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ABSTRACTS 

 

Introduction: The role of adipocytes in cancer microenvironment has gained focus during 

the recent years. However, the characteristics of the cancer-associated adipocytes (CAA) in 

human breast cancer tissues and the underlying regulatory mechanism are not clearly 

understood. 

Method: We reviewed pathology specimens of breast cancer patients to understand the 

morphologic characteristics of CAA, and profiled the mRNA and miRNA expression of CAA 

by using indirect co-culture system in vitro. 

Results: The CAAs in human breast cancers showed heterogeneous topographic 

relationship with breast cancer cells within the breast microenvironment. The CAAs exhibited 

the characteristics of de-differentiation determined by their microscopic appearance and the 

expression levels of adipogenic markers. Additionally, the 3T3-L1 adipocytes co-cultured with 

breast cancer cells showed up-regulation of inflammation-related genes including Il6 and 

Ptx3. The up-regulation of IL6 in CAA was further observed in human breast cancer tissues. 

miRNA array of co-cultured 3T3-L1 cells showed increased expression of mmu-miR-5112 

which may target Cpeb1. Cpeb1 is a negative regulator of Il6. The suppressive role of 

mmu-miR-5112 was confirmed by dual luciferase reporter assay, and mmu-miR-5112-treated 

adipocytes showed up-regulation of Il6. The transition of adipocytes into more inflammatory 

CAA resulted in proliferation-promoting effect in ER positive breast cancer cells such as 

MCF7 and ZR-75-1 but not in ER negative cells. 

Conclusion: In this study, we have determined the de-differentiated and inflammatory 

natures of CAA in breast cancer microenvironment. Additionally, we propose a miRNA-based 

regulatory mechanism underlying the process of acquiring inflammatory phenotypes in CAA. 
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INTRODUCTION 

 

The association between the degree of obesity and the risk of breast cancer incidence has 

long been recognized. The proposed mechanisms relating the adipose tissue and the breast 

cancer risk are mostly explained by endocrine and systemic effects of the adipokines and sex 

hormones.[1] However, recent studies have focused on the potential roles of adipocytes in 

the breast cancer microenvironment that may modulate the growth of the cancer cells.[2,3] 

We have previously reported the poor treatment outcome of underweight breast cancer 

patients by analyzing a large dataset of Korean breast cancer patients.[4] Interestingly, the 

worse outcome of underweight patients was most pronounced for the locoregional recurrence 

rather than distant metastasis suggesting a potential local interaction between adipose tissue 

and breast cancer progression. 

Studies have shown that the adipocytes in the vicinity of the cancer cells, often named as 

‘cancer-associated adipocytes (CAA)’, show diverse molecular characteristics that can 

enhance the ability of cancer cell invasion and aid the cancer cell proliferation via conferring 

metabolic advantages.[5-7] However, studies have conflicting results on the differentiation 

lineage of the CAA,[7-9,6,10] and the regulatory mechanisms of the CAA transition is not 

clearly understood. In this study, we aimed to characterize the CAA in human breast cancer 

tissues and to explore the regulatory mechanism of the CAA transition.  
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MATERIALS AND METHODS 

 

Pathologic examination of the adipocytes within the breast cancer specimens. 

Hematoxylin-eosin stained slides of 55 consecutive breast cancer specimens were reviewed 

to observe the characteristics of the adipocytes. For each patient, representative images 

showing adipocytes in the vicinity of the epithelial cancer cells and adipocytes around the 

normal mammary glandular tissue were obtained and the cell sizes were measured with 

ImageJ.[11] The collection of the clinical and pathologic data from the breast cancer patients 

was approved by the institutional IRB (1208-046-421) and all procedures were done in 

accordance with the Declaration of Helsinki.  

 

Adipogenic differentiation of 3T3-L1 cells and indirect co-culture with cancer cells  

3T3-L1 cell line was purchased from ATCC (Manassas, Virginia) and were cultured in DMEM 

supplemented with 10% bovine serum at 37°C in 5% CO2. 3T3-L1 cells were grown to 

confluency and induced with adipogenesis media (DMEM with 10% FBS, 10µg/ml insulin, 

0.5mM IBMX and 1µM dexamethasone). After 2 days, the media was changed with DMEM 

with 10% FBS and 10µg/ml insulin and maintained for 4 days. After 8 days of differentiation 

with DMEM with 10% FBS, the cells were used for further experiments. Breast cancer cell 

lines used for the co-culture study were MCF7, ZR75-1, T47D, MDA-MB231, and Hs578T. 

MCF7, MDA-MB231, and Hs578T cells were cultured in DMEM supplemented with 10% FBS, 

100 units/ml penicillin, and 100µg/ml streptomycin. ZR75-1 and T47D cells were cultured in 

RPMI media with same supplements. For the indirect co-culture of the differentiated 

adipocytes and breast cancer cell lines, we used transwell plate with 0.4µm micron inserts 

(BD Biosciences, San Jose, CA). Differentiated adipocytes were cultured in the bottom 

chamber of the transwell co-culture system with or without the breast cancer cells seeded in 

the top inserts. After the co-culture for certain periods, the adipocytes at the bottom wells 

were collected and used for further analysis. 
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mRNA and miRNA expression microarray 

For the quality control, RNA purity and integrity were evaluated by OD 260/280 ratio, and 

analyzed by Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, USA). For gene 

expression analysis, the Affymetrix Whole transcript Expression array process was executed 

according to the manufacturer's protocol (GeneChip Whole Transcript PLUS reagent Kit). 

cDNA was synthesized using the GeneChip WT (Whole Transcript) Amplification kit as 

described by the manufacturer. The sense cDNA was then fragmented and biotin-labeled 

with TdT (terminal deoxynucleotidyl transferase) using the GeneChip WT Terminal labeling 

kit. Approximately 5.5 µg of labeled DNA target was hybridized to the Affymetrix GeneChip 

Human 2.0 ST Array at 45°C for 16hour. Hybridized arrays were washed and stained on a 

GeneChip Fluidics Station 450 and scanned on a GCS3000 Scanner (Affymetrix). Raw data 

were extracted automatically in Affymetrix data extraction protocol using the software 

provided by Affymetrix GeneChip® Command Console® Software (AGCC). After importing 

CEL files, the data were summarized and normalized with robust multi-average (RMA) 

method implemented in Affymetrix® Expression Console™ Software (EC). We exported the 

result with gene level RMA analysis and perfomed the differentially expressed gene (DEG) 

analysis. 

For miRNA analysis, the Affymetrix Genechip miRNA array process was executed according 

to the manufacturer's protocol. 1µg RNA samples were labeled with the FlashTag™ Biotin 

RNA Labeling Kit (Genisphere, Hatfield, PA, USA). The labeled RNA was quantified, 

fractionated and hybridized to the miRNA microarray according to the standard procedures 

provided by the manufacture. The labeled RNA was heated to 99°C for 5 minutes and then to 

45°C for 5 minutes. RNA-array hybridization was performed with agitation at 60 rotations per 

minute for 16–18 hours at 48°C on an Affymetrix® 450 Fluidics Station. The chips were 

washed and stained using a Genechip Fluidics Station 450 (Affymetrix, Santa Clara, CA). 

The chips were then scanned with an Affymetrix GeneChip Scanner 3000 (Affymetrix, Santa 

Clara, CA). Signal values were computed using the Affymetrix® GeneChip™ Command 

Console software. Raw data were extracted automatically in Affymetrix data extraction 
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protocol using the software provided by Affymetrix GeneChip® Command Console® 

Software. The CEL files import, miRNA level RMA+DABG-All analysis and result export using 

Affymetrix® Expression Console™ Software. Array data were filtered by probes annotated 

species. 

Differential expression was analyzed using independent t-test and Benjamini-Hochberg 

algorithm. Gene-Enrichment and Functional Annotation analysis for significant probe list was 

performed using DAVID (http://david.abcc.ncifcrf.gov/). All Statistical test and visualization of 

differentially expressed genes was conducted using R statistical language v. 3.0.2. 

(www.r-project.org).  

  

Enzyme-linked immunosorbent assay (ELISA) 

After 3 days of co-culture with cancer cells, the inserts containing cancer cells were removed 

and the remaining adipocytes were washed with PBS and were cultured for additional 2 days. 

The media was collected and the level of IL-6 was determined by enzyme-linked 

immunosorbent assay. Mouse IL-6 antibody was purchased from eBioscience (CA, USA).  

After 16 hr of incubation at 4°C, 100µl amount of media was aspirated from each well. 

Biotin-conjugated IL-6 was added to the wells and incubated for 1hr at room temperature. 

After washing off the unbound antibody-enzyme conjugates, the substrate solution was then 

added to each well and incubated for 30 min before measuring the absorbance at the 

wavelength of 450nm. 

 

Western blot, RT-PCR, and Taqman PCR 

After 3 days of co-culture with cancer cells, adipocytes were lysed with RIPA buffer (Thermo 

scientific, Korea). After incubation on ice for 30 minutes, cellular debris was removed by 

centrifugation for 10 minutes at 4°C. 10 µg of proteins were separated by SDS-PAGE and 

then transferred to a polyvinylidene difluoride membrane. After blocking with 5% skim milk, 

the membranes were probed with an FABP4 antibody (abcam). Blots were developed with an 
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enhanced chemiluminescence Western blotting detection system (Amersham, 

Buckinghamshire, UK).  

For RT-PCR experiments, total RNA from cultured cells was isolated using TRIzol reagent 

(Life Technologies, Gaithersburg, MD) and was quantified by Nanodrop. 1 ug of total RNAs 

were reverse-transcribed to cDNA using PrimeScript reverse transcriptase (Takara, Japan) 

The information of the primers used for this study are shown in the Supplementary file 1. All 

reaction products were analyzed after 28–35 amplification cycles and expression levels were 

normalized to the values of Gapdh. 

For TaqMan PCR, total RNA was extracted from cells using TRIzol reagent (Favorgen 

Biotech, Taiwan) according to the manufacturer's instructions. RNA was converted to cDNA 

using a TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA). 

Real-time PCR was performed with TaqMan Universal PCR Master Mix on an Applied 

Biosystems 7500 System (Applied Biosystems, Foster City, CA). The miRs were normalized 

to the level of snoRNA412 and the relative expression levels of genes were calculated using 

the 2−ΔΔ Ct method. All reactions were performed in triplicates.  

 

Luciferase assay 

CPEB1 3’-UTR containing the predicted binding site sequences were obtained by annealing 

sense and antisense strand or amplifying the genomic DNA from 3T3-L1 cells. The 

sequences were inserted into XhoI and NotI sites in psiCHECK2 dual luciferase reporter 

plasmid purchased from Promega ((Madison, WI). 

HEK 293FT cells were plated in 24-well plates in DMEM supplemented with 10% fetal bovine 

serum at 37 °C with 5% CO2. When the cells reached 70–80% confluence, 20 ng of 

psiCHECK-2 recombination vector and 20 nM of miR-5112 mimics or Negative Control were 

cotransfected with RNAiMAX (Invitrogen, Carlsbad, CA). After 40 h, the cells were washed 

with PBS and reseeded in 96-well plates at a density of 5 × 103 cells per well with three 

replicates. Firefly and Renilla luciferase activities were measured with the Dual-Glo luciferase 

system (Promega, Madison, WI). 
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Proliferation assay 

Proliferation was measured using CellTiter-Glo Luminescent Cell viability Assay (Promega, 

Madison, WI), according to the manufacturer’s instructions. Briefly, after co-culture with 

adipocytes, cancer cells in the transwell were washed with PBS, trypsinized and reseeded in 

96 well plates. Measure the luminescence using microplate luminometer.  
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RESULTS 

 

De-differentiated characteristics of CAAs in breast cancer 

First, we assessed the microscopic appearance of CAAs in human breast cancer specimens 

by investigating samples from 55 consecutive breast cancer patients who underwent curative 

resection. The CAA, located at the invading front of cancer cells, showed smaller cell size 

(Fig 1a and 1d), and carried substantial heterogeneity in the patterns of surrounding 

extracellular matrix and their topographic relationship with cancer cells (Figure 1b and 1c). 

The smaller cell size is a representative morphologic features of the less differentiated 

adipocytes (Supplementary Figure 1). These findings led us to hypothesize that the observed 

microscopic features of the CAA could be resulting from a de-differentiation process of 

mature adipocytes under the influence of the adjacent cancer cells. The possibility of 

de-differentiation process in CAA has also been suggested by previous studies.[12,13,6] 

To demonstrate the de-differentiation process of the adipocytes under the influence of breast 

cancer cells, we used indirect co-culture system for 3T3-L1 preadipocytes and various breast 

cancer cells. Compared to the adipocyte cultured alone, the adipocytes co-cultured with 

breast cancer cells showed smaller cell size and reduced lipid drops within the cells (Figure 

2a). Also, the markers of differentiated adipocytes, such as C/EBP-α, PPAR-Ɣ, and FABP4, 

were down-regulated in co-cultured adipocytes (Figure 2b and 2c). These data suggest that 

cancer cells influence the adjacent adipocytes by paracrine effect and induce the 

de-differentiation process.  

 

Effect of CAA on the proliferative capacity of breast cancer cells 

To determine the effect of cancer-associated adipocytes on the proliferation of breast cancer 

cells, we co-cultured the cancer cells with mature adipocytes for three days. After removal of 

the cancer cells, a new set of cancer cells were introduced to the co-cultured adipocytes and 

cultured for three days (Figure 3a). As shown in the Figure 3b, the effect of CAA on the 

proliferation of breast cancer cells varied between the cell lines. The pro-proliferative effect of 
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CAA was most evident in the ER positive cells such as MCF7 and ZR75-1 while no effect was 

shown for ER negative cells including MDA-MB-231 and Hs578T. Our results suggest that 

the proliferation promoting effect of CAA, which has been suggested by previous studies [6-8], 

might be exerted in a subtype-specific manners in breast cancer. 

 

Acquisition of inflammatory phenotype in CAAs 

We analyzed transcriptional changes in adipocytes induced by the paracrine effect of breast 

cancer cell MCF7 and MDA-MB-231 by using indirect co-culture system. The genes involved 

in inflammation-related pathways, including inflammatory response, defense response, 

wound response, and chemotaxis, were significantly up-regulated in co-cultured adipocytes 

(Figure 4a). Additionally, genes involved in the peptidase inhibitor activity were also 

significantly changed. Il6, Ptx3, and Timp1 were up-regulated genes with highest fold 

changes (Figure 4b), and the up-regulation of the genes was validated by PCR (Figure 4c). 

IL6 is suggested to be a major regulator of tumor-stroma interaction in cancer 

microenvironment [14], and Dirat et al [6] reported similar findings of increased IL6 

expression in CAA. 

We then assessed the IL6 protein levels in the media of co-cultured adipocytes and observed 

that the up regulation of Il6 gene resulted in increased secretion of IL6 (Figure 4d). To assess 

the IL6 expression levels in human breast cancer tissues, we examined the IL6 expression by 

immunohistochemistry using 39 consecutive breast cancer patients. Normal adipocytes, 

located far from the cancer cells, showed significantly lower frequencies of IL6 expression 

when compared to the adipocytes in the vicinity of breast cancer cells (Figure 4e). Our results 

suggest that breast cancer cells stimulate adjacent adipocytes via paracrine manner to 

express and secrete IL6 in breast cancer. 

The expression levels of genes involved in the differentiation process of adipocytes were also 

explored using the gene expression data. While the co-cultured adipocyte did not show 

increased mesenchymal stem cell markers with the exception of Cd44, they showed 
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significant down-regulation of the genes involved in the adipocyte differentiation 

(Supplementary Figure 2).  

 

mmu-miR-5112-mediated regulation of IL6 in CAA 

MiRNAs can regulate the process of adipocyte differentiation, and are dysregulated in the 

various pathologic conditions involving adipose tissues.[15] The adipocytes co-cultured with 

MCF7 cells were profiled for their miRNA expression patterns to determine the differentially 

expressed miRNAs in CAA. Among the differentially expressed miRNAs, mmu-miR-5112 

showed highest up-regulation in the co-cultured adipocytes (Figure 5a). The induction of 

miR-5112 expression in adipocytes by cancer cell was validated for MCF7 and MDA-MB-231 

breast cancer cells (Figure 5b). The mmu-miR-5112 showed highest expression in the 

preadipocyte state and the expression was suppressed during the process of adipocyte 

differentiation (Figure 5c).  

In silico analysis suggested Cpeb1 gene as a potential candidate for mmu-miR-5112 target 

gene (Figure 5d). CPEB1 gene is reported to be a negative regulator of IL6 production and an 

important regulator of inflammatory response.[16] To test this, we treated differentiated 

adipocytes with mmu-miR-5112 mimics and observed significant down-regulation of Cpeb1 

and increased level of Il6 (Figure 5e). To confirm the regulatory role of mmu-miR-5112, the 

effect of mmu-miR-5112 on the translation activity in 3’ UTR of Cpeb1 was measured by dual 

reporter luciferase assay. There was a significant decrease in the expression of luciferase 

reporter in cells transfected with mmu-miR-5112 mimics which demonstrates the suppression 

of Cpeb1 3’UTR translation by mmu-miR-5112 (Figure 5f). Taken together, our data suggest 

that the conversion of normal adipocytes into the inflammatory CAA is mediated by a 

miRNA-mRNA regulatory mechanism involving mmu-miR-5112-Cpeb1-Il6. 
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DISCUSSION 

 

In this study, we have analyzed the pathologic and molecular characteristics of CAA in 

human breast cancer specimens and determined the de-differentiated and inflammatory 

natures of CAA in breast cancer microenvironment. Additionally, by using indirect co-culture 

system for adipocytes and breast cancer cells, we propose a miRNA-based regulatory 

mechanism underlying the process of acquiring inflammatory phenotypes in CAA.  

Our results show that adipocytes acquire the morphologic and biologic characteristics of 

cellular de-differentiation process by adjacent breast cancer cells. Several studies have 

already reported the similar observation showing smaller cell size and down-regulation of 

adipogenic markers. [7,6,12,13,8] Studies have suggested that the de-differentiation process 

of CAA can be induced by up-regulation of ECM enzymes such as MMP11 [12] or cytokines 

such as TNFa or IL11 [13]. Indeed, our gene expression data shows that CAAs show 

significant upregulation of various cytokines and peptidase genes. The mRNA expression 

profiles of the CAA also showed dysregulation of genes involved in the pathways of 

inflammation, wound healing, and peptidase activities including Il6 and Ptx3. IL6 carries 

diverse regulatory roles in breast cancer pathogenesis including remodeling the 

microenvironment, activation of EMT process, malignant transformation, and modulating 

breast cancer stem cell activities. [17-20] 

The transformed adipocytes showed proliferation-promoting effect on breast cancer cells. 

However, the pro-proliferative effect of CAA was only seen in ER positive cell lines when 

tested in a panel of various types of breast cancer cells. Manabe et al [8] have also reported 

that adipocytes promote tumor growth in ER positive cells but not in ER negative MMT 

060562 cells. These findings suggest that the tumor-promoting effect of adipocyte may 

depend on the molecular subtypes of breast cancer cells. The finding is in contrast to the 

work of Dirat et al [6] showing the pro-metastatic and invasive effect of CAA in both ER 

positive and negative cells. It is possible that the local growth promoting effect and the 

metastasis-promoting effect of adipocytes do not share similar mechanisms. Indeed, recent 
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studies have suggested that growth promoting effect of microenvironmental cells on tumor 

mainly rely on local cellular interactions such as the exchange of metabolic supports or local 

production of aromatase enzymes. [5,21]  

Based on the miRNA microarray and luciferase reporter assay, we propose a miRNA-based 

regulatory mechanism for the acquisition of inflammatory nature of CAA in breast cancer. Our 

data shows that mmu-miR-5112 is upregulated when the mature adipocytes are co-cultured 

with various breast cancer cells. This miRNA has been reported to suppress the Cpeb1 gene 

that acts as a negative regulator of Il6.[16] Considering the pivotal roles of miRNAs in adipose 

tissue pathology as well as in the control of tumor microenvironment, it is likely that CAA 

transition in human adipocytes can be mimic our current observations in 3T3-L1 cells.[15,22] 

Similarly, Sung et al [23] have shown that let-7 can induce inflammatory stromal reaction in 

prostate cancer microenvironment.  

There are several limitations in our study. First, we did not explore the functional effects of 

CAA in xenograft models. Additionally, we used mouse preadipocyte cells for our in vitro 

experiments, and therefore, the applicability of the present findings in human breast cancer 

microenvironment is not known. The in vivo effect of CAA in breast cancer progression and 

metastasis as well as the regulatory mechanisms in human adipocytes should be determined 

in further studies. 

In conclusion, our results describe a potential microRNA-based regulatory mechanism 

underlying the transition between normal adipocytes and inflammatory/de-differentiated CAA 

in breast cancer. Furthermore, we show that the pro-survival effect of the CAA can be breast 

cancer subtype-specific. Additional studies to address the molecular links that explain the 

subtype-specific effect may provide a window for microenvironment-targeted therapies. 
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FIGURE LEGENDS 

 

Figure 1. Microscopic appearances of the cancer-associated adipocytes (CAA) in human 

breast cancer specimens. 

 

The CAA (black arrow) showed smaller lipid droplets and hence smaller cell size when 

compared to normal adipocytes (white arrow) (1a). In some cases, the breast cancer cells 

were clustered in contact with the CAA (1b, yellow arrow) while other cases showed stromal 

tissues separating the nests of cancer cells and CAA (1c, red arrow). The cell diameters of 

CAA and NA (normal adipocyte) are shown in 1d (arbitrary unit, measured by ImageJ). 

  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 23, 2016. ; https://doi.org/10.1101/089243doi: bioRxiv preprint 

https://doi.org/10.1101/089243
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

Figure 2. The microscopic appearance and expression characteristics of adipocytes when 

co-cultured with various breast cancer cells. 

 

Adipocytes co-cultured with various cancer cells showed reduction in lipid drops and cell size 

(a). Genes and proteins involved in the adipocyte differentiation showed patterns of 

down-regulation in adipocytes co-cultured with breast cancer cells (b and c) 
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Figure 3. The effect of cancer-associated adipocytes (CAA) on proliferation of various breast 

cancer cells. 

 

The mature adipocytes were co-cultured with various breast cancer cells for three days, and 

the resulting CAAs were tested for the pro-proliferative effect on breast cancer cells (a). The 

degree of cell proliferation was measured by luminescent ATP quantification (b). 
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Figure 4. Gene expression profiles of cancer-associated adipocytes 

 

Transcriptome analysis was done by using RNAs obtained from the indirect transwell 

co-culture system. Gene ontology analysis with DAVID software show that cancer-associated 

adipocytes are enriched with genes involved in inflammation and ECM remodeling (a). 

Differentially expression genes with highest fold change are shown in (b) and the differential 

expression was validated with PCR (c). ELISA against IL6 using secreted proteins from the 

cancer-associated adipocytes (e) and the IL6 expression levels in adipocytes from human 

breast cancer specimen (e) are shown.  
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Figure 5.  Regulatory role of mmu-miR-5112 in cancer-associated adipocyte (CAA) 

transition 

 

microRNA profiles of CAA compared to normal adipocytes were determined by microarray (a). 

Expression of mmu-miR-5112 in adipocytes co-cultured with various cancer cells (b) and 

during the process of adipocyte differentiation (c). Predicted target site of Cpeb1 by 

mmu-miR-5112 (d) and the results of mmu-miR-5112 mimics treatment in Cpeb1 gene 

expression and translation measured by luciferase assay (e and f). 
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Supplementary Figure 1. The changes in the adipocyte differentiation-related genes and 

microscopic shapes in NIH-3T3-L1 cells during adipogenic differentiation. Along with the 

adipogenic gene expression (a), the cells showed increased accumulation of lipid drops and 

increase in the cell sizes (b). 

 

 

Supplementary figure 2. Expression levels of differentiation markers in the gene expression 

data 

Genes in red and blue represent the genes expressed in mesenchymal stem cells and in 

differentiated adipocytes, respectively. 
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