	blue	color).	The	sixth	group	are	organs	from	central	nervous	system	(n=14,	green	

color).	Histogram	reports	clonotypic	richness	of	T	and	B	cells,	calculated	as	number	of	distinct	amino	acid	sequences	

of	CDR3	per	one	million	RNA-Seq	reads	(CPM).	(a)	Median	CPMs	are	presented	individually	for	T	cell	receptor	alpha	

chain	(TCRA),	T-cell	receptor	beta	chain	(TCRB),	T-cell	receptor	delta	chain	(TCRD),	and	T-cell	receptor	gamma	chain	

(TCRG).	(b)		Median	number	of	distinct	amino	acid	sequences	of	CDR3	are	presented	individually	for	immunoglobulin	

heavy	chain	(IGH),	immunoglobulin	kappa	chain	(IGK),	immunoglobulin	lambda	chain	(IGL).		

	

	

Individual-	and	tissue-specific	T-	and	B-cell	clonotypes		

	

Amino	acid	sequences	of	clonotypes	exhibited	extreme	inter-individual	dissimilarity,	with	88%	of	

clonotypes	unique	to	a	single	individual	(private)	(Figure	5a).	The	remaining	~400,000	clonotypes	

were	shared	by	at	least	two	individuals	(public).	The	number	of	individuals	sharing	clonotypes	

varied	across	T	and	B	cell	receptors,	with	immunoglobulin	light	chains	having	the	highest	number	

of	public	clonotypes.	Twenty-five	percent	of	all	IGK	clonotypes	were	public,	and	the	number	of	

individuals	 sharing	 the	 IGK	 clonotype	 sequences	 can	 be	 as	 high	 as	 471	 (Figure	 5b).	 T	 cell	

clonotypes	had	on	average	7%	public	clonotypes,	with	the	highest	number	of	public	clonotypes	

among	the	delta	chain	of	gamma-delta	TCRs	(12%).	The	limited	capacity	of	RNA-Seq	to	cover	low	

abundant	 clonotypes	 may	 misclassify	 public	 clonotypes	 as	 private.	 Consistent	 with	 previous	

studies18,19,	we	observe	public	clonotypes	to	be	significantly	shorter	in	length	than	the	private	

ones	(p-value<2x10-16).	For	example,	 IGH	chain	public	clonotypes	had	an	average	length	of	13	

amino	acids,	and	private	clonotypes	had	an	average	length	of	16.	We	also	examined	whether	the	

public	clonotypes	were	more	often	shared	across	tissues	within	an	individual.	Only	14%	of	the	

~240,000	 clonotypes	 shared	 across	 tissues	 were	 public.	 The	 majority	 of	 clonotypes	 were	
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individual-	and	tissue-specific	(Figure	5c).	The	full	list	of	public	clonotypes	is	distributed	with	the	

‘Atlas	of	T-	and	B-cell	repertoires’	that	accompanies	this	manuscript.	

	

	

	

	

	

	

	
	

	

	

Figure	5.	Private	and	public	T	and	B	cell	clonotypes.	(a)	Distribution	of	frequencies	of	private	(n=1)	and	public	(n>1)	

clonotypes	across	544	 individuals.	We	collect	clonotypes	 from	all	 tissues	of	 the	same	 individual	 into	a	single	set	

corresponding	to	that	individual.	(b)	The	most	public	clonotypes	(shared	across	maximum	number	of	individuals)	

and	 corresponding	 VJ	 recombination	 are	 presented	 for	 IGH,	 IGK,	 IGL,	 TCRA,	 TCRB,	 and	 TCRG.	 (c)	 Clonotypes	

sequences	 are	 classified	 into	 public	 clonotypes	 (shared	 across	 individuals),	 private	 (individual	 specific),	 tissue-

specific,	and	clonotypes	shared	across	multiple	tissues.	The	number	of	clonotypes	falling	into	each	pair	of	categories	

is	reported	across	all	T	and	B	cell	receptor	chains.		
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Flow	of	T	and	B	cell	clonotypes	across	human	GTEx	tissues	

	

The	 large	 number	 of	 individuals	 available	 through	 the	 study	 allow	 us	 to	 establish	 a	 pairwise	

relationship	between	the	tissues	and	track	the	flow	of	T	and	B	clonotypes	across	human	tissues.	

W	observed	a	significant	increase	of	the	CDR3	sequences	shared	across	pairs	of	tissues	from	the	

same	 individuals.	 Further,	we	observed	 this	pattern	 consistently	 for	all	 chains	of	B	and	T	 cell	

receptors	(p-value<2x10-16)	(Figure	6a	and	Table	S2).	We	observe	a	different	amount	of	shared	

CDR3	sequences	across	different	 types	of	BCRs	and	TCRs	with	an	 increase	 in	 immunoglobulin	

light	 chains.	 Decreased	 number	 of	 TCR	 reads	 compared	 to	 the	 BCRs	 makes	 it	 unfeasible	 to	

compare	the	number	of	shared	CDR3	across	T	and	B	cells.	On	average,	we	observe	21.0	CDR3	

sequences	to	be	shared	across	a	pair	of	tissues	from	the	same	individuals.	Pairs	of	tissues	from	

different	individuals	share	on	average	10.6	CDR3	sequences	(Figure	6a	and	Table	S2).		

	

To	establish	the	flow	of	B-	and	T-cell	clonotypes	across	various	tissues,	we	compared	clonotype	

populations	between	and	within	the	same	individuals.	We	limited	this	analysis	to	pairs	of	tissues	

for	which	we	had	at	least	10	individuals	(870	pairs	of	tissues	out	of	1378	possible	pairs).	We	used	

beta	diversity	 (Sørensen–Dice	similarity	 index)	 to	measure	compositional	 similarities	between	

the	tissues	in	terms	of	gain	or	loss	of	CDR3	sequences	(Figure	6b-c).	For	the	majority	of	the	870	

available	tissue	pairs,	we	observe	no	BCR	or	TCR	sequences	in	common,	which	corresponds	to	

beta	diversity	of	0.0.		

		

We	examined	the	flow	of	IGH	clonotypes	across	tissues	and	presented	it	as	a	network	(Figure	

5b).	Among	870	available	tissue	pairs,	we	have	identified	56	tissue	pairs	with	beta	diversity	above	

.001.		Spleen	was	the	most	highly	connected	tissue,	with	17	connections,	followed	by	lung,	with	

16	 connections.	 Clonotypes	 represents	 one	 connected	 component,	 meaning	 that	 every	 two	

nodes	are	connected	directly	or	via	other	nodes.	Clonotype	populations	of	spleen	and	lung	are	

the	most	similar	 (0.02	beta	diversity),	other	pairs	 include	minor	salivary	gland	and	esophagus	

mucosa,	terminal	ileum	(small	intestine)	and	transverse	colon.	We	observe	above	200	pairs	of	
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tissues	with	beta	diversity	above	.001	for	immunoglobulin	light	chains	(Figure	S8-S9).	The	most	

similar	tissue	pairs	for	IGK	chain	were	spleen	and	transverse	colon	(0.15	beta	diversity).	

	

We	also	examined	the	flow	of	TCRB	clonotypes	across	tissues.	TCRB	clonotype	sequences	were	

shared	across	10	pairs	of	tissues	with	average	beta	diversity	of	0.02.	Similar	to	B	cells,	the	network	

of	 T	 cell	 clonotypes	 is	 a	 single	 connected	 component,	 with	 spleen	 being	 the	 most	 highly	

connected	tissue	(Figure	6c).	For	the	TCR	gamma	chain,	we	observe	beta	diversity	of	0.0	for	all	

tissue	pairs.	At	the	same	time	12%	of	TCR	gamma	clonotypes	are	public,	showing	the	highest	rate	

among	all	TCR	genes.	At	the	sequencing	depth	provided	by	RNA-Seq,	we	are	unable	to	observe	

TCR	delta	clonotype	sharing	across	individuals	and	tissues.		
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Figure	6.	Flow	of	T	and	B	cell	clonotypes	across	diverse	human	tissues.	Results	are	based	on	pairs	of	tissues	with	at	

least	10	individuals.	(a)	The	number	of	clonotype	sequences	shared	across	pairs	of	tissues	from	the	same	individuals	

(blue	color)	and	from	different	individuals	(orange	color)	are	presented.	Number	of	clonotypes	shared	across	tissues	

from	the	same	individuals	for	TCRs	is	<.1.	Number	of	clonotypes	shared	across	tissues	from	different	individuals	for	

TCRs	is	<.001.	(b)-(c)	Flow	of	clonotypes	across	diverse	human	tissues	is	presented	as	a	network.	Each	node	is	a	tissue	

with	the	size	proportional	to	a	median	number	of	clonotypes	of	the	tissue.	The	color	of	the	node	corresponds	to	a	

type	of	the	tissue	type:	lymphoid	tissues	(yellow	colors),	blood	associated	sites	(red	color),	organs	that	encompasses	

mucosal,	exocrine	and	endocrine	organs	(lavender	color).	Compositional	similarities	between	the	tissues	in	terms	of	

gain	 or	 loss	 of	 CDR3	 sequences	 are	measured	 across	 valid	 pairs	 of	 tissues	 using	 beta	 diversity	 (Sørensen–Dice	

similarity	 index).	 Edges	 are	weighted	 according	 to	 the	 beta	 diversity.	 (b)	 Flow	of	 IGH	 clonotypes	 across	 diverse	

human	tissues	is	presented	as	a	network.	Edges	with	beta	diversity	>.001	are	presented.	(c)	Flow	of	TCRB	clonotypes	

across	diverse	human	tissues	is	presented	as	a	network.	Edges	with	beta	diversity	>.001	are	presented.	
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ImReP	identifies	tissue	samples	with	lymphocyte	infiltration	

	

Histological	images	of	tissue	cross-sections	and	pathologists’	notes	have	been	used	to	validate	

the	 ImReP’s	 ability	 to	 detect	 the	 samples	 with	 a	 high	 lymphocyte	 content,	 which	 often	

corresponds	to	a	disease	state.	We	examined	the	IGH	clonotype	populations	from	thyroid	tissue	

across	individuals.	The	median	number	of	inferred	distinct	CDR3	sequences	per	sample	was	20,	

though	14.5%	of	the	samples	had	more	than	500	distinct	CDR3	sequences.	 	We	observed	the	

highest	number	of	CDR3	sequences	among	all	the	thyroid	samples	in	an	individual	with	late	stage	

Hashimoto's	thyroiditis,	an	autoimmune	disease	characterized	by	lymphocyte	infiltration	and	T-

cell	mediated	cytotoxicity.	According	to	pathologists’	notes,	Hashimoto's	disease	was	present	in	

11.2%	of	thyroid	samples,	with	varying	degrees	of	severity.	First,	we	used	pathologists’	notes	to	

annotate	 samples	 as	 healthy	 or	 bearing	 Hashimoto's	 disease,	 and	 then	 we	 compared	 the	

adaptive	repertoire	diversity	between	these	groups.	We	observed	a	significant	 increase	in	the	

number	of	distinct	 IGH	clonotypes	 in	samples	with	Hashimoto's	 thyroiditis	 (p-value=	1.5x10-5)	

(Figure	S10).	The	number	of	clonotypes	varied	from	113	for	focal	Hashimoto's	thyroiditis	to	5621	

for	late	stage	Hashimoto's	thyroiditis	(Figure	7a).	In	addition,	high	clonotype	diversity	in	kidney	

samples	indicated	the	presence	of	glomerulosclerosis.	In	lung	samples,	high	clonotype	diversity	

corresponded	to	inflammatory	diseases	such	as	sarcoidosis	and	bronchopneumonia.	

	

We	observed	no	difference	in	clonal	diversity	in	males	and	females	across	the	tissues,	except	in	

breast	tissues	(p-value<3.2x10-12,	BCRs).	 Increased	clonotype	diversity	of	breast	tissue	 in	male	

individuals	corresponded	to	gynecomastia,	a	common	disorder	of	non-cancerous	enlargement	of	

male	breast	tissue	(Figure	7b).		
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Figure	7.	ImReP	is	able	to	identify	samples	with	high	activity	of	lymphocytes.	Histological	images	of	tissue	cross-

sections	and	pathologists’	notes	have	been	used	to	validate	the	ImReP’s	ability	to	detect	the	samples	with	a	high	

activity	of	lymphocytes.	(a)	Samples	were	ordered	by	Hashimoto's	thyroiditis	severity,	as	reported	by	pathologists’	

notes.	Histological	images	are	provided	to	illustrate	the	disease	state.	Average	number	of	clonotypes	is	reported	for	

each	disease	group.	(b)	Boxplot	reporting	number	of	clonotypes	in	the	breast	tissues	for	males	and	females.	Outlier	

among	the	male	samples	is	illustrated	with	the	histological	image.		
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Discussion	

	

We	 have	 developed	 a	 novel	 computational	 approach	 (ImReP)	 for	 reconstruction	 of	 adaptive	

immune	 repertoires	 using	 RNA-Seq	 data.	We	 demonstrate	 the	 ability	 of	 ImReP	 to	 efficiently	

extract	 TCR-	 and	 BCR-	 derived	 reads	 from	 the	 RNA-Seq	 data	 and	 accurately	 assemble	

corresponding	BCR	and	TCR	clonotypes.	The	proposed	algorithm	can	accurately	assemble	CDR3	

sequences	of	immune	receptors	even	with	sequencing	errors	and	short	read	length.	Simulations	

generated	 using	 various	 read	 lengths	 and	 coverage	 depth	 show	 that	 ImReP	 consistently	

outperforms	existing	methods	in	terms	of	precision	and	recall	rates.		

	

We	 have	 demonstrated	 the	 feasibility	 of	 applying	 RNA-Seq	 to	 study	 the	 adaptive	 immune	

repertoire.	Although,	RNA-Seq	lacks	the	sequencing	depth	of	targeted	sequencing	(Rep-Seq),	it	

often	 can	 compensate	 by	 having	 larger	 sample	 size.	 Using	 ImReP,	we	 have	 created	 the	 first	

systematic	atlas	of	immunological	sequence	for	B-	and	T-cell	receptor	repertories	across	diverse	

human	tissues.	This	provides	a	rich	resource	for	comparative	analysis	of	a	range	of	tissue	types,	

most	of	which	have	not	been	studied	before.	The	atlas	of	T-	and	B-cell	receptors,	available	with	

the	paper,	is	the	largest	collection	of	CDR3	sequences	and	tissue	types.	We	anticipate	that	this	

database	 will	 enhance	 future	 studies	 in	 areas	 such	 as	 immunology	 and	 contribute	 to	 the	

development	of	therapies	for	human	diseases.	

	

Using	 RNA-Seq	 to	 study	 immune	 repertoires	 has	 some	 advantages,	 including	 the	 ability	 to	

simultaneously	capture	both	T	and	B	cell	clonotype	populations	during	a	single	run.	It	also	allows	

simultaneous	detection	of	overall	transcriptional	responses	of	the	adaptive	immune	system,	by	

comparing	changes	in	the	number	of	BCR	and	TCR	transcripts	to	the	much	larger	transcriptome.	

Given	 large	 number	 of	 large-scale	 RNA-Seq	 datasets	 becoming	 available,	we	 look	 forward	 to	

scaling	up	 the	atlas	of	T-	and	B-cell	 receptors	 that	will	provide	valuable	 insights	 into	 immune	

responses	across	various	autoimmune	diseases,	allergies,	and	cancers.		
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Extended	Experimental	Procedures	

	

For	manuscript	“Profiling	adaptive	immune	repertoires	across	multiple	human	tissues	by	RNA	

Sequencing”	
	

	

RNA-sequencing	data	

	

We	used	RNA-sequencing	data	from	Genotype-Tissue	Expression	study	(GTEx	Consortium	v.6)	

corresponding	to	8,555	samples	collected	from	544	 individuals	from	53	tissues	obtained	from	

Genotype-Tissue	Expression	study	(GTEx	v6).	RNA-seq	data	is	from	Illumina	HiSeq	sequencing	of	

75	bp	paired-end	reads.	The	data	was	derived	from	38	solid	organ	tissues,	11	brain	subregions,	

whole	blood,	and	three	cell	lines	of	postmortem	donors.	The	collected	samples	are	from	adults	

matched	for	age	across	males	and	females.		

	

RNA-Sequencing	data	preprocessing	

	

We	 downloaded	 the	 mapped	 and	 unmapped	 reads	 in	 BAM	 format	 from	 dbGap	

(http://www.ncbi.nlm.nih.gov/gap).	 For	 each,	 sample	 we	 prepared	 the	 candidate	 receptor-

derived	reads	to	be	the	input	for	ImReP	tool.	First,	we	extracted	reads	mapped	to	the	TCR	and	

BCR	genes.	The	coordinates	of	TCR	and	BCR	genes	(GRCh37	human	reference	genome	release)	

are	provided	Table	S3.	Second,	we	prepared	the	high	quality	unmapped	reads	using	ROP	(step1	

–	step3)	https://sergheimangul.wordpress.com/rop/	(Mangul	et	al.)	by	filtering	out	low	quality,	

low	complexity	reads	and	reads	that	match	rRNA	repeats.	We	also	filtered	out	lost	human	reads	

(reads	unmapped	to	the	reference	genome)	and	lost	repeat	reads	(unmapped	reads	mapped	to	

the	repeat	sequences).	The	reads	mapped	to	the	BCR	and	TCR	loci	and	high	quality	unmapped	

reads	were	merged,	and	ImReP	used	this	data	to	assemble	CDR3	sequences	and	corresponding	

V(D)J	recombinations.		
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Validation	based	on	simulated	RNA-Seq	data	

	

We	performed	in-silico	simulations	to	investigate	the	feasibility	of	using	RNA-Seq	to	study	the	

clonal	 adaptive	 immune	 repertoire.	We	 first	 checked	 the	 ability	 of	 the	 ImReP	 to	 extract	 the	

receptor-derived	reads	from	the	RNA-Seq	reads.	First,	we	simulated	the	TCR	and	BCR	transcripts,	

which	 are	 composed	 of	 recombined	 VDJ	 segment	 with	 non-template	 insertion	 at	 the	 V(D)J	

junction	(Figure	S2).	We	used	the	IMGT	database	(http://www.imgt.org/vquest/refseqh.html	)	of	

V	and	J	gene	segments.	We	randomly	selected	V,	D	and	J	segments	and	inserted	a	sequence	of	

random	nucleotides	between	V	and	D	and	between	D	and	J.	The	length	of	the	inserted	sequence	

was	sampled	from	the	Gaussian-like	distribution	with	mean	15	(Miqueu,	Patrick,	et	al.).		We	also	

exclude	the	simulated	transcripts	with	the	random	insertions	leading	to	out-of-frame	proteins.	

We	used	LymAnalizer	(https://sourceforge.net/projects/lymanalyzer/	)	validate	CDR3	sequences	

of	the	transcript.			

	

We	used	SimNGS	(https://www.ebi.ac.uk/goldman-srv/simNGS/	)	to	simulate	paired-end	reads	

from	BCR	and	TCR	transcripts,	referred	as	receptor-derived	reads.	Next,	we	simulated	50	million	

transcriptomics	reads	from	the	human	transcriptome	reference	(GRCh37).	We	mixed	receptor-

derived	reads	with	 transcriptomic	 reads	 into	a	RNA-Seq	mixture	 (Figure	S3).	We	then	applied	

ImReP	to	a	simulated	RNA-Seq	mixture	to	check	the	ability	of	 ImReP	to	extract	CDR3-derived	

reads	from	the	RNA-Seq	mixture.			

	

Next,	we	studied	the	effects	of	the	coverage	and	read	length	on	the	ability	to	reconstruct	CDR3	

sequences.		In	total,	we	simulated	1,000	BCR	or	TCR	transcripts.	We	simulated	paired-end	reads	

of	various	read	length	(l=50,75,100)	with	use	various	coverage	of	TCR	and	BCR	transcripts	(c=1,	

2,	4,	8,	16,	32,	64,	128).			We	used	the	power	law	distribution	to	assign	frequencies	to	simulated	

T	and	B	cell	transcripts	(Weinstein,	Joshua	A.,	et	al.).		The	CDR3	amino	acid	sequences	assembled	

by	ImReP	were	compared	to	simulated	transcripts	to	evaluate	the	recall	and	precision	for	various	

read	length	and	coverage	(main	text	and	Figure	2).	
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We	define	recall	and	precision	in	the	following	way:	

	

• Recall	=	TP/(TP+FN)		

• Precision	=	TP/(TP+FP)	

	

Where	TP	 is	 the	number	of	correctly	assembled	CDR3	sequence	 features	 (exact	match	to	 the	

simulated	CDR3),	FN	is	the	number	of	simulated	CDR3	sequence	features	not	assembled	by	the	

method,	and	FP	is	the	number	of	incorrectly	assembled	CDR3	sequences.	

	

	

	

Comparison	to	other	methods	

	

We	compared	the	ImReP	to	existing	methods	based	on	simulated	data	generated,	as	described	

in	 “Validation	 based	 on	 simulated	 RNA-Seq	 data”.	 	 We	 compared	 ImReP	 to	 MiXCR	

(https://github.com/milaboratory/mixcr	),	IMSEQ	(http://www.imtools.org/	)	and	IgBlast-based	

pipeline	 (https://github.com/nbstrauli/influenza_vaccination_project	 ).	 IMSEQ	 and	 MiXCR,	

cannot	be	applied	to	RNA-Seq	reads,	because	they	were	originally	designed	for	Rep-Seq,	targeted	

sequencing	of	BCR	or	TCR	loci.	Thus,	those	tools	were	provided	with	only	the	simulated	receptor-

derived	reads	to	assess	accuracy.	IgBlast-based	pipeline	was	supplied	with	the	original	RNA-Seq	

reads.		

	

We	 used	 the	 following	 command	 to	 run	MiXCR	 with	 the	 option	 to	 filter	 out-of-frame	 CDR3	

sequences	(version	2.0	of	MiXCR	was	used):	

	

• bash	mixcr-2.0/mixcr	align	-r	log.txt	r1.fastq	r2.fastq	alignments.vdjca	

• bash	mixcr-2.0/mixcr	assemble	-r	log.txt	alignments.vdjca	clones.clns	

• bash	mixcr-2.0/mixcr	exportClones	-o	-t	clones.clns	clones.txt	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2016. ; https://doi.org/10.1101/089235doi: bioRxiv preprint 

https://doi.org/10.1101/089235
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

The	following	command	was	used	to	run	IgBlast-based	pipeline:	

• Bash	 pipeline.bash	 [path_to_input_directory]	 [path_to_output_directory]	

[path_to_IgBLAST_directory]	

	

	

Cell	type	composition		

B	cell	and	T	cell	signature	values	per	sample	were	derived	from	SaVant	signature	visualization	

tool	 (Lopez	 et	 al.).	 Cell-specific	 signature	 genes	 are	 first	 defined	 from	 a	 set	 of	 cells/tissues	

obtained	from	the	Human	Body	Atlas	(Su	AI	et	al.,	2004)	by	using	the	proportional	median	values.	

We	calculate	these	values	by	dividing	the	intensity	of	a	probe	in	a	particular	cell	type	by	its	median	

value	across	all	cells/tissues.	The	top	25	genes	with	the	highest	proportional	median	value	for	

CD19+	B	cells,	CD4+	T	cells,	CD8+	T	cells	was	defined	as	the	specific	signature	for	that	cell	type	

(Table	S4).	Any	TCR	or	BCR	genes	were	removed	from	the	signature.	The	signature	score	is	then	

generated	from	the	average	of	the	log2-transformed	values	of	the	signature	genes	within	each	

sample.		T	cell	signatures	was	created	using	the	average	of	the	CD4+	and	CD8+	T	cell	signature	

scores.	

	

Definition	of	clonotype	

Clonotypes	are	defined	as	clones	with	identical	CDR3	amino	acid	sequences.		

	

Histological	images	and	pathologist	notes	

	

We	 used	 histological	 images	 and	 pathologists’	 notes	 (available	 at	 GTEx	 portal,	

http://www.gtexportal.org/home/histologyPage#data)	to	validate	the	adaptive	immune	profile	

of	the	samples.	Although	samples	were	derived	from	primary	tissues,	they	often	have	a	mixed	

cell	type	composition.	For	example,	samples	from	stomach	tissues	have	various	proportions	of	

lymphocytes	 as	 they	 were	 derived	 from	mucosal	 or	muscularis	 part	 of	 the	 tissue	 (based	 on	

pathologists’	 notes).	 GTEx	 samples	with	 inflammation	 and/or	 subject	 to	 various	 diseases	 are	
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investigated	 separately.	 Pathologists’	 notes	 report	 the	 percentage	 of	mucosa	 and	 disease	 or	

inflammation	status	of	the	tissue.		

	

	

Software	Availability	

	

ImRep	(https://sergheimangul.wordpress.com/imrep/	)	is	freely	available	as	source	code.	It	takes	

mapped	 RNA-Seq	 reads	 as	 bam	 or	 sam,	 and	 it	 assembles	 T	 and	 B	 cell	 clonotypes	 and	

corresponding	V(D)J	recombinations.	ImRep	is	distributed	under	the	terms	of	the	General	Public	

License	version	3.0	(GPLv3).		

	

Data	representation	

	

We	 have	 used	WebLogo3	 (http://weblogo.threeplusone.com/manual.html	 )	 to	 represent	 the	

amino	acid	composition	of	assembled	CDR3	sequences.		

	

Data	Availability	Statement		

The	RNA-Seq	data	discussed	in	this	paper	is	available	as	part	of	the	Genotype-Tissue	Expression	

(GTEx)	Project.	
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Supplementary	Figures	

	

	

	
	

Figure	S1.	Schematic	on	how	to	select	 the	candidate	receptor-derived	reads	 from	RNA-Seq	reads,	which	are	the	

input	for	ImRep.		
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Fig	S2.	Workflow	of	BCR	and	TCR	transcript	simulations.		
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Figure	S3.	Schematic	on	how	the	mixure	of	transcriptomic	and	receptor-derived	reads	was	generated.		
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Figure	S4.	 Fraction	of	 IGH,	 IGK,	and	 IGL	among	 the	whole	B	cell	population	across	53	body	sites.	The	 fraction	 is	

calculated	based	on	the	number	of	reads	derived	from	CDR3	sequences	of	each	BCR	chain.		
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Figure	S5.	Fraction	of	TCRA,	TCRB,	TCRD,	TCRG	among	the	whole	T	cell	population	across	53	body	sites.	The	fraction	

is	calculated	based	on	the	number	of	reads	derived	from	CDR3	sequences	of	each	TCR	chain.		
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Figure	 S6a.	 Length	 distribution	 of	 amino	 acid	 sequences	 of	 CDR3	 region	 in	 immunoglobulin	 heavy	 chain	 (IGH)	

presented	across	53	various	body	sites.		

	

	

	
	

Figure	 S6b.	 Length	 distribution	 of	 amino	 acid	 sequences	 of	 CDR3	 region	 in	 immunoglobulin	 kappa	 chain	 (IGK)	

presented	across	53	various	body	sites.		
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Figure	 S6c.	 Length	 distribution	 of	 amino	 acid	 sequences	 of	 CDR3	 region	 in	 immunoglobulin	 kappa	 chain	 (IGK)	

presented	across	53	various	body	sites.		
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Figure	S7.	Scatterplot	of	the	number	of	IGH	clonotypes	(CDR3s)	in	each	sample,	plotted	against	the	number	of	IGH-

derived	reads	per	1	million	RNA-Seq	reads	
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Figure	S8.	Flow	of	IGK	clonotypes	across	diverse	human	tissues	is	presented	as	a	network.	Edges	with	beta	diversity	

>.001	are	presented.		
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Figure	S9.	Flow	of	IGL	clonotypes	across	diverse	human	tissues	is	presented	as	a	network.	Edges	with	beta	diversity	

>.001	are	presented.		
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Figure	S10.	Number	of	IGH	clonotypes	for	healthy	individuals(Healthy)	and	individuals	bearing	Hashimoto's	disease	

(Diseased).	 Pathologists’	 notes	 were	 used	 to	 annotate	 samples	 as	 healthy	 or	 bearing	 Hashimoto's	 disease.	 A	

significant	 increase	 in	 the	 number	 of	 distinct	 IGH	 clonotypes	 in	 samples	 with	 Hashimoto's	 thyroiditis	 (p-value=	

1.5x10-5)	is	observed.		
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Supplementary	Tables	

	

[Table	S1	is	provided	as	a	separate	file]	

	

Table	S1.	Data	overview.	Characteristics	of	8,555	samples	across	544	individuals	from	53	body	sites	obtained	from	
Genotype-Tissue	Expression	study	(GTEx	v6).	The	second	column	reports	the	tissue	type	based	on	the	relationship	
to	the	immune	system	(main	text).		The	tissues	inside	each	tissue	type	group	are	sorted	based	on	number	of	CDR3	
sequences.		(3)	histological	type	of	the	body	site.		(4)	is	the	median	number	of	76x2	bp	paired-end	reads	per	
sample.	(5)	number	of	RNA-Seq	samples	available	via	GTEx.	Results	for	(7-40)	are	presented	individually	for	
immunoglobulin	heavy	chain	(IGH),	immunoglobulin	kappa	chain	(IGK,	immunoglobulin	lambda	chain	(IGK),	T	cell	
receptor	alpha	chain	(TCRA),	T	cell	receptor	beta	chain	(TCRB),	T	cell	receptor	delta	chain	(TCRD),	and	T	cell	
receptor	gamma	chain	(TCRG).	(7-8)	Median	relative	abundance	of	B	or	T	cells	within	each	tissue.	(10-16)	Median	
number	of	distinct	CDR3	(clonotypes)		is	reported	per	tissue.	(18-24)	Median	number	of	distinct	clonotypes	(CDR3)	
per	1	million	RNA-Seq	reads	(CPM)	is	reported.	(34-40)	We	used	per	sample	alpha	diversity	(Shannon	entropy)	to	
estimate	the	diversity	of	immune	repertoire.	Median	value	per	tissue	is	reported.		
	

	

	

	

	

		 Number	of	CDR3	sequences	shared	across	pars	of	tissues	
Chain	type	 The	same	individuals	 Different	individuals	
	IGH	 1.5	 0.01	
IGK	 13.9	 8.2	
IGL	 5.4	 2.4	
TRCA	 0.03	 0.001	
TRCB	 0.1	 0.0004	
TRCD	 0.003	 0.0001	
TRCG	 0.001	 0.0000001	
	

	

Table	 S2.	Data	used	 for	 Figure	6a	 represented	as	 a	 table.	 Results	 are	based	on	pairs	 of	 tissues	with	 at	 least	 10	

individuals.	The	number	of	clonotype	sequences	shared	across	pairs	of	tissues	from	the	same	individuals	is	presented	

in	 column	 2.	 	 The	 number	 of	 clonotype	 sequences	 shared	 across	 pairs	 of	 tissues	 from	 different	 individuals	 is	

presented	in	column	3.		
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Name	of	the	chain	 Abbreviation	 Chromosome	 Locus	

Immunoglobulin	 heavy	

locus	

IGH	 chr14	 (106,032,614-

107,288,051)	

Immunoglobulin	 kappa	

locus	

IGK	 chr2	 (89,890,568-

90,274,235),(89,156,874-

89,630,436)	

Immunoglobulin	lambda	

locus	

IGL	 chr22	 (22,380,474-23,265,085)	

T	 cell	 receptor	 alpha	

locus	

TCRA	 chr14	 (21621904..22552132)	

T	cell	receptor	beta	locus	 TCRB	 Chr7	 (141998851..142510972)	

T	 cell	 receptor	 delta	

locus	

TCRD	 chr14	 (22,891,537-22,935,569)	

T	 cell	 receptor	 gamma	

locus	

TCRG	 chr7	 (38,279,625-38,407,656)	

	

	

Table	S3.	The	coordinates	of	TCR	and	BCR	loci	according	to	the	GRCh37	human	reference	genome	release.		
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Table	S4.	The	top	25	genes	with	the	highest	proportional	median	value	for	CD19+	B	cells,	CD4+	T	cells,	CD8+	T	cells.	

Supplemental Tables for gene signatures

B cell signature

HLA-DQA1 major histocompatibility complex, 
class II, DQ alpha 1

HLA-DQA2 major histocompatibility complex, 
class II, DQ alpha 2

HLA-DMA major histocompatibility complex, 
class II, DM alpha

HLA-DOB major histocompatibility complex, 
class II, DO beta

CXCR4 chemokine (C-X-C motif) receptor 4
SELL selectin L

CD79A CD79a molecule, immunoglobulin-
associated alpha

ISG20 interferon stimulated exonuclease 
gene 20kDa

MS4A1 membrane-spanning 4-domains, 
subfamily A, member 1

CD37 CD37 molecule
CD48 CD48 molecule

LTB lymphotoxin beta (TNF superfamily, 
member 3)

P2RX5 purinergic receptor P2X, ligand-gated 
ion channel, 5

LAPTM5 lysosomal protein transmembrane 5
PLAC8 placenta-specific 8

POU2AF1 POU class 2 associating factor 1
TCL1A T-cell leukemia/lymphoma 1A
FAIM3 Fas apoptotic inhibitory molecule 3

AL928768.3 lincRNA

CD4+ T cell Signature

CD3D CD3d molecule, delta (CD3-TCR 
complex)

PTPRC protein tyrosine phosphatase, receptor 
type, C

LCK lymphocyte-specific protein tyrosine 
kinase

CD247 CD247 molecule

PIK3CD phosphoinositide-3-kinase, catalytic, 
delta polypeptide

CXCR4 chemokine (C-X-C motif) receptor 4
IL7R interleukin 7 receptor
SELL selectin L
ICAM3 intercellular adhesion molecule 3
IL10RA interleukin 10 receptor, alpha
CCR7 chemokine (C-C motif) receptor 7

LTB lymphotoxin beta (TNF superfamily, 
member 3)

CD48 CD48 molecule
LAPTM5 lysosomal protein transmembrane 5
HMHA1 histocompatibility (minor) HA-1

CORO1A coronin, actin binding protein, 1A

KLRB1 killer cell lectin-like receptor subfamily 
B, member 1

PLAC8 placenta-specific 8
DENND2D DENN/MADD domain containing 2D

FAIM3 Fas apoptotic inhibitory molecule 3
GMFG glia maturation factor, gamma

CD8+ T cell Signature

LCK lymphocyte-specific protein tyrosine 
kinase

CD247 CD247 molecule

CD3D CD3d molecule, delta (CD3-TCR 
complex)

PIK3CD phosphoinositide-3-kinase, catalytic, 
delta polypeptide

CXCR4 chemokine (C-X-C motif) receptor 4

GZMA
granzyme A (granzyme 1, cytotoxic T-
lymphocyte-associated serine 
esterase 3)

CD48 CD48 molecule
IL7R interleukin 7 receptor
SELL selectin L

LTB lymphotoxin beta (TNF superfamily, 
member 3)

CTSW cathepsin W
HMHA1 histocompatibility (minor) HA-1

CORO1A coronin, actin binding protein, 1A

KLRB1 killer cell lectin-like receptor subfamily 
B, member 1

NKG7 natural killer cell group 7 sequence
PLAC8 placenta-specific 8

DENND2D DENN/MADD domain containing 2D
FAIM3 Fas apoptotic inhibitory molecule 3

KLRC4 killer cell lectin-like receptor subfamily 
C, member 4
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