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Abstract		

Assay-based	approaches	provide	a	detailed	view	of	the	adaptive	immune	system	by	profiling	T	

and	B	cell	receptor	repertoires.	However,	these	methods	carry	a	high	cost	and	lack	the	scale	of	

standard	 RNA	 sequencing	 (RNA-Seq).	 Here	 we	 report	 the	 development	 of	 ImReP,	 a	 novel	

computational	method	for	rapid	and	accurate	profiling	of	the	adaptive	immune	repertoire	from	

regular	RNA-Seq	data.	We	applied	our	novel	method	 to	8,555	samples	across	544	 individuals	

from	 53	 tissues	 from	 the	 Genotype-Tissue	 Expression	 (GTEx	 v6)	 project.	 ImReP	 is	 able	 to	

efficiently	extract	TCR-	and	BCR-derived	 reads	 from	RNA-Seq	data.	 ImReP	can	also	accurately	

assemble	the	complementary	determining	regions	3	(CDR3s),	the	most	variable	regions	of	B	and	

T	 cell	 receptors,	 and	 determine	 their	 antigen	 specificity.	 Using	 ImReP,	 we	 have	 created	 a	

systematic	atlas	of	immunological	sequences	for	B	and	T	cell	repertoires	across	a	broad	range	of	

tissue	types,	most	of	which	have	not	been	studied	for	B	and	T	cell	receptor	repertoires.		We	also	

compared	 the	 GTEx	 tissues	 to	 track	 the	 flow	 of	 T-	 and	 B-clonotypes	 across	 immune-related	

tissues,	including	secondary	lymphoid	organs	and	organs	encompassing	mucosal,	exocrine,	and	

endocrine	sites,	and	we	examined	the	compositional	similarities	of	clonal	populations	between	

these	 tissues.	 The	 atlas	 of	 T	 and	 B	 cell	 receptors,	 freely	 available	 at	

https://sergheimangul.wordpress.com/atlas-immune-repertoires/,	 is	 the	 largest	 collection	 of	

CDR3	sequences	and	tissue	types.	We	anticipate	this	recourse	will	enhance	future	immunology	

studies	and	advance	development	of	therapies	for	human	diseases.	ImReP	is	freely	available	at	

https://sergheimangul.wordpress.com/imrep/	.	
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Introduction		

	

A	key	function	of	the	adaptive	immune	system,	which	is	composed	of	B-cells	and	T-cells,	 is	to	

mount	protective	memory	responses	 to	a	given	antigen.	B	and	T	cells	 recognize	their	specific	

antigens	 through	 their	 surface	 antigen	 receptors	 (B	 and	 T	 cell	 receptors,	 BCR	 and	 TCR,	

respectively),	which	are	unique	to	each	cell	and	its	progeny.	BCR	and	TCR	are	diversified	through	

somatic	recombination,	a	process	that	randomly	combines	variable	(V),	diversity	(D),	and	joining	

(J)	gene	segments,	and	inserts	or	deletes	non-templated	bases	at	the	recombination	junctions1	

(Figure	1a).	The	resulting	DNA	sequences	are	then	translated	into	the	antigen	receptor	proteins.	

This	process	allows	for	an	astonishing	diversity	of	the	lymphocyte	repertoire	(i.e.,	the	collection	

of	 antigen	 receptors	 of	 a	 given	 individual),	 with	 >1013	 theoretically	 possible	 distinct	

immunological	 receptors1.	 This	 diversity	 is	 key	 for	 the	 immune	 system	 to	 confer	 protection	

against	a	wide	variety	of	potential	pathogens2.	In	addition,	upon	activation	of	a	B-cell,	somatic	

hypermutation	further	diversifies	BCRs	in	their	variable	region.	These	changes	are	mostly	single-

base	substitutions	occurring	at	extremely	high	rates	 (10–5	 to	10–3	mutations	per	base	pair	per	

generation)3.	 Isotype	 switching	 is	 another	 mechanism	 that	 contributes	 to	 B-cell	 functional	

diversity.	Here,	antigen	specificity	remains	unchanged	while	the	heavy	chain	VDJ	regions	join	with	

different	 constant	 (C)	 regions,	 such	 as	 IgG,	 IgA,	 or	 IgE	 isotypes,	 and	 alter	 the	 immunological	

properties	of	a	BCR.		

	

High-throughput	technologies	enable	unprecedented	accuracy	when	profiling	the	BCR	and	TCR	

repertoires.	Commonly	used	assay-based	approaches	provide	a	detailed	view	of	 the	adaptive	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2017. ; https://doi.org/10.1101/089235doi: bioRxiv preprint 

https://doi.org/10.1101/089235
http://creativecommons.org/licenses/by-nc-nd/4.0/


immune	system	with	deep	sequencing	of	amplified	DNA	or	RNA	from	the	variable	region	of	BCR	

or	TCR	loci	(Rep-Seq)4.	Those	technologies	are	usually	restricted	to	one	chain,	with	the	majority	

of	 studies	 focusing	 on	 the	 beta	 chain	 of	 TCRs	 and	 the	 heavy	 chain	 of	 BCRs.	 Recent	 studies2	

successfully	 applied	 assay-based	 approaches	 to	 characterize	 the	 immune	 repertoire	 of	 the	

peripheral	blood.	However,	little	is	known	about	the	immunological	repertoires	of	other	human	

tissues,	including	barrier	tissues	like	skin	and	mucosae.	Studies	involving	assay-based	protocols	

usually	 have	 small	 sample	 sizes,	 thus	 limiting	 analysis	 of	 intra-individual	 variation	 of	

immunological	receptors	across	diverse	human	tissues.			

	

RNA	Sequencing	(RNA-Seq)	traditionally	uses	the	reads	mapped	onto	human	genome	references	

to	 study	 the	 transcriptional	 landscape	 of	 both	 single	 cells	 and	 entire	 cellular	 populations.	 In	

contrast	to	assay-based	protocols	that	produce	reads	from	the	amplified	variable	region	of	BCR	

or	TCR	loci,	RNA-Seq	is	able	to	capture	the	entire	cellular	population	of	the	sample,	including	B	

and	T	cells.	However,	due	to	the	repetitive	nature	of	loci	encoding	for	BCRs	and	TCRs,	as	well	as	

the	extreme	level	of	diversity	in	BCR	and	TCR	transcripts,	most	mapping	tools	are	ill	equipped	to	

handle	 immune	 repertoire	 sequences.	 Despite	 this,	 BCR	 and	 TCR	 transcripts	 often	 occur	 in	

sufficient	 numbers	within	 the	 transcriptome	 of	many	 tissues	 to	 characterize	 their	 respective	

immunological	repertoires5.		

	

In	 this	 study,	 we	 developed	 ImReP,	 a	 novel	 computational	 method	 for	 rapid	 and	 accurate	

profiling	of	the	adaptive	immune	repertoire	from	regular	RNA-Seq	data.	We	applied	it	to	8,555	

samples	across	544	individuals	from	53	tissues	obtained	from	Genotype-Tissue	Expression	study	
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(GTEx	v6)6.	The	data	was	derived	from	38	solid	organ	tissues,	11	brain	subregions,	whole	blood,	

and	three	cell	 lines.	 ImReP	 is	able	to	efficiently	extract	TCR-	and	BCR-	derived	reads	from	the	

RNA-Seq	 data	 and	 accurately	 assemble	 the	 complementarity	 determining	 regions	 3	 (CDR3s).	

CDR3	 are	 the	 most	 variable	 regions	 of	 B	 and	 T	 cell	 receptors	 and	 determine	 the	 antigen	

specificity.	Using	ImReP,	we	created	a	systematic	atlas	of	immunological	sequences	for	B-	and	T-

cell	repertories	across	a	broad	range	of	tissue	types,	most	of	which	were	not	previously	studied	

for	 B-	 and	 T-cell	 repertoires.	 	 We	 also	 examined	 the	 compositional	 similarities	 of	 clonal	

populations	between	the	tissues	to	track	the	flow	of	T	and	B	clonotypes	across	immune-related	

tissues,	 including	 secondary	 lymphoid	 and	 organs	 that	 encompass	 mucosal,	 exocrine,	 and	

endocrine	sites.	Our	proposed	approach	is	not	superior	in	comparison	to	targeted	TCR	or	BCR;	

rather,	 it	provides	a	useful	 tool	 for	mining	 large-scale	RNA-Seq	datasets	 for	study	of	adaptive	

immune	repertoires.		
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Results		

ImReP:	a	two	stage	approach	for	adaptive	immune	repertoires	reconstruction	

We	applied	ImReP	to	0.6	trillion	RNA-Seq	reads	(92	Tbp)	from	8,555	samples	to	assemble	CDR3	

sequences	of	B	and	T	cell	receptors	(Table	S1).	The	RNA-Seq	data	was	generated	by	the	Genotype-

Tissue	 Expression	 Consortium	 (GTEx	 v6).	 First,	 we	 mapped	 RNA-Seq	 reads	 to	 the	 human	

reference	genome	using	a	short-read	aligner	(performed	by	GTEx	consortium6)	(Figure	1).	Next,	

we	identify	reads	spanning	the	V(D)J	junction	of	B	and	T	cell	receptors	and	assemble	clonotypes	

(a	group	of	clones	with	identical	CDR3	amino	acid	sequences).	Here	ImReP	used	0.02	trillion	high	

quality	reads	that	successfully	mapped	to	BCR	genes,	successfully	mapped	to	TCR	genes,	or	were	

unmapped	reads	that	failed	to	map	to	the	human	reference	genome	(Figures	1a	and	S1).		

	

ImReP	 is	 a	 two-stage	approach	 to	assemble	CDR3	 sequences	and	detect	 corresponding	V(D)J	

recombinations	(Figure	1b).	In	the	first	stage,	ImReP	utilizes	reads	that	simultaneously	overlap	V	

and	J	gene	segments	to	infer	the	CDR3	sequences.	We	define	the	CDR3	as	the	sequence	of	amino	

acids	between	the	cysteine	on	the	right	of	the	junction	and	phenylalanine	(for	all	TCR	chains	and	

immunoglobulin	light	chains)	or	tryptophan	(for	IGH)	on	the	left	of	the	junction.	In	the	second	

stage,	 ImReP	 utilizes	 reads	 that	 overlap	 a	 single	 gene	 segment	 containing	 a	 partial	 CDR3	

sequence.	ImReP	then	uses	a	suffix	tree	to	perform	pairwise	comparison	of	the	reads	and	join	

the	reads	based	on	overlap	in	the	CDR3	region.	Further,	ImReP	uses	a	CAST	clustering	technique7	

to	accurately	assemble	clonotypes	 for	PCR	and	sequencing	errors.	We	map	D	genes	 (for	 IGH,	

TCRB,	and	TCRG)	onto	assembled	CDR3	sequences	and	infer	corresponding	V(D)J	recombination.	

A	detailed	description	of	the	methodology	implemented	with	ImReP	is	provided	in	the	Extended	
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Experimental	 Procedures	 Section.	 	 ImReP	 is	 freely	 available	 at	

https://sergheimangul.wordpress.com/imrep/.		

	

To	 validate	 the	 feasibility	 of	 using	 RNA-Seq	 to	 study	 the	 adaptive	 immune	 repertoire,	 we	

simulated	RNA-Seq	data	as	a	mixture	of	transcriptomic	reads	and	reads	derived	from	BCR	and	

TCR	 transcripts	 (Figure	 S3).	 BCR	 and	 TCR	 transcripts	 are	 simulated	 based	 on	 random	

recombination	of	V	and	 J	gene	segments	 (obtained	 from	 IMGT	database8)	with	non-template	

insertion	at	the	recombination	junction	(Figure	S2).	We	assessed	the	ability	of	ImReP	to	extract	

CDR3-derived	 reads	 from	 the	 RNA-Seq	 mixture	 by	 applying	 ImReP	 to	 a	 simulated	 RNA-Seq	

mixture.	While	our	simulation	approach	may	not	completely	summarize	the	various	nuances	and	

eccentricities	of	actual	immune	repertoires,	it	allows	us	to	assess	the	accuracy	of	our	tool.	ImReP	

is	 able	 to	 identify	 99%	 of	 CDR3-derived	 reads	 from	 the	 RNA-Seq	 mixture,	 suggesting	 it	 is	 a	

powerful	 tool	 for	 profiling	 RNA-Seq	 samples	 of	 immune-related	 tissues.	 Details	 about	 the	

simulation	data	are	provided	in	the	Extended	Experimental	Procedures	section.	

	

Next,	we	compared	ImReP	with	other	methods	designed	to	assemble	immune	repertoires.	We	

also	investigated	the	sequencing	depth	and	read	length	required	to	reliably	assemble	TCR	and	

BCR	 sequences	 from	 RNA-Seq	 data.	 Our	 simulations	 suggest	 that	 both	 read	 length	 and	

sequencing	depth	have	a	major	 impact	on	precision-recall	 rates	of	CDR3	 sequence	assembly.	

ImReP	is	able	to	maintain	an	80%	precision	rate	for	the	majority	of	simulated	scenarios.		Average	

CDR3	coverage	that	is	higher	than	8	allows	ImReP	to	archive	a	recall	rate	close	to	90%	for	a	read	

length	 above	 75bp	 (Figure	 2a).	 Increasing	 coverage	 has	 a	 positive	 effect	 on	 the	 number	 of	
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assembled	clonotypes	achieved	by	ImReP	for	both	B	and	T	cell	receptors.	In	general,	we	observe	

higher	precision-recall	rates	of	CDR3	sequence	assembly	for	TCRs	in	comparison	to	BCRs	(Figure	

2a-b).		

	

We	 compared	 the	 performance	 of	 ImReP	 to	 MiXCR	 (RNA-Seq	 mode)9,	 TRUST10,	 TraCeR11,	

V’DJer12,	 IgBlast-based	pipeline13,	 and	 iSSAKE14.	 These	 tools	were	developed	 to	 assemble	 the	

hypervariable	sequences	in	the	T	and	B	cell	receptors	directly	from	RNA-Seq	data.		We	supplied	

each	of	those	tools	with	the	original	RNA-Seq	reads	as	raw	or	mapped	reads,	depending	on	the	

software	developers’	recommendations.	).		TRUST	and	TraCeR	do	not	support	the	analysis	of	BCR	

sequences	and	were	excluded	from	the	comparison	based	for	the	IGH	data.	iSSAKE	is	no	longer	

supported	and	was	not	recommended	for	use.	Unfortunately,	we	obtained	empty	output	after	

running	 V’DJer,	 and	 increasing	 coverage	 in	 the	 simulated	 data	 did	 not	 solve	 the	 problem.	

Alternative	approaches,	such	as	IMSEQ15,	cannot	be	applied	directly	to	RNA-Seq	reads	because	

they	were	 originally	 designed	 for	 targeted	 sequencing	 of	 B	 	 or	 T	 cell	 receptor	 loci.	 Thus,	 to	

independently	assess	and	compare	accuracy	with	ImReP,	we	only	ran	IMSEQ	with	the	simulated	

reads	derived	from	BCR	or	TCR	transcripts	(Figure	S1).		Scripts	and	commands	to	run	all	tools	used	

in	this	study	are	provided	in	the	Extended	Experimental	Procedures	and	are	available	online	at	

https://github.com/smangul1/Profiling-adaptive-immune-repertoires-across-multiple-human-

tissues-by-RNA-Sequencing.	ImReP	consistently	outperformed	existing	methods	on	IGH	data	in	

both	recall	and	precision	rates	for	the	majority	of	simulated	parameters.			ImReP	and	MiXCR	show	

similar	performance	on	TCRA	data	and	outperform	other	methods.	Notably,	ImReP	was	the	only	
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method	with	acceptable	performance	on	 IGH	data	at	50bp	read	 length,	reconstructing	with	a	

higher	precision	rate	significantly	more	CDR3	clonotypes	than	other	methods.	

	

To	demonstrate	 the	 feasibility	of	 applying	non-specific	RNA	Sequencing	 to	assemble	 immune	

repertoire	sequences,	we	used	the	TCRB-Seq	data	prepared	from	three	samples	of	kidney	renal	

clear	cell	carcinoma	(KIRC)	by	Li,	Bo,	et	al.	10.	We	downloaded	matching	RNA-Seq	samples	from	

the	TCGA	portal.	In	total,	we	obtained	301	million	2x50bp	reads	from	three	RNA-Seq	samples.	

First,	we	prepared	the	CDR3	sequences	obtained	from	TCRB-Seq	and	considered	only	complete	

CDR3s,	which	we	defined	as	a	sequence	of	amino	acids	starting	with	cysteine	(C)	and	ending	with	

phenylalanine	 (F).	We	 considered	 the	prepared,	 complete	CDR3s	obtained	 from	TCRB-Seq	 as	

total	immune	repertoire.		

	

We	used	ImReP,	MIXCR,	TRUST,	and	IMSEQ	to	assemble	CDR3s	of	the	TCRB	chain.	We	excluded	

V’DJer,	because	it	only	supports	immunoglobulin	chains	and	is	not	suitable	to	assemble	CDR3s	

from	T	cell	receptors.	ImReP,	MIXCR,	and	TRUST	assembled	comparable	numbers	of	complete	

CDR3s	that	fully	match	CDR3s	from	the	total	immune	repertoire	obtained	by	TCRB-Seq;	IMSEQ	

assembled	none	of	the	CDR3	sequences	(Figure	2c	and		Figure	S4).	On	average,	54%	of	CDR3s	

assembled	by	 ImReP	fully	match	CDR3s	from	TCRB-Seq.	Our	method	was	able	to	recover	0.1-

0.9%	of	the	total	immune	repertoire	obtained	by	TCRB-Seq	from	kidney	tissue.		Other	tissues,	

including	 spleen	 and	whole	 blood,	 contain	 a	 higher	 fraction	 of	 T	 cells	 and	 allow	 RNA-Seq	 to	

capture	 a	 higher	 fraction	 of	 the	 total	 immune	 repertoire.	 One	 should	 note,	 the	 number	 of	

complete	CDR3s	fully	matching	CDR3s	obtained	by	TCRB-Seq	in	our	study	(reported	in	Figure	2c	
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and		Figure	S4)	are	not	fully	comparable	with	the	results	reported	in	Li,	Bo,	et	al.	10,	where	CDR3	

sequences	are	considered	to	match	CDR3s	from	TCRB-Seq	if	at	least	6	amino	acids	are	matched.		

Scripts	 and	 commands	 utilized	 to	 process	 the	 data	 and	 run	 repertoire	 assembly	 tools	 are	

provided	 in	 Extended	 Experimental	 Procedures	 and	 are	 available	 online	 at	

https://github.com/smangul1/Profiling-adaptive-immune-repertoires-across-multiple-human-

tissues-by-RNA-Sequencing.		

	

We	further	validated	the	ability	of	ImReP	to	accurately	infer	the	proportion	of	immune	cells	in	

the	sampled	 tissue.	We	hypothesized	 that	 the	 fraction	of	B-	and	T-cells	 in	 the	sample	will	be	

proportional	 with	 the	 fraction	 of	 receptor-derived	 reads	 in	 our	 RNA-Seq	 data.	 We	 used	 a	

transcriptome-based	computational	method,	SaVant16,	which	uses	cell-specific	gene	signatures	

(independent	of	BCR	or	TCR	transcripts)	to	infer	the	relative	abundance	of	B	or	T	cells	within	each	

tissue	 sample.	 We	 found	 that	 B	 and	 T	 cell	 signatures	 inferred	 by	 SaVant	 showed	 positive	

correlation	with	the	amount	of	BCR	(r	=	0.77,	P	<	0.001)	or	TCR	(r	=	0.86,	P	<	0.001)	transcripts,	

respectively	 (Figure	 2c,d).	 	 An	 exception	 to	 this	 correlation	 was	 for	 tissues	 that	 contain	 the	

highest	density	of	B	or	T	cells:	spleen,	whole	blood,	small	intestine	(terminal	ileum),	lung,	and	

EBV-transformed	lymphocytes	(LCLs).	

	

	

	

	

	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2017. ; https://doi.org/10.1101/089235doi: bioRxiv preprint 

https://doi.org/10.1101/089235
http://creativecommons.org/licenses/by-nc-nd/4.0/


chr2 chr7 chr14 chr22

IGL

TCRA
TCRD

IGH

TCRG

TCRB

IGK
V N D N J C

CDR3CDR1 CDR2

Mapped	reads
Unmapped	reads

mRNA	encoding	for	T	and	B	cell	receptor	chains

VYFICASSEASSLGGSGGYTACCSYEQYFGPG

V	gene J gene

…SQTSVYFCASSE SYEQYFGPGTRLT…

CDR3

SQTSVYFICASSEASSLGGSGGY

V	gene
…SQTSVYFCASSE

read

SGGYTACCSYEQYFGPG

J gene

SYEQYFGPGTRLT…

read1
read2

TACCSYEQYFGPGY
G

M

G
M

L
Q

! read2

Suffix	tree

ImReP

a

b

c

d

reads	matching	only	V	gene
are	encoded	as	suffix	tree

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2017. ; https://doi.org/10.1101/089235doi: bioRxiv preprint 

https://doi.org/10.1101/089235
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure	 1.	 Overview	 of	 ImReP.	 (a)	 Schematic	 representation	 of	 human	 adaptive	 immune	 repertoire.	 Adaptive	

immune	 repertoire	 consists	 of	 four	 T-cell	 receptor	 loci	 (blue	 color,	 T	 cell	 receptor	 alpha	 locus	 (TCRA);	 T-

cell	 receptor	beta	 locus	 (TCRB);	T-cell	 receptor	delta	 locus	 (TCRD);	and	T-cell	 receptor	gamma	 locus	 (TCRG))	and	

three	 immunoglobulin	 loci	 (red	 color,	 Immunoglobulin	 heavy	 locus	 (IGH);	 Immunoglobulin	 kappa	 locus	 (IGK);	

Immunoglobulin	lambda	locus	(IGL).	Alternative	name	–	BCR,	B	cell	receptor).	B-	and	T-cell	receptors	contain	multiple	

variable	 (V,	green	color),	diversity	 (D,	present	only	 in	 IGH,	TCRB,	TCRG,	violet	color),	 joining	(J,	yellow	color)	and	

constant	(C,	blue	color)	gene	segments.	V(D)J	gene	segments	are	randomly	 jointed	and	non-templated	bases	(N,	

dark	red	color)	are	inserted	at	the	recombination	junctions.	The	resulting	spliced	T-	or	B-cell	repertoire	transcript	

incorporates	the	C	segment	and	is	translated	into	the	antigen	receptor	proteins.	RNA-Seq	reads	are	derived	from	

the	 rearranged	 immunoglobulin	 IG	 and	 TCR	 loci.	 Reads	 entirely	 aligned	 to	 genes	 of	 B-	 and	 T-cell	 receptors	 are	

inferred	from	mapped	reads	(black	color).	Reads	with	extensive	somatic	hypermutations	and	reads	spanning	the	

V(D)J	 recombination	are	 inferred	 from	the	unmapped	reads	 (grey	color).	Complementarity	determining	 region	3	

(CDR3)	is	the	most	variable	region	of	the	three	CDR	regions	and	is	used	to	identify	T/B-cell	receptor	clonotypes—a	

group	 of	 clones	 with	 identical	 CDR3	 amino	 acid	 sequences.	 (b)	 Receptor	 derived	 reads	 spanning	 V(D)J	

recombinations	are	 identified	 from	unmapped	reads	and	assembled	 into	 the	CDR3	sequences.	We	first	 scan	the	

amino	acid	sequences	of	the	read	and	determine	the	putative	CDR3	boundaries	defined	by	last	conserved	cysteine	

encoded	by	 the	V	gene	and	 the	conserved	phenylalanine	 (for	TCR)	or	 tryptophan	 (for	BCR)	of	 J	gene.	Given	 the	

putative	CDR3	boundaries,	we	check	the	prefix	and	suffix	of	the	read	to	match	the	suffix	of	V	and	prefix	of	J	genes,	

respectively.	(c-d)	In	case	a	read	overlaps	with	only	the	V	or	J	gene,	we	perform	the	second	stage	of	ImReP	to	match	

such	reads	based	on	the	overlap	of	CDR3	sequence	using	suffix	tree.		
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Figure	2.	Evaluation	of	ImReP.	(a-b)	Evaluation	of	ImReP	based	on	the	number	of	assembled	CDR3	sequences	and	

comparison	 to	 existing	 methods.	 (c)	 Concordance	 of	 targeted	 TCRB-Seq	 and	 non-specific	 RNA-Seq.	 (d-e)	

Correspondence	of	ImReP-derived	reads	from	B-cell	(BCR)	and	T-cell	(TCR)	receptors	to	the	relative	abundance	of	B-	

and	T-cells	inferred	from	cell-specific	gene	expression	profiles.	(a)		Precision	and	recall	rates	for	ImReP	(blue),	MiXCR	

(RNA-Seq	mode)	 (blue),	 IMSEQ	 (green),	 and	 IgBlast	 (orange)	on	 simulated	data	 for	 immunoglobulin	heavy	 (IGH)	

transcripts	are	reported	for	various	reads	length	(separate	plots)	and	per	transcript	coverages	(1,2,4,8,16,32,64,128)	

(x-axis).		TRUST	and	TraCeR	do	not	support	the	analysis	of	BCR	sequences	and	were	excluded	from	the	comparison	

Final figures 2c,d

0.1

1

10

100

1000

10000

0 0.5 1 1.5 2

B
C

R
 re

ad
s 

pe
r m

ill
io

n

B cell signature score

0.01

0.1

1

10

100

0 0.5 1 1.5 2

TC
R

 re
ad

s 
pe

r m
ill

io
n

T cell signature score

Spleen

EBV cells
Whole 
Blood

Small 
Intestine

Lung

Spleen

EBV cells

Whole 
BloodSmall 

Intestine

Lung

r = 0.77
P < 0.001

r = 0.86
P < 0.001

d

a	

Re
ca
ll	(
	IG

H)
Pr
ec
isi
on
	(I
GH

)

e

Final figures 2c,d

0.1

1

10

100

1000

10000

0 0.5 1 1.5 2

B
C

R
 re

ad
s 

pe
r m

ill
io

n

B cell signature score

0.01

0.1

1

10

100

0 0.5 1 1.5 2

TC
R

 re
ad

s 
pe

r m
ill

io
n

T cell signature score

Spleen

EBV cells
Whole 
Blood

Small 
Intestine

Lung

Spleen

EBV cells

Whole 
BloodSmall 

Intestine

Lung

r = 0.77
P < 0.001

r = 0.86
P < 0.001

b

Re
ca
ll	(
TC
RA

)
Pr
ec
isi
on
	(T

CR
A)

ImReP
TCRBSeq MiXCR

TRUST

6

735 12

1

1

0

0

2

2

0

2

20

1

2

c

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 50bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 75bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 100bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 50bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 75bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 100bp

coverage

1 2 4 8 16 32 64 128

ImReP        MiXCR        IMSEQ        IgBlast        

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 50bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 75bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 100bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 50bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 75bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 100bp

coverage

1 2 4 8 16 32 64 128

ImReP        MiXCR        IMSEQ        IgBlast        

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 50bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 75bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 100bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 50bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 75bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 100bp

coverage

1 2 4 8 16 32 64 128

ImReP   MiXCR   IMSEQ   TRUST (SE)   TRUST (PE)   Tracer

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 50bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 75bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 100bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 50bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 75bp

coverage

1 2 4 8 16 32 64 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Read length 100bp

coverage

1 2 4 8 16 32 64 128

ImReP   MiXCR   IMSEQ   TRUST (SE)   TRUST (PE)   Tracer

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2017. ; https://doi.org/10.1101/089235doi: bioRxiv preprint 

https://doi.org/10.1101/089235
http://creativecommons.org/licenses/by-nc-nd/4.0/


based	for	the	IGH	data.		(b)	Precision	and	recall	rates	for	ImReP	(blue),	MiXCR	(RNA-Seq	mode)	(red),	TRUST	(default,	

paired-end	mode)	(pink),	TRUST	(single-end	mode)	(violet),	IMSEQ	(green),	and	TraCeR	(aqua)	on	simulated	data	for	

T	cell	receptor	alpha	(TCRA)	transcripts	 	are	reported	for	various	reads	 length	(separate	plots)	and	per	transcript	

coverages	 (1,2,4,8,16,32,64,128)	 (x-axis).	 (c)	 	 Concordance	 of	 targeted	 TCRB-Seq	 and	 non-specific	 RNA-Seq	

performed	on	three	TCGA	samples	(only	one	is	shown)	from	kidney	renal	clear	cell	carcinoma	(KIRC).	Venn	diagram	

on	 TCGA-CZ-5463	 sample	 presents	 number	 of	 matching	 CDR3s	 reported	 by	 immunoSEQ	 Analyzer	

(http://www.adaptivebiotech.com/)		and	CDR3	sequences	assembled		from	non-specific	RNA-Seq	data	by	ImReP,	

MiXCR	(RNA-Seq	mode),	TRUST	(default, paired-end mode). Results on other samples are presented in Figure 

S4. (d)	Scatterplot	of	the	number	of	all	BCR	reads	per	1	million	RNA-Seq	reads	(y-axis)	and	B-cell	signature	score	

inferred	by	SaVant	(x-axis).	(e)	Scatterplot	of	the	number	of	all	TCR	reads	per	1	million	RNA-Seq	reads	(y-axis)	and	B-

cell	signature	score	inferred	by	SaVant	(x-axis).	Pearson	correlation	coefficient	(r)	and	P-value	are	reported.		

	

Characterizing	the	adaptive	immune	repertoire	across	53	GTEx	tissues		

	

ImReP	 identified	 over	 26	million	 reads	 overlapping	 3.8	million	 distinct	 CDR3	 sequences	 that	

originate	from	diverse	human	tissues.	The	majority	of	assembled	CDR3	sequences	derived	from	

BCRs,	 with	 1.7	 million	 from	 the	 immunoglobulin	 heavy	 chain	 (IGH),	 0.9	 million	 from	 the	

immunoglobulin	kappa	chain	(IGK),	and	1.0	million	from	the	immunoglobulin	lambda	chain	(IGL).	

A	smaller	fraction	of	CDR3	sequences	derived	from	TCRs,	with	0.2	million	sequences	from	alpha	

and	beta	TCRs	(TCRA	and	TCRB).	The	vast	majority	of	all	assembled	CDR3s	had	a	low	frequency	

in	the	data.	98%	of	CDR3	sequences	had	a	count	of	 less	than	10	reads,	and	the	median	CDR3	

sequence	count	was	1.4.	CDR3	sequences	derived	from	IGK	were	the	most	abundant	across	all	

tissues,	accounting	on	average	for	54%	of	the	entire	B-cell	population	(Figure	S5).	In	the	T-cell	
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population,	alpha	and	beta	jointly	accounted	for	83%	of	the	population.	Delta	T-cell	population	

was	the	rarest,	accounting	for	less	than	one	percent	of	the	entire	T	cell	population	(Figure	S6).		

	

We	 compared	 the	 length	 and	 amino	 acid	 composition	 of	 the	 assembled	 CDR3	 sequences	 of	

immunoglobulin	and	T-cell	receptor	chains	(Figure	3a-g).	Consistent	with	previous	studies,	we	

observed	that	immunoglobulin	light	chains	have	notably	shorter	and	less	variable	CDR3	lengths	

compared	to	heavy	chains17	(Fig.	3h).	The	tissue	type	appears	to	have	no	effect	on	the	length	

distribution	of	CDR3	sequences	of	BCRs	(Figure	S7).	Differences	in	the	CDR3	length	distributions	

for	 TCRs	 cannot	 be	 estimated	 due	 to	 the	 small	 number	 of	 available	 TCRs.	 Sequencing	

composition18	of	CDR3	regions	of	beta	T-cells	assembled	by	ImReP	recapitulates	one	detected	by	

TCR	sequencing2	from	the	whole	blood	with	two	dominant	CASS	and	CSAR	motifs	in	the	beginning	

of	 the	 sequence	 (Fig.	 3f).	 In	 line	 with	 other	 studies19,	 both	 light	 chains	 exhibited	 a	 reduced	

amount	of	sequencing	diversity	(Fig.	3b-c).		
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Figure	3.	Length	and	amino	acid	composition	of	 the	assembled	CDR3	sequences	of	 immunoglobulin	and	T-cell	

receptor	chains.	The	sequence	logo	(using	WebLogo)	of	amino	acid	composition	representation	for	CDR3	sequences	

with	mean	 length.	The	height	of	the	amino	acid	within	the	stack	 indicates	the	relative	frequency.	Distribution	of	

CDR3	sequence	length	is	estimated	using	s	kernel	density.	(a)	Sequence	logo	of	15-amino-acid	CDR3	sequence	of	

IGH.	(b)	Sequence	logo	of	11-amino-acid	CDR3	of	IGK.	(c)	Sequence	logo	of	12-amino-acid	CDR3	sequence	of	IGL.	(d)	

Sequence	 logo	of	14-amino-acid	CDR3	sequence	of	TCRA.	(e)	Sequence	 logo	of	14-amino-acid	CDR3	sequence	of	

TCRB.	 (f)	 Sequence	 logo	 of	 17-amino-acid	 CDR3	 sequence	 of	 TCRD.	 (g)	 Sequence	 logo	 of	 13-amino-acid	 CDR3	
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sequence	of	TCRG.	(h)	Distribution	of	CDR3	sequence	length	is	estimated	using	s	kernel	density	separately	for	each	

chain	of	T-	and	B-cell	receptors.	

	

We	 observed	 per	 sample	 an	 average	 of	 1331	 distinct	 clonotypes	 for	 BCRs	 and	 20	 distinct	

clonotypes	sequences	for	TCRs.	We	normalized	the	number	of	distinct	clonotypes	by	the	total	

number	of	RNA-Seq	reads,	which	we	call	number	of	clonotypes	per	one	million	reads	(CPM).	As	

the	number	of	distinct	clonotypes	does	not	 increase	 linearly	with	the	sequencing	depth,	CPM	

metric	should	not	be	used	in	studies	comparing	clonotype	diversity	across	various	phenotypes.	

Instead,	CPM	is	intended	to	be	an	informative	measure	of	clonal	diversity	adjusted	for	sequencing	

depth.		

	

We	 used	 per	 sample	 alpha	 diversity	 (Shannon	 entropy)	 to	 incorporate	 the	 total	 number	 of	

distinct	clonotypes	and	their	relative	frequencies	into	a	single	diversity	metric.	Among	all	tissues,	

spleen	has	the	largest	B-cell	population,	with	a	median	of	1301	BCR-derived	reads	per	one	million	

RNA-Seq	reads.	It	also	has	the	most	diverse	population	of	B	cells	with	median	per	sample	alpha	

diversity	of	7.6	corresponding	to	1025	CPM	(Figure	4	and	Table	S1).	Whole	blood	has	both	the	

largest	and	most	diverse	T-cell	population	(Figure	4	and	Table	S1).	Organs	that	possess	mucosal,	

exocrine,	and	endocrine	sites	(n=24)	harbor	a	rich	clonotype	population	with	a	median	of	87	CPM	

per	sample.	Minor	salivary	glands	have	the	highest	 immune	diversity	 in	the	group	(alpha=7.1)	

and	surpass	the	diversity	of	the	terminal	Ileum	containing	Peyer’s	Patches,	which	are	secondary	

lymphoid	organs	(Table	S1).		
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Tissues	not	related	to	the	immune	system,	including	adipose,	muscle,	and	the	organs	from	the	

central	nervous	system,	contained	a	median	of	6	CPM	per	sample,	which	are	most	likely	due	to	

the	blood	content	of	the	tissues20.	The	highest	number	of	distinct	CDR3	sequences	among	non-

lymphoid	organs	was	present	 in	 the	omentum,	a	membranous	double	 layer	of	adipose	tissue	

containing	fat-associated	lymphoid	clusters.	As	expected21,	Epstein	bar	virus	(EBV)-transformed	

lymphocytes	(LCL)	harbored	a	large	homogeneous	population	of	B	cell	clonotypes	(Table	S1	and	

Figure	S7).		
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Figure	 4.	Adaptive	 immune	 repertoires	 across	multiple	 human	 tissues.	 Adaptive	 immune	 repertoires	 of	 8,555	

samples	across	544	individuals	from	53	body	sites	obtained	from	Genotype-Tissue	Expression	study	(GTEx	v6).	We	

group	the	tissues	by	their	relationship	to	the	immune	system.	The	first	group	includes	the	lymphoid	tissues	(n=2,	red	

colors).	The	second	group	includes	blood	associated	sites	including	whole	blood	and	blood	vessel	(n=4,	red	color).	

The	third	group	are	the	organs	that	encompasses	mucosal,	exocrine	and	endocrine	organs	(n=21,	lavender	color).	

The	 fourth	 group	 are	 cell	 lines	 (n=3,	 grey	 color).	 The	 filth	 group	 are	 adipose	 or	 muscle	 tissues	 and	 the	

gastroesophageal	junction	(n=7,	blue	color).	The	sixth	group	are	organs	from	central	nervous	system	(n=14,	green	

color).	Histogram	reports	clonotypic	richness	of	T	and	B	cells,	calculated	as	number	of	distinct	amino	acid	sequences	

of	CDR3	per	one	million	RNA-Seq	reads	(CPM).	(a)	Median	CPMs	are	presented	individually	for	T	cell	receptor	alpha	

chain	(TCRA),	T-cell	receptor	beta	chain	(TCRB),	T-cell	receptor	delta	chain	(TCRD),	and	T-cell	receptor	gamma	chain	

(TCRG).	(b)		Median	number	of	distinct	amino	acid	sequences	of	CDR3	are	presented	individually	for	immunoglobulin	

heavy	chain	(IGH),	immunoglobulin	kappa	chain	(IGK),	immunoglobulin	lambda	chain	(IGL).		

	

	

Individual-	and	tissue-specific	T-	and	B-cell	clonotypes		

	

Amino	acid	sequences	of	clonotypes	exhibited	extreme	inter-individual	dissimilarity,	with	88%	of	

clonotypes	unique	to	a	single	individual	(private)	(Figure	5a).	The	remaining	~400,000	clonotypes	

were	shared	by	at	least	two	individuals	(public).	The	number	of	individuals	sharing	clonotypes	

varied	across	T	and	B	cell	receptors,	with	immunoglobulin	light	chains	having	the	highest	number	

of	public	clonotypes.	Twenty-five	percent	of	all	IGK	clonotypes	were	public,	and	the	number	of	

individuals	 sharing	 the	 IGK	 clonotype	 sequences	 can	 be	 as	 high	 as	 471	 (Figure	 5b).	 T	 cell	

clonotypes	had	on	average	7%	public	clonotypes,	with	the	highest	number	of	public	clonotypes	

among	the	delta	chain	of	gamma-delta	TCRs	(12%).	The	limited	capacity	of	RNA-Seq	to	cover	low	
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abundant	 clonotypes	 may	 misclassify	 public	 clonotypes	 as	 private.	 Consistent	 with	 previous	

studies10,22,	we	observe	public	clonotypes	to	be	significantly	shorter	in	length	than	the	private	

ones	(p-value<2x10-16).	For	example,	 IGH	chain	public	clonotypes	had	an	average	length	of	13	

amino	acids,	and	private	clonotypes	had	an	average	length	of	16.	We	also	examined	whether	the	

public	clonotypes	were	more	often	shared	across	tissues	within	an	individual.	Only	14%	of	the	

~240,000	 clonotypes	 shared	 across	 tissues	 were	 public.	 The	 majority	 of	 clonotypes	 were	

individual-	and	tissue-specific	(Figure	5c).	The	full	list	of	public	clonotypes	is	distributed	with	the	

‘Atlas	of	T-	and	B-cell	repertoires’	that	accompanies	this	manuscript.	
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Figure	5.	Private	and	public	T	and	B	cell	clonotypes.	(a)	Distribution	of	frequencies	of	private	(n=1)	and	public	(n>1)	

clonotypes	across	544	 individuals.	We	collect	clonotypes	 from	all	 tissues	of	 the	same	 individual	 into	a	 single	set	

corresponding	to	that	individual.	(b)	The	most	public	clonotypes	(shared	across	maximum	number	of	 individuals)	

and	 corresponding	 VJ	 recombination	 are	 presented	 for	 IGH,	 IGK,	 IGL,	 TCRA,	 TCRB,	 and	 TCRG.	 (c)	 Clonotypes	

sequences	 are	 classified	 into	 public	 clonotypes	 (shared	 across	 individuals),	 private	 (individual	 specific),	 tissue-

specific,	and	clonotypes	shared	across	multiple	tissues.	The	number	of	clonotypes	falling	into	each	pair	of	categories	

is	reported	across	all	T	and	B	cell	receptor	chains.		
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Flow	of	T	and	B	cell	clonotypes	across	human	GTEx	tissues	

	

The	 large	 number	 of	 individuals	 available	 through	 the	 study	 allow	 us	 to	 establish	 a	 pairwise	

relationship	between	the	tissues	and	track	the	flow	of	T	and	B	clonotypes	across	human	tissues.	

W	observed	a	significant	increase	of	the	CDR3	sequences	shared	across	pairs	of	tissues	from	the	

same	 individuals.	 Further,	we	observed	 this	pattern	 consistently	 for	all	 chains	of	B	and	T	 cell	

receptors	(p-value<2x10-16)	(Figure	6a	and	Table	S2).	We	observe	a	different	amount	of	shared	

CDR3	sequences	across	different	 types	of	BCRs	and	TCRs	with	an	 increase	 in	 immunoglobulin	

light	 chains.	 Decreased	 number	 of	 TCR	 reads	 compared	 to	 the	 BCRs	 makes	 it	 unfeasible	 to	

compare	the	number	of	shared	CDR3	across	T	and	B	cells.	On	average,	we	observe	21.0	CDR3	

sequences	to	be	shared	across	a	pair	of	tissues	from	the	same	individuals.	Pairs	of	tissues	from	

different	individuals	share	on	average	10.6	CDR3	sequences	(Figure	6a	and	Table	S2).		

	

To	establish	the	flow	of	B-	and	T-cell	clonotypes	across	various	tissues,	we	compared	clonotype	

populations	between	and	within	the	same	individuals.	We	limited	this	analysis	to	pairs	of	tissues	

for	which	we	had	at	least	10	individuals	(870	pairs	of	tissues	out	of	1378	possible	pairs).	We	used	

beta	diversity	 (Sørensen–Dice	similarity	 index)	 to	measure	compositional	 similarities	between	

the	tissues	in	terms	of	gain	or	loss	of	CDR3	sequences	(Figure	6b-c).	For	the	majority	of	the	870	

available	tissue	pairs,	we	observe	no	BCR	or	TCR	sequences	in	common,	which	corresponds	to	

beta	diversity	of	0.0.		
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We	examined	the	flow	of	IGH	clonotypes	across	tissues	and	presented	it	as	a	network	(Figure	

5b).	Among	870	available	tissue	pairs,	we	have	identified	56	tissue	pairs	with	beta	diversity	above	

.001.		Spleen	was	the	most	highly	connected	tissue,	with	17	connections,	followed	by	lung,	with	

16	 connections.	 Clonotypes	 represents	 one	 connected	 component,	 meaning	 that	 every	 two	

nodes	are	connected	directly	or	via	other	nodes.	Clonotype	populations	of	spleen	and	lung	are	

the	most	similar	 (0.02	beta	diversity),	other	pairs	 include	minor	salivary	gland	and	esophagus	

mucosa,	terminal	ileum	(small	intestine)	and	transverse	colon.	We	observe	above	200	pairs	of	

tissues	with	beta	diversity	above	.001	for	immunoglobulin	light	chains	(Figure	S9-S10).	The	most	

similar	tissue	pairs	for	IGK	chain	were	spleen	and	transverse	colon	(0.15	beta	diversity).	

	

We	also	examined	the	flow	of	TCRB	clonotypes	across	tissues.	TCRB	clonotype	sequences	were	

shared	across	10	pairs	of	tissues	with	average	beta	diversity	of	0.02.	Similar	to	B	cells,	the	network	

of	 T	 cell	 clonotypes	 is	 a	 single	 connected	 component,	 with	 spleen	 being	 the	 most	 highly	

connected	tissue	(Figure	6c).	For	the	TCR	gamma	chain,	we	observe	beta	diversity	of	0.0	for	all	

tissue	pairs.	At	the	same	time	12%	of	TCR	gamma	clonotypes	are	public,	showing	the	highest	rate	

among	all	TCR	genes.	At	the	sequencing	depth	provided	by	RNA-Seq,	we	are	unable	to	observe	

TCR	delta	clonotype	sharing	across	individuals	and	tissues.		
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Figure	6.	Flow	of	T	and	B	cell	clonotypes	across	diverse	human	tissues.	Results	are	based	on	pairs	of	tissues	with	at	

least	10	individuals.	(a)	The	number	of	clonotype	sequences	shared	across	pairs	of	tissues	from	the	same	individuals	

(blue	color)	and	from	different	individuals	(orange	color)	are	presented.	Number	of	clonotypes	shared	across	tissues	

from	the	same	individuals	for	TCRs	is	<.1.	Number	of	clonotypes	shared	across	tissues	from	different	individuals	for	

TCRs	is	<.001.	(b)-(c)	Flow	of	clonotypes	across	diverse	human	tissues	is	presented	as	a	network.	Each	node	is	a	tissue	

with	the	size	proportional	to	a	median	number	of	clonotypes	of	the	tissue.	The	color	of	the	node	corresponds	to	a	

type	of	the	tissue	type:	lymphoid	tissues	(yellow	colors),	blood	associated	sites	(red	color),	organs	that	encompasses	

mucosal,	exocrine	and	endocrine	organs	(lavender	color).	Compositional	similarities	between	the	tissues	in	terms	of	

gain	 or	 loss	 of	 CDR3	 sequences	 are	measured	 across	 valid	 pairs	 of	 tissues	 using	 beta	 diversity	 (Sørensen–Dice	

similarity	 index).	 Edges	 are	weighted	 according	 to	 the	 beta	 diversity.	 (b)	 Flow	of	 IGH	 clonotypes	 across	 diverse	
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human	tissues	is	presented	as	a	network.	Edges	with	beta	diversity	>.001	are	presented.	(c)	Flow	of	TCRB	clonotypes	

across	diverse	human	tissues	is	presented	as	a	network.	Edges	with	beta	diversity	>.001	are	presented.	

	

	

	

ImReP	identifies	tissue	samples	with	lymphocyte	infiltration	

	

Histological	images	of	tissue	cross-sections	and	pathologists’	notes	have	been	used	to	validate	

the	 ImReP’s	 ability	 to	 detect	 the	 samples	 with	 a	 high	 lymphocyte	 content,	 which	 often	

corresponds	to	a	disease	state.	We	examined	the	IGH	clonotype	populations	from	thyroid	tissue	

across	individuals.	The	median	number	of	inferred	distinct	CDR3	sequences	per	sample	was	20,	

though	14.5%	of	the	samples	had	more	than	500	distinct	CDR3	sequences.	 	We	observed	the	

highest	number	of	CDR3	sequences	among	all	the	thyroid	samples	in	an	individual	with	late	stage	

Hashimoto's	thyroiditis,	an	autoimmune	disease	characterized	by	lymphocyte	infiltration	and	T-

cell	mediated	cytotoxicity.	According	to	pathologists’	notes,	Hashimoto's	disease	was	present	in	

11.2%	of	thyroid	samples,	with	varying	degrees	of	severity.	First,	we	used	pathologists’	notes	to	

annotate	 samples	 as	 healthy	 or	 bearing	 Hashimoto's	 disease,	 and	 then	 we	 compared	 the	

adaptive	repertoire	diversity	between	these	groups.	We	observed	a	significant	 increase	in	the	

number	of	distinct	 IGH	clonotypes	 in	samples	with	Hashimoto's	 thyroiditis	 (p-value=	1.5x10-5)	

(Figure	S11).	The	number	of	clonotypes	varied	from	113	for	focal	Hashimoto's	thyroiditis	to	5621	

for	late	stage	Hashimoto's	thyroiditis	(Figure	7a).	In	addition,	high	clonotype	diversity	in	kidney	

samples	indicated	the	presence	of	glomerulosclerosis.	In	lung	samples,	high	clonotype	diversity	

corresponded	to	inflammatory	diseases	such	as	sarcoidosis	and	bronchopneumonia.	
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We	observed	no	difference	in	clonal	diversity	in	males	and	females	across	the	tissues,	except	in	

breast	tissues	(p-value<3.2x10-12,	BCRs).	 Increased	clonotype	diversity	of	breast	tissue	 in	male	

individuals	corresponded	to	gynecomastia,	a	common	disorder	of	non-cancerous	enlargement	of	

male	breast	tissue	(Figure	7b).		
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Figure	7.	ImReP	is	able	to	identify	samples	with	high	activity	of	lymphocytes.	Histological	images	of	tissue	cross-

sections	and	pathologists’	notes	have	been	used	to	validate	the	ImReP’s	ability	to	detect	the	samples	with	a	high	

activity	of	lymphocytes.	(a)	Samples	were	ordered	by	Hashimoto's	thyroiditis	severity,	as	reported	by	pathologists’	

notes.	Histological	images	are	provided	to	illustrate	the	disease	state.	Average	number	of	clonotypes	is	reported	for	

each	disease	group.	(b)	Boxplot	reporting	number	of	clonotypes	in	the	breast	tissues	for	males	and	females.	Outlier	

among	the	male	samples	is	illustrated	with	the	histological	image.		
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Discussion	

	

We	 have	 developed	 a	 novel	 computational	 approach	 (ImReP)	 for	 reconstruction	 of	 adaptive	

immune	 repertoires	 using	 RNA-Seq	 data.	We	 demonstrate	 the	 ability	 of	 ImReP	 to	 efficiently	

extract	 TCR-	 and	 BCR-	 derived	 reads	 from	 the	 RNA-Seq	 data	 and	 accurately	 assemble	

corresponding	BCR	and	TCR	clonotypes.	The	proposed	algorithm	can	accurately	assemble	CDR3	

sequences	of	immune	receptors	despite	the	presence	of	sequencing	errors	and	short	read	length.	

Simulations	 generated	 using	 various	 read	 lengths	 and	 coverage	 depth	 show	 that	 ImReP	

consistently	outperforms	existing	methods	in	terms	of	precision	and	recall	rates.		

	

We	 have	 demonstrated	 the	 feasibility	 of	 applying	 RNA-Seq	 to	 study	 the	 adaptive	 immune	

repertoire.	Although	RNA-Seq	lacks	the	sequencing	depth	of	targeted	sequencing	(Rep-Seq),	it	

can	 compensate	 by	 examining	 a	 larger	 sample	 size.	 Using	 ImReP,	 we	 have	 created	 the	 first	

systematic	atlas	of	immunological	sequence	for	B-	and	T-cell	receptor	repertories	across	diverse	

human	tissues.	This	provides	a	rich	resource	for	comparative	analysis	of	a	range	of	tissue	types,	

most	of	which	have	not	been	studied	before.	The	atlas	of	T-	and	B-cell	receptors,	available	with	

the	paper,	is	the	largest	collection	of	CDR3	sequences	and	tissue	types.	We	anticipate	that	this	

database	 will	 enhance	 future	 studies	 in	 areas	 such	 as	 immunology	 and	 contribute	 to	 the	

development	of	therapies	for	human	diseases.	

	

Using	 RNA-Seq	 to	 study	 immune	 repertoires	 has	 some	 advantages,	 including	 the	 ability	 to	

simultaneously	capture	both	T	and	B	cell	clonotype	populations	during	a	single	run.	It	also	allows	
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simultaneous	detection	of	overall	transcriptional	responses	of	the	adaptive	immune	system,	by	

comparing	changes	in	the	number	of	BCR	and	TCR	transcripts	to	the	much	larger	transcriptome.	

Given	 large	 number	 of	 large-scale	 RNA-Seq	 datasets	 becoming	 available,	we	 look	 forward	 to	

scaling	up	the	atlas	of	T-	and	B-cell	receptors	in	order	to	provide	valuable	insights	into	immune	

responses	across	various	autoimmune	diseases,	allergies,	and	cancers.		
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