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Abstract  33 

Predictive coding suggests that the brain infers the causes of its sensations by combining sensory 34 

evidence with internal predictions based on available prior knowledge.  However, the 35 

neurophysiological correlates of (pre-)activated prior knowledge serving these predictions are still 36 

unknown. Based on the idea that such pre-activated prior knowledge must be maintained until 37 

needed we measured the amount of maintained information in neural signals via the active 38 

information storage (AIS) measure. AIS was calculated on whole-brain beamformer-reconstructed 39 

source time-courses from magnetoencephalography (MEG) recordings of 52 human subjects 40 

during the baseline of a Mooney face/house detection task. Pre-activation of prior knowledge for 41 

faces showed as alpha- and beta-band related AIS increases in content specific areas; these AIS 42 

increases were behaviourally relevant in brain area FFA. Further, AIS allowed decoding of the 43 

cued category on a trial-by-trial basis. Moreover, top-down transfer of predictions estimated by 44 

transfer entropy was associated with beta frequencies. Our results support accounts that activated 45 

prior knowledge and the corresponding predictions are signalled in low-frequency activity (<30 Hz). 46 

Significance statement 47 
 48 
Our perception is not only determined by the information our eyes/retina and other sensory organs 49 

receive from the outside world, but strongly depends also on information already present in our 50 

brains like prior knowledge about specific situations or objects. A currently popular theory in 51 

neuroscience, predictive coding theory, suggests that this prior knowledge is used by the brain to 52 

form internal predictions about upcoming sensory information. However, neurophysiological 53 

evidence for this hypothesis is rare – mostly because this kind of evidence requires making strong 54 

a-priori assumptions about the specific predictions the brain makes and the brain areas involved. 55 

Using a novel, assumption-free approach we find that face-related prior knowledge and the derived 56 

predictions are represented and transferred in low-frequency brain activity. 57 

 58 
Introduction 59 

In the last decade, predictive coding theory has become a dominant paradigm to organize 60 

behavioral and neurophysiological findings into a coherent theory of brain function (George and 61 

Hawkins, 2009; Friston, 2010; Huang and Rao, 2011; Clark, 2012; Hohwy, 2013). Predictive 62 
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coding theory proposes that the brain constantly makes inferences about the state of the outside 63 

world. This is supposed to be accomplished by building hierarchical internal predictions based on 64 

prior knowledge which are compared to incoming information in order to continuously adapt these 65 

internal models (Mumford, 1992; Rao et al., 1999; Friston, 2005, 2010) 66 

The postulated use of predictions for inference requires several preparatory steps: First, task 67 

relevant prior knowledge passively stored in synaptic weights needs to be transferred into activated 68 

prior knowledge, i.e. information stored in neural activity (see Zipser et al., 1993 for a distinction of 69 

active/passive storage). Subsequently, (pre-)activated prior knowledge needs to be maintained 70 

until needed and transferred as a prediction in top-down direction to a lower cortical area, where it 71 

will be matched with incoming information (e.g. Mumford, 1992; Friston, 2005, 2010). 72 

With respect to the neural correlates of activated prior knowledge and predictions we know that the 73 

prediction of specific features or object categories increases fMRI BOLD activity in the brain region 74 

at which the feature or category is usually processed (Puri et al., 2009; Esterman and Yantis, 2009; 75 

Kok et al., 2014). However, little is known about how the maintenance of pre-activated prior 76 

knowledge and the corresponding transfer of predictions are actually implemented in neural activity 77 

proper. 78 

 As a first step towards resolving this issue a microcircuit theory of predictive coding has been put 79 

forward, suggesting internal predictions to be processed in deep cortical layers and to manifest and 80 

to be transferred along descending fiber systems in low-frequency neural activity (<30 Hz) (Bastos 81 

et al., 2012).  82 

This theory is in line with the findings of a spectral predominance of low-frequency neural activity in 83 

deep cortical layers (Buffalo et al., 2011) and the physiological findings linking feedback 84 

connections to alpha/beta frequency channels in monkeys (Bastos et al., 2015) and humans 85 

(Michalareas et al., 2016). 86 

Recently, this microcircuit theory of predictive coding gained experimental support by 87 

neurophysiological studies showing the predictability of events to be associated with neural power 88 

in alpha (Bauer et al., 2014; Sedley et al., 2016) or beta frequencies (Pelt et al., 2016).  89 
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However, representation and signalling of pre-activated prior knowledge serving predictions has 90 

been difficult to investigate with classical analysis methods. One reason is that classical analysis 91 

methods require a-priori assumptions about which predictions specific brain areas are going to 92 

make - assumptions which might be very challenging to make beyond early sensory cortices and 93 

for complex experimental designs (Wibral et al., 2014, section 4.4, p. 9). Moreover, classical 94 

analysis methods do not allow quantifying the amount of pre-activated prior knowledge for 95 

predictions, as for instance diminished neural activity measured by fMRI, MEG/EEG may still come 96 

with less or more information being maintained in these signals. To overcome these problems we 97 

studied the maintenance and signalling of pre-activated prior knowledge for predictions using the 98 

information-theoretic measures of active information storage (AIS, see Methods in Lizier et al., 99 

2012;  also see Gómez et al., 2014 for an application to MEG), and transfer entropy (TE, 100 

Schreiber, 2000; Vicente et al., 2011a). AIS measures the amount of information in the future of a 101 

process predicted by its past (predictable information) while TE measures the amount of directed 102 

information transfer between two processes (see Methods for details).  103 

Using these information-theoretic measures we investigated the pre-activation of prior knowledge 104 

for face predictions on neural source activity reconstructed from MEG recordings of 52 human 105 

subjects. In order to induce the pre-activation of face-related prior knowledge, subjects were 106 

instructed to detect Faces in two-tone stimuli (Mooney and Ferguson, 1951; Cavanagh, 1991). 107 

 108 

Methods  109 

Basic concept and testable hypotheses 110 

To study the neural correlates of pre-activated prior knowledge for face predictions we used the 111 

information-theoretic measures active information storage (AIS) and transfer entropy (TE) - 112 

measuring predictable information (see Methods in Lizier et al., 2012) and information transfer 113 

(Schreiber, 2000; Vicente et al., 2011), respectively. 114 

The use of AIS and TE in our study is based on the following rationale: Since the brain will usually 115 

not know exactly when a prediction will be needed, it will maintain activated prior knowledge 116 

related to the content of the prediction over time. If there is a reliable neural code that maps 117 
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between content and activity, maintained activated prior knowledge must be represented as 118 

maintained information content in neural signals, measurable by AIS (Figure 1).  119 

Importantly, we do not suggest that predictable information in neural signals as measured by AIS 120 

measures the predictability of external events. Rather, we suggest that AIS can be used as a 121 

measure to detect increased predictable information in specific brain areas. This predictable 122 

information is bound to rise (see Fig. 1) when prior knowledge is pre-activated based on perceptual 123 

demands and thereby becomes available for predictions. 124 

Further, predictions based on prior knowledge are supposed to be transferred to hierarchically 125 

lower brain areas, where they can be matched with incoming information. This information transfer 126 

thus must be measurable via TE. 127 

From this basic concept we derived five testable hypotheses about AIS and TE in the predictive 128 

coding framework: 129 

1. When activated prior knowledge is maintained, predictable information as measured by AIS is 130 

supposed to be high in brain areas specific to the content of the predictions.  131 

2. If the microcircuit theory of predictive coding is correct, maintenance of pre-activated prior 132 

knowledge should be reflected in alpha/beta frequencies, i.e., predictable information and 133 

alpha/beta power should correlate. 134 

3. If maintenance of relevant prior knowledge is reflected by predictable information on a trial-by-135 

trial basis, the content of predictions should be also decodable from AIS information on a trial-by-136 

trial basis. 137 

4. Information transfer related to predictions (i.e. signalling of pre-activated prior knowledge 138 

measured by TE) should occur in a top-down direction from brain areas showing increased 139 

predictable information, and should be reflected in alpha/beta band Granger causality. 140 

5. As predictions based on pre-activated prior knowledge are known to facilitate performance, 141 

predictable information is supposed to correlate with behavioural parameters, if it reflects the 142 

relevant pre-activated prior knowledge. 143 

Subjects 144 

57 subjects participated in the MEG experiment. 5 of these subjects had to be excluded due to 145 
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excessive movements, technical problems, or unavailability of anatomical scans. 52 subjects 146 

remained for the analysis (average age: 24.8 years, SD 2.8, 23 males). Each subject gave written 147 

informed consent before the beginning of the experiment and was paid 10€ per hour for 148 

participation. The local ethics committee (Johann Wolfgang Goethe University clinics, Frankfurt, 149 

Germany) approved of the experimental procedure. All subjects had normal or corrected-to-normal 150 

visual acuity and were right handed according to the Edinburgh Handedness Inventory scale 151 

(Oldfield, 1971). The large sample size subjects was chosen to reduce the risk of false positives, 152 

as suggested by (Button et al., 2013). 153 

Stimuli and stimulus presentation 154 

Photographs of faces and houses were transformed into two-tone (black and white) images known 155 

as Mooney stimuli (Mooney and Ferguson, 1951). Mooney stimuli were used based on the 156 

rationale that recognition of two-tone stimuli cannot be accomplished without relying on prior 157 

knowledge from previous experience, as is evident for example from the late onset of two-tone 158 

image recognition capabilities during development (> 4 years of age, Mooney, 1957) and from 159 

theoretical considerations (Kemelmacher-Shlizerman et al., 2008). 160 

In order to increase task difficulty, in addition to Mooney faces and houses also scrambled stimuli 161 

(SCR) were created from each of the resulting Mooney faces and Mooney houses by displacing 162 

the white or black patches within the given background. Thereby all low-level information was 163 

maintained but the configuration of the face or house was destroyed. Examples of the stimuli can 164 

be seen in Figure 2.  165 

All stimuli were resized to a resolution of 591x754 pixels. Stimulus manipulations were performed 166 

with the program GIMP (GNU Image Manipulation Program, 2.4, free software foundation, Inc., 167 

Boston, Massachusetts, USA).  168 

A projector with a refresh rate of 60 Hz (resolution 1024x768 pixels) was used to display the stimuli 169 

at the center of a translucent screen (background set to gray, 145 cd/m²). Stimulus presentation 170 

during the experiment was controlled using the Presentation software package (Version 9.90, 171 

Neurobehavioral Systems).  172 
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The experiment consisted of eight blocks of seven minutes. In each block 120 stimuli were 173 

presented (30 Mooney faces, 30 Mooney houses, 30 SCR faces, 30 SCR houses) in a randomized 174 

order. Stimuli were presented for 150 ms with a vertical visual angle of 24.1 and a horizontal visual 175 

angle of 18.8 degrees. The inter-trial-interval between stimulus presentations was randomly jittered 176 

from 3 to 4 seconds (in steps of 100 ms).   177 

Task and Instructions 178 

Subjects performed a detection task for faces or houses (Figure 2). Each of the eight experimental 179 

blocks started with the presentation of a written instruction; four of the experimental blocks started 180 

with the instruction “Face or not?” while for the other four experimental blocks started with the 181 

instruction “House or not?”. The former are referred to as “Face blocks” and the latter as “House 182 

blocks”. Face and House blocks were presented in alternating order. The same blocks of stimuli 183 

were presented as Face blocks for half of the subjects, while for the other half of the subjects these 184 

experimental blocks appeared as House blocks and vice versa. This way, the initial block was 185 

alternated between subjects (i.e. half of the subjects started with Face blocks and the other half 186 

with House blocks). Importantly, as the blocks contained the same face, house, SCR face and 187 

SCR house stimuli the only difference between face and house blocks was in the subjects’ 188 

instruction.  189 

To avoid accidental serial effects, the order of blocks was reversed for half of the subjects. Subject 190 

responded by pressing one of two buttons directly after stimulus presentation. The button 191 

assignment for a ‘Face’ or ‘No-Face’ response in Face blocks and 'House' or 'No-House' block was 192 

counterbalanced across subjects (n=26 right index finger for ‘Face’ response).  193 

Between stimulus presentations, subjects were instructed to fixate a white cross on the center of 194 

the gray screen. Further, they were instructed to maintain fixation during the whole block and to 195 

avoid any movement during the acquisition session. Before data acquisition, subjects performed 196 

Face and House test blocks of two minutes with stimuli not used during the actual task. During the 197 

test blocks subjects received a feedback whether their response was correct or not. No feedback 198 

was provided during the actual task. 199 
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Data acquisition  200 

MEG data acquisition was performed in line with recently published guidelines for MEG recordings 201 

(Gross et al., 2012). MEG signals were recorded using a whole-head system (Omega 2005; VSM 202 

MedTech Ltd.) with 275 channels. The signals were recorded continuously at a sampling rate of 203 

1200 Hz in a synthetic third-order gradiometer configuration and were filtered online with fourth-204 

order Butterworth filters with 300 Hz low pass and 0.1 Hz high pass.  205 

Subjects’ head position relative to the gradiometer array was recorded continuously using three 206 

localization coils, one at the nasion and the other two located 1 cm anterior to the left and right 207 

tragus on the nasion-tragus plane for 43 of the subjects and at the left and right ear canal for 9 of 208 

the subjects.   209 

For artefact detection the horizontal and vertical electrooculogram (EOG) was recorded via four 210 

electrodes; two were placed distal to the outer canthi of the left and right eye (horizontal eye 211 

movements) and the other two were placed above and below the right eye (vertical eye 212 

movements and blinks). In addition, an electrocardiogram (ECG) was recorded with two electrodes 213 

placed at the left and right collar bones of the subject. The impedance of each electrode was kept 214 

below 15 kΩ. 215 

Structural magnetic resonance (MR) images were obtained with either a 3T Siemens Allegra or a 216 

Trio scanner (Siemens Medical Solutions, Erlangen, Germany) using a standard T1 sequence (3-D 217 

magnetization -prepared -rapid-acquisition gradient echo sequence, 176 slices, 1 x 1 x 1 mm voxel 218 

size). For the structural scans vitamin E pills were placed at the former positions of the MEG 219 

localization coils for co-registration of MEG data and magnetic resonance images.  220 

Behavioral responses were recorded using a fiberoptic response pad (Photon Control Inc. 221 

Lumitouch Control ™ Response System) in combination with the Presentation software (Version 222 

9.90, Neurobehavioral Systems).  223 

 224 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 6, 2017. ; https://doi.org/10.1101/089300doi: bioRxiv preprint 

https://doi.org/10.1101/089300


 

9 
 

Statistical analysis of behavioral data 225 

Responses were classified as correct or incorrect based on the subject’s first answer. For hit rate 226 

analysis the accuracy for each condition was calculated. For reaction time analysis only correct 227 

responses were considered.  228 

Post-hoc Wilcoxon signed rank tests were performed on hitrates as well as reaction times. To 229 

account for multiple testing, sequential Bonferroni-Holm correction (Holm, 1979) was applied 230 

(uncorrected alpha = 0.05). 231 

MEG-data preprocessing 232 

MEG Data analysis was performed with Matlab (RRID:nlx_153890; Matlab 2012b, The Mathworks, 233 

Inc.) using the open source Matlab toolbox Fieldtrip (RRID:nlx_143928;Oostenveld et al., 2011); 234 

Version 2013 11-11) and custom Matlab scripts. 235 

Only trials with correct behavioral responses were taken into account for MEG data analysis. The 236 

focus of data analysis was on the prestimulus intervals from 1 s to 0.050 s before stimulus onset. 237 

Trials containing sensor jump-, or muscle-artefacts were rejected using automatic FieldTrip artefact 238 

rejection routines. Line noise was removed using a discrete Fourier transform filter at 50,100 and 239 

150 Hz. In addition, independent component analysis (ICA; (Makeig et al., 1996) was performed 240 

using the extended infomax (runica) algorithm implemented in fieldtrip/EEGLAB. ICA components 241 

strongly correlated with EOG and ECG channels were removed from the data. Finally, data was 242 

visually inspected for residual artefacts. 243 

In order to minimize movement related errors, the mean head position over all experimental blocks 244 

was determined for each subject. Only trials in which the head position did not deviate more than 5 245 

mm from the mean head position were considered for further analysis. 246 

As artefact rejection and trial rejection based on the head position may result in different trial 247 

numbers for Face and House blocks, after trial rejection the minimum amount of trials across Face 248 

and House blocks was selected randomly from the available trials in each block (stratification). 249 
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Sensor level spectral analysis 250 

Spectral analysis at the sensor level was performed in order to determine the subdivision of the 251 

power spectrum in frequency bands (see Brodski et al., 2015 for a similar approach). As we aimed 252 

to identify frequency bands based on stimulus related increases or decreases, respectively, before 253 

spectral analysis new data segments were cut from -0.55 to 0.55 s around stimulus onset. For 254 

spectral analysis we used a multitaper approach (Percival and Walden, 1993) based on Slepian 255 

sequences (Slepian, 1978). The spectral transformation was applied in an interval from 4 to 150 Hz 256 

in 2 Hz steps in time steps of 0.01 s and using two slepian tapers for each frequency. For each 257 

subject, time-frequency representations were averaged for Face blocks and House blocks as well 258 

as within the time interval of “baseline” (-0.35 s – 0.05 s) and “task” (0.05 s – 0.35 s), respectively. 259 

Average spectra of task and baseline period were contrasted over subjects using a dependent-260 

sample permutation t-metric with a cluster based correction method (Maris and Oostenveld, 2007) 261 

to account for multiple comparisons. Adjacent samples whose t-values exceeded a threshold 262 

corresponding to an uncorrected α-level of 0.05 were defined as clusters. The resulting cluster 263 

sizes were then tested against the distribution of cluster sizes obtained from 1000 permuted 264 

datasets (i.e. labels “task” and “baseline” were randomly reassigned within each of the subjects). 265 

Cluster sizes larger than the 95th percentile of the cluster sizes in the permuted datasets were 266 

defined as significant.   267 

Following the same approach as (Brodski et al., 2015) based on the significant clusters of the task 268 

vs. baseline statistics five frequency bands were defined for further analysis: (1) 8–14 Hz (alpha); 269 

(2) 14–32 Hz (beta); (3) 32–56 Hz (low gamma); (4) 56–64 Hz (mid gamma) and (5) 64–150 Hz 270 

(high gamma) (Figure 3).  271 

Source grid creation 272 

In order to create individual source grids we transformed the anatomical MR images to a standard 273 

T1 MNI template from the SPM8 toolbox (http://www.fil.ion.ucl.ac.uk/spm) - obtaining an individual 274 

transformation matrix for each subject. We then warped a regular 3-D dipole grid based on the 275 

standard T1 template (spacing 15mm resulting in 478 grid locations) with the inverse of each 276 
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subjects’ transformation matrix, to obtain an individual dipole grid for each subject in subject space. 277 

This way, each specific grid point was located at the same brain area for each subject, which 278 

allowed us to perform source analysis with individual head models as well as multi-subject 279 

statistics for all grid locations. Lead-fields at those grid locations were computed for the individual 280 

subjects with a realistic single shell forward model (Nolte, 2003) taking into account the effects of 281 

the ICA component removal in pre-processing.  282 

Source time course reconstruction 283 

 284 

To enable a whole brain analysis of active information storage (AIS), we reconstructed the source 285 

time courses for all 478 source grid locations.  286 

For source time course reconstruction we calculated a time-domain beamformer filter (linear 287 

constrained minimum variance, LCMV; Van Veen et al., 1997) based on broadband filtered data (8 288 

Hz high pass, 150 Hz low pass) from the prestimulus interval (-1 s to -0.050 s) of Face blocks as 289 

well as House blocks (use of common filters - see Gross et al., 2012, page 357).  290 

For each source location three orthogonal filters were computed (x, y, z direction). To obtain the 291 

source time courses, the broadly filtered raw data was projected through the LCMV filters resulting 292 

in three time courses per location. On these source time courses we performed a singular value 293 

decomposition to obtain the time course in direction of the dominant dipole orientation. The source 294 

time course in direction of the dominant dipole orientation was used for calculation of active 295 

information storage (AIS). 296 

Definition of active information storage  297 

We assume that the reconstructed source time courses for each brain location can be treated as 298 

realizations ��� ,... , �� , … , ���  of a random process � 	 ��� ,... , �� , … , ���, which consists of a 299 

collection of random variables, ��, ordered by some integer 
. AIS then describes how much of the 300 

information the next time step 
 of the process is predictable from its immediate past state 301 

(Lizier et al., 2012). This is defined as the mutual information 302 

�� = lim
���

������
� ; ��� = lim

���
∑ ����,����

� � �log

�����

� ,���


�����
� �

���

�
��,����

�        (1) 303 

 304 
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where � is the mutual information and ��. � are the variables' probability density functions. Variable 305 

����
�  describes the past state of � as a collection of past random variables 306 

����
� 	 �����,..., �����
�����, where � is the embedding dimension, i.e., the number of time steps 307 

used in the collection, and � the embedding delay between these time steps. For practical 308 

purposes, � has to be set to a finite value �max , such that the history before time point 
 � �max � �  309 

does (statistically) not further improve the prediction of ��from its past (Lizier et al., 2012). 310 

Predictable information as measured by AIS indicates that a signal is both rich in information and 311 

predictable at the same time. Note that neither a constant signal (predictable but low information 312 

content) nor a memory-less stochastic process (high information content but unpredictable) will 313 

exhibit high AIS values. In other words, a neural process with high AIS must visit many different 314 

possible states (rich dynamics), yet visit these states in a predictable manner with minimal 315 

branching of its trajectory (this is the meaning of the log ratio of equation (1)). As such, AIS is a 316 

general measure of information that is maintained in a process, and could here reflect any form of 317 

memory based on neural activity. AIS is linked specifically to activated prior knowledge in our study 318 

via the experimental manipulation that alternately activates face- or house-specific prior 319 

knowledge, and by investigating the difference in AIS between the two conditions..  320 

Analysis of predictable information using active information storage 321 

The history dimension (�max; range 3 to 6) and optimal embedding delay parameter (tau; range 0.2 322 

to 0.5 in units of the autocorrelation decay time) was determined for each source location 323 

separately using Ragwitz’ criterion (Ragwitz and Kantz, 2002), as implemented in the TRENTOOL 324 

toolbox (Lindner et al., 2011). To avoid a bias in estimated values based on different history 325 

dimensions, we chose the maximal history dimension across Face and House blocks for each 326 

source location (median �max  over source locations and subjects =4).  327 

The actual spacing between the time-points in the history was the median across trials of the 328 

output of Ragwitz’ criterion for the embedding delay tau (Lindner et al., 2011).  329 
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Based on the assumption of stationarity in the prestimulus interval, AIS was computed on the 330 

embedded data across all available time points and trials. This was done separately for each 331 

source location and condition in every subject. 332 

Computation of AIS was performed using the Java Information Dynamics Toolkit (Lizier, 2014). A 333 

minimum of 68400 samples entered the AIS analysis for each subject, block type and source 334 

location (minimum of 57 trials, approx. 1 sec time interval, sampling rate 1200 Hz). AIS was 335 

estimated with 4 nearest neighbours in the joint embedding space using the Kraskov-Stoegbauer-336 

Grassberger (KSG) estimator (Kraskov et al., 2004); algorithm 1), as implemented in the open 337 

source Java Information Dynamics Toolkit (JIDT; Lizier, 2014)) 338 

Computation of AIS was performed at the Center for Scientific Computing (CSC) Frankfurt, using 339 

the high-performance computing Cluster FUCHS (https://csc.uni-frankfurt.de/index.php?id=4), 340 

which enabled the computationally demanding calculation of AIS for the whole brain across all 341 

subjects as well as Face and House blocks (478 x 52 x 2 = 49712 computations of AIS). 342 

AIS Statistics 343 

In order to determine the source locations in which AIS values were increased when subjects held 344 

face information in memory, a within-subject permutation t-metric was computed.  Here, AIS values 345 

for each source location across all subjects were contrasted for Face blocks and House blocks. 346 

The permutation test was chosen as the distribution of AIS values is unknown and not assumed to 347 

be Gaussian. To account for multiple comparisons across the 478 source locations, a cluster-348 

based correction method (Maris and Oostenveld, 2007) was used. Clusters were defined as 349 

adjacent voxels whose t-values exceeded a critical threshold corresponding to an uncorrected 350 

alpha level of 0.01. In the randomization procedure labels of Face block and House block data 351 

were randomly reassigned within each subject. Cluster sizes were tested against the distribution of 352 

cluster sizes obtained from 5000 permuted data sets. Cluster values larger than the 95th percentile 353 

of the distribution of cluster sizes obtained for the permuted data sets were considered to be 354 

significant.  355 

 356 
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Correlation analysis 357 

We investigated the relationship of spectral power in the prestimulus interval and AIS values on the 358 

single trial level. Before calculation of the correlation coefficient, single trial spectral power in each 359 

of the predefined frequency bands and single trial AIS values were z-normalized for each subject. 360 

These values were appended for Face and House blocks, pooled over all subjects and 361 

Spearman’s rho was calculated. Then, trials were shuffled 1000 times for spectral power and AIS 362 

values separately within each subject and correlation analysis was repeated for each 363 

randomization. Original correlation values larger than the 95th percentile of the distribution of 364 

correlation values in the shuffled data were considered as significant. This statistical procedure 365 

conforms to a permutation test of the correlation where permutations are restricted within the levels 366 

of the factor subjects. 367 

We also calculated the correlation of t-values computed from AIS (based on the dependent sample 368 

t-metric, contrast Face blocks vs. House blocks) for all grid points at the source level with the t-369 

values obtained from the same contrast based on beamformer reconstructed source power in the 370 

alpha (8-14 Hz) and beta (14-32 Hz) frequency band. Source power was reconstructed with the 371 

DICS (dynamic imaging of coherent sources, Gross et al., 2001) algorithm as implemented in the 372 

FieldTrip toolbox using real values filter coefficients only - see also Grützner et al., 2010). 373 

Last, we accessed the relationship of AIS values and reaction times for each subject. To this end 374 

before the correlation analysis for each subject mean reaction times and mean AIS values in the 375 

brain areas of interest for Face and House blocks were subtracted from each other. This allowed 376 

accounting for differential behavioral speed between subjects. The correlation of the difference in 377 

AIS values and the difference in reaction times was calculated via Spearman skipped correlations 378 

using the Robust correlation Toolbox (Pernet et al., 2013). Calculation of skipped correlations 379 

includes identifying and removing bivariate outliers (Rousseeuw, 1984; Rousseeuw and Driessen, 380 

1999; Verboven and Hubert, 2005). This can provide a more robust measure, which has been 381 

recommended for brain-behaviour correlation analyses (Rousselet and Pernet, 2012). The 382 

uncorrected alpha level was set to 0.05. For each correlation bootstrap confidence intervals (CIs) 383 
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were computed based on 1000 resamples. In order to account for multiple comparisons across 384 

brain areas, bootstrap CIs were adjusted using Bonferroni correction. If the adjusted CI did not 385 

encompassed 0, the correlation was considered as significant. 386 

 387 

Decoding analysis 388 
 389 

To investigate whether prediction content (i.e. face or house block) can be decoded from individual 390 

trial AIS values, we applied a multivariate analysis using support vector machines (SVMs) with the 391 

libsvm toolbox (Chang and Lin, 2011; available at http://www.csie.ntu.edu.tw/~cjlin/libsvm). For 392 

each subjects the linear SVM classifier was trained using 70% randomly chosen trials as training 393 

data. However, the training data contained always the same amount of trials for face and house 394 

blocks, respectively. Parameters for the SVMs were optimized in a three-fold cross-validation 395 

procedure for the training data only. Subsequently, the classifier was tested using the data from the 396 

remaining 30% of the trials with the best parameters obtained from the training procedure, thereby 397 

ensuring strict separation of training and testing data (Nowotny, 2014). 398 

This procedure was repeated 10 times. We report the median accuracy value for each subject. In 399 

order to test the significance of the median accuracy value, for each subject the labels of face 400 

blocks and house blocks were randomly permuted 500 times for each of the 10 training and testing 401 

sets and the median over the 10 accuracy values was calculated also for the permuted data sets. 402 

A median accuracy value larger than the 99.999% (threshold Bonferroni adjusted for the 52 403 

multiple comparisons) of the permuted median accuracy values obtained for the permuted data 404 

sets was considered to be significant, corresponding to an un-corrected alpha level of 0.05. 405 

 406 
 407 

Definition of transfer entropy (and Granger analysis) 408 

Transfer entropy (TE, (Schreiber, 2000) was applied to investigate the information transfer 409 

between the brain areas identified with AIS analysis. For links with significant information transfer, 410 

we post-hoc studied the spectral fingerprints of these links using spectral Granger analysis 411 

(Granger, 1969). 412 
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Both, TE and Granger analysis are implementations of Wieners principle (Wiener, 1956) which in 413 

short can be rephrased as follows: If the prediction of the future of one time series X, can be 414 

improved in comparison to predicting it from the past of X alone by adding information from the 415 

past of another time series Y, then information is transferred from Y to X. 416 

TE is an information-theoretic, model-free implementation of Wiener's principle and can be used, in 417 

contrast to Granger analysis, in order to study linear as well as non-linear interactions (e.g. Chang 418 

and Lin, 2011) and was previously applied to broadband MEG source data (Wibral et al., 2011). TE 419 

is defined as a conditional mutual information 420 
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      (2) 422 

where �� describes the future of the target time series �, ����
�  describes the past state of �, and 423 

#���
�  describes the past state of the source time series # . As for the calculation of AIS, past states 424 

are defined as collections of past random variables with number of time steps $ and � and a delay 425 

�. The parameter % accounts for a physical delay between processes # and � (Wibral et al., 2013) 426 

and can be optimized by finding the maximum TE over a range of assumed values for %. 427 

Analysis of information transfer using transfer entropy and Granger causality analysis 428 

We performed TE analysis with the open-source Matlab toolbox TRENTOOL (Lindner et al., 2011), 429 

which implements the KSG-estimator (Kraskov et al., 2004; Frenzel and Pompe, 2007; Gómez-430 

Herrero et al., 2015) for TE estimation. We used ensemble estimation (Wollstadt et al., 2014; 431 

Gómez-Herrero et al., 2015), which estimates TE from data pooled over trials to obtain more data 432 

and hence more robust TE-estimates. Additionally, we used Faes' correction method to account for 433 

volume conduction (Faes et al., 2013). 434 

In the TE analysis the same time intervals (prestimulus) and embedding parameters as for AIS 435 

analysis were used. TE values for Face blocks and House blocks were contrasted using a 436 

dependent-sample permutation t-metric for statistical analysis across subjects. In the statistical 437 

analysis, FDR correction was used to account for multiple comparisons across links (uncorrected 438 

alpha level 0.05). As for AIS, the history dimension for the past states was set to finite values; we 439 
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here set $max 	 �max and used the values obtained during AIS estimation for the target time series 440 

of each signal combination. 441 

For the significant TE links post-hoc nonparametric bivariate Granger causality analysis in the 442 

frequency domain (Dhamala et al., 2008) was computed. Using the nonparametric variant of 443 

Granger causality analysis avoids choosing an autoregressive model order, which may easily 444 

introduce a bias.  In the nonparametric approach Granger causality is computed from a 445 

factorization of the spectral density matrix, which is based on the direct Fourier transform of the 446 

time series data (Dhamala et al., 2008). The Wilson algorithm was used for factorization (Wilson, 447 

1972). A spectral resolution of 2 Hz and a spectral smoothing of 5 Hz were used for spectral 448 

transformation using the multitaper approach (Percival and Walden, 1993) (9 Slepian tapers).  We 449 

were interested in the differences of Granger spectral fingerprints of Face and House blocks, 450 

however we also wanted to make sure that the Granger values for these difference significantly 451 

differed from noise. For that reason we created two additional “random” conditions by permuting 452 

the trials for the Face block and the House block condition for each source separately. Two types 453 

of statistical comparisons were performed for the frequency range between 8 and 150 Hz and each 454 

of the significant TE links: 1. Granger values in Face blocks were contrasted with Granger values 455 

in House blocks using a dependent-samples permutation t-metric 2. Granger values in Face 456 

blocks/House blocks were contrasted with the random Face block condition / random House block 457 

condition using another dependent-samples permutation t-metric.  For the first test a cluster-458 

correction was used to account for multiple comparisons across frequency (Maris and Oostenveld, 459 

2007). Adjacent samples which uncorrected p-values were below 0.01 were considered as 460 

clusters. 5000 permutations were performed and the alpha value was set to 0.05. Frequency 461 

intervals in the Face block vs. House block comparison were only considered as significant if all 462 

included frequencies also reached significance in the comparison with the random conditions using 463 

a Bonferroni-Holms correction to account for multiple comparisons.  464 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 6, 2017. ; https://doi.org/10.1101/089300doi: bioRxiv preprint 

https://doi.org/10.1101/089300


 

18 
 

Results 465 

Behavioral results 466 

We found no differences between Face blocks and House blocks for hitrates (avg. hitrate Face 467 

blocks 93.9%; avg. hitrate House blocks 94.6%; Wilcoxon Signed rank test p=0.57) and reaction 468 

times of correct responses (avg. mean reaction times Face blocks 0.545 s, avg. reaction times 469 

House blocks 0.546 s; Wilcoxon Signed rank test p=0.85). Subjects showed equivalent behavioural 470 

patterns for both block types, for instance increased reaction times for the instructed stimulus 471 

conditions as these stimuli had to be distinguished from a similar distractor (SCR stimuli) (see 472 

Figure 4 for the analysis of behavioural differences between stimulus conditions within block 473 

types). 474 

Analysis of predictable information  475 

Statistical comparisons of AIS values between Face blocks and House blocks in the prestimulus 476 

interval revealed increased AIS values for Face blocks in clusters in fusiform face area (FFA), 477 

anterior inferior temporal cortex (aIT), occipital face area (OFA), posterior parietal cortex (PPC) 478 

and primary visual cortex (V1) (Figure 5). We referred to these five brain areas as “face prediction 479 

network” and subjected it to further analyses. In contrast to this finding of a face prediction network, 480 

we did not find brain areas showing significantly higher AIS values in House blocks compared to 481 

Face blocks. This is similar to highly cited previous studies that failed to find prediction effects for 482 

houses in the brain in contrast to faces (e.g. Summerfield et al., 2006a, 2006b; Trapp et al., 2015). 483 

  484 
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Correlation of single trial power and single trial predictable information  485 

In order to investigate the neurophysiological correlates of activated prior knowledge identified via 486 

AIS analysis, a correlation analysis of single trial power in distinct frequency bands with single trial 487 

AIS was conducted. Correlation analysis revealed a strong positive correlation in the alpha and 488 

beta frequency bands, only very small mostly positive correlations in the low and mid-gamma 489 

frequency bands and a small negative correlation for the high-gamma frequency band (Table 1). 490 

Note that although the correlations in the higher frequency bands were partly significant, the effect 491 

size was much higher in the alpha and beta frequency band. This means that alpha and beta band 492 

activity is the most likely carrier of activated prior knowledge.  493 

While we found a significant correlation of single trial power and predictable information in the 494 

alpha and beta band, the contrast map over all source grid points for Face and House blocks (t-495 

values obtained from dependent sample t-metric over subjects) did not correlate with the AIS 496 

contrast map for both, alpha and beta power (alpha rho = 0.043, p = 0.33; beta rho = 0.05, p = 497 

0.21). This suggests that AIS analysis provides additional information not directly provided by a 498 

spectral analysis. In sum, while AIS seems to be carried by alpha/beta-band activity, not all 499 

alpha/beta band activity contributes to AIS. 500 

Decoding prediction content from single trial AIS values 501 

To study whether face or house predictions can be decoded from AIS values of the face prediction 502 

network on a trial-by-trial basis, support vector machines were used (Chang and Lin, 2011). Cross-503 

validated decoding performance reached a maximum of 65.2% (mean performance 53.5%, SD 504 

3.9% over subjects). When bonferroni correcting for the high number of subjects tested (n=52), for 505 

22 of the subjects performance was still significantly better than for permuted datasets (p < 506 

0.05/52). Note, that this is much more than would have been expected by chance (p = 1.1 x 10-52, 507 

binomial test).  508 

Analysis of information transfer  509 

To understand how activated prior knowledge is communicated within the cortical hierarchy, we 510 
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assessed the information transfer within the face prediction network in the prestimulus interval by 511 

estimating transfer entropy (TE, Schreiber, 2000) on source time courses for Face blocks and 512 

House blocks, respectively. Statistical analysis revealed significantly increased information transfer 513 

for Face blocks from aIT to FFA (p=0.0001, fdr correction) and from PPC to FFA (p = 0.0014, fdr 514 

correction). For House blocks information transfer was increased in comparison to Face blocks 515 

from brain area V1 to PPC (p=0.0014, fdr correction) (Figure 6). 516 

 517 
Post-hoc frequency resolved Granger causality 518 

In order to investigate whether information transfer differences in Face and House blocks were 519 

reflected in specific frequency bands, we post-hoc performed a non-parametric spectral Granger 520 

causality analysis on the three links identified with transfer entropy analysis. For the link from PPC 521 

to FFA we found stronger Granger causality for Face blocks than House blocks in a cluster 522 

between 18 and 22 Hz (Figure 7, p=0.045, cluster correction for frequencies, uncorrected for the 523 

number of links in this post hoc test). The link from V1 to PPC showed a stronger Granger causal 524 

influence for House blocks than Face blocks between 94 and 98 Hz (Figure 7, p=0.042, cluster 525 

correction for frequencies, uncorrected for the number of links in this post hoc test). Using cluster 526 

correction, the link from aIT to FFA did not show significant differences in Granger causal 527 

influence. 528 

Correlation of predictable information and reaction times 529 

In order to study the association of predictable information and behaviour, we correlated the per 530 

subject difference of AIS values between Face blocks and House blocks with the per subject 531 

difference in reaction times. This analysis was performed for the three brain areas between which 532 

we found increased information transfer during Face blocks (FFA, aIT and PPC). For these brain 533 

areas we tested the hypothesis that predictable information for face blocks was associated with 534 

performance, i.e. reaction times during Face blocks. Negative correlation values were found for all 535 

of the three brain areas, however only brain area FFA reached significance when correcting for 536 

multiple comparisons: FFA robust Spearman’s rho -0.41, robust confidence interval (CI) after 537 

correcting for multiple comparisons [-0.68 -0.066]; aIT robust Spearmans rho = -0.12, CI [-0.4554 538 

0.245]; PPC robust Spearman’s rho -0.21 CI [-0.5480 0.1178].   539 
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Discussion 540 

Here we tested the hypothesis that the neural correlates of prior knowledge activated for use as an 541 

internal prediction must show as predictable information in the neural signals carrying that 542 

activated prior knowledge. This hypothesis is based on the rationale that the content of activated 543 

prior knowledge must be maintained until the knowledge or the prediction derived from it is used. 544 

The fact that activated prior knowledge has a specific content then mandates that increases in 545 

predictable information should be found in brain areas specific to processing the respective 546 

content. This is indeed what we found when investigating the activation of prior knowledge about 547 

faces during face detection blocks. In these blocks predictable information was selectively 548 

enhanced in a network of well-known face processing areas. At these areas prediction content was 549 

decodable from the predictable information on a trial-by-trial basis and increased predictable 550 

information was related to improved task performance in brain area FFA. Given this established 551 

link between the activation of prior knowledge and predictable information we then tested current 552 

neurophysiological accounts of predictive coding suggesting that activated prior knowledge should 553 

be represented in deep cortical layers and at alpha or beta-band frequencies and should be 554 

communicated as a prediction along descending fiber pathways also in alpha/beta frequencies 555 

(Bastos et al., 2012). Indeed, within the network of brain areas related to activated prior knowledge 556 

of faces, information transfer was increased in top-down direction and related to Granger-causality 557 

in the beta band – in accordance with the theory.   558 

We will next discuss our findings with respect to their implications for current theories of predictive 559 

coding. 560 

  561 
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1. Activated prior knowledge for faces shows as predictable information in content specific 562 

areas  563 

We found increased predictable information as reflected by increased AIS values in Face blocks in 564 

the prestimulus interval in FFA, OFA, aIT, PPC and V1. Out of these five brain areas FFA, OFA 565 

and aIT are well known to play a major role in face processing (Kanwisher et al., 1997; 566 

Kriegeskorte et al., 2007; Tsao et al., 2008; Pitcher et al., 2011). 567 

In addition to increased predictable information in well-known face processing areas we also found 568 

increased predictable information in Face blocks in PPC. We consider the increase in predictable 569 

information in PPC also as content-specific, because regions in PPC have been recently linked to 570 

high-level visual processing of objects like faces (Pashkam and Xu, 2014) and activation of PPC 571 

has been repeatedly observed during the recognition of Mooney faces by us and others (Dolan et 572 

al., 1997; Grützner et al., 2010; Brodski et al., 2015). 573 

In sum, our finding of increased predictable information for Face blocks in FFA, OFA, aIT and PPC 574 

confirms our hypothesis that activation of face prior knowledge elevates predictable information in 575 

content specific areas. Additionally, our results suggest that predictable information in content-576 

specific areas is associated with the corresponding prediction on a trial-by-trial basis - by 577 

successfully decoding the anticipated category (Face or House block) from trial-by-trial AIS values 578 

at the face prediction areas.  579 

However, while we found increased predictable information in content specific areas for Face 580 

blocks, we did not find brain areas showing increased predictable information for House blocks.  581 

Similarly, in a face/house discrimination task Summerfield and colleagues (2006b) observed 582 

increased activation in FFA, when a house was misperceived as a face. However, they failed to 583 

see increased activation in parahippocampal place area (PPA), a scene/house responsive region, 584 

when a face was misperceived as a house. The authors suggest that this might be related to the 585 

fact that PPA is less subject to top-down information than FFA – as faces have much more 586 

regularities potentially utilizable for top-down mechanisms than the natural scenes that PPA 587 

usually responds to.  Additionally, because of their strong social relevance (e.g. Farah et al., 1995) 588 
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faces capture attention disproportionally (e.g. Vuilleumier and Schwartz, 2001). Thus, also face 589 

predictions/templates may be prioritized in comparison to other templates e.g. for houses 590 

(Esterman and Yantis, 2009; Puri et al., 2009; Van Belle et al., 2010). 591 

2. Maintenance of activated prior knowledge about faces is reflected by increased 592 

alpha/beta power 593 

We found a strong positive single-trial correlation of AIS with alpha/beta power for all face 594 

prediction areas. This finding supports the assumption that the maintenance of activated prior 595 

knowledge as indexed by AIS is related to alpha and beta frequencies.  596 

Congruently with our findings, Mayer and colleagues (2015) recently showed that activation of prior 597 

knowledge about previously seen letters is associated with increased power in alpha frequencies in 598 

the prestimulus interval. Also, Sedley and colleagues (2016) observed that the update of 599 

predictions, which also requires access to maintained activated knowledge, is associated with 600 

increased power in beta frequencies.  601 

Extending these previous findings, our results demonstrate that the activated prior knowledge 602 

usable as predictions for face detection is associated with neural activity in the alpha and beta 603 

frequency range (Bastos et al., 2012).  604 

3. Face predictions are transferred in a top-down manner and via beta frequencies 605 

In Face blocks we observed increased information transfer to FFA from aIT as well as from PPC, 606 

both areas located higher in the processing hierarchy than FFA (e.g. Zhen et al., 2013; 607 

Michalareas et al., 2016). Thus, FFA seems to have the role of a convergence center to which 608 

information from higher cortical areas is transferred in order to prepare for rapid face detection.  609 

Closely related to our findings (Esterman and Yantis, 2009) observed that anticipation effects for 610 

faces in FFA (and houses in PPA) were associated with increased activity in a posterior IPS region 611 

(part of the PPC) extending to the occipital junction. However, to our knowledge our study is the 612 

first to report face-related anticipatory top-down information transfer from PPC and aIT to FFA. 613 
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In addition to the two top-down links showing increased information transfer for Face blocks, we 614 

observed a bottom-up link from V1 to PPC with increased information transfer for House blocks. As 615 

we did not find a prediction network for houses and our analysis was thus only performed in the 616 

brain areas of the face prediction network, one can only speculate on the function of this bottom-up 617 

information transfer. It is possible that it indicates that house detection was rather performed in a 618 

bottom-up manner for instance by first identifying low level features that distinguish houses from 619 

their scrambled counterparts. 620 

Our findings further demonstrated that information transfer in top-down direction was associated 621 

with Granger causality in the beta frequency band (PPC to FFA), while information transfer in 622 

bottom-up direction was associated with Granger causality in the high gamma frequency band (V1 623 

to PPC). 624 

The association of top-down information transfer with beta frequencies and bottom-up information 625 

transfer with gamma frequencies is in line with recent physiological findings in monkeys and 626 

humans (Bastos et al., 2015; Michalareas et al., 2016) and has been linked with predictive coding 627 

in Bastos' microcircuit model (Bastos et al., 2012), resulting in the hypothesis of predictions being 628 

transferred top-down via low-frequency channels and prediction errors bottom-up via high 629 

frequency channels.  In accord with this hypothesis, our group has recently shown that prediction 630 

errors are communicated in the high frequency gamma band (Brodski et al., 2015). Our present 631 

finding of top-down information transfer in low beta frequencies during anticipation of faces adds 632 

support to the microcircuit model hypothesis of a low-frequency channel for the top-down 633 

propagation of predictions (Bastos et al., 2012).  634 

In line with our findings, the spectral dissociation between the transfer of predictions and of 635 

prediction errors recently received additional support from a MEG study applying Granger causality 636 

analysis for the investigation of information transfer during the prediction of causal events (Pelt et 637 

al., 2016). It should be noted that van Pelt and colleagues defined their network of interest for 638 

Granger causality analysis based on the prior assumption of the involvement of these brain areas 639 

in causal inference. In contrast, in our study defining the network via condition-specific AIS 640 
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increases allowed finding the brain areas involved in predictive processing without relying on prior 641 

assumptions about their function. 642 

4. Pre-activation of prior knowledge about faces facilitates performance 643 

Across subjects we found elevated predictable information in FFA in Face blocks in contrast to 644 

House blocks to be associated with shorter reaction times for Face blocks compared to House 645 

blocks. This suggests that especially pre-activation of prior knowledge about faces in FFA 646 

facilitates processing and speeds up face detection, as also suggested by FFA effects in previous 647 

fMRI studies (Esterman and Yantis, 2009; Puri et al., 2009). Our study is however the first to 648 

demonstrate that the size of the facilitatory effect on perceptual performance depends on the 649 

quantity of activated prior knowledge for faces in FFA, measurable as the difference in AIS 650 

between face and house block for each subject. Differential size of the faciliatory effect between 651 

subjects and the associated differences in the quantity of activated prior knowledge in FFA may be 652 

related to the differential ability in maintaining an object specific representation (see Ranganath et 653 

al., 2004). 654 

  655 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 6, 2017. ; https://doi.org/10.1101/089300doi: bioRxiv preprint 

https://doi.org/10.1101/089300


 

26 
 

References 656 

Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical microcircuits for 657 
predictive coding. Neuron 76:695–711. 658 

Bastos AM, Vezoli J, Bosman CA, Schoffelen J-M, Oostenveld R, Dowdall JR, De Weerd P, Kennedy H, 659 
Fries P (2015) Visual areas exert feedforward and feedback influences through distinct frequency 660 
channels. Neuron 85:390–401. 661 

Bauer M, Stenner M-P, Friston KJ, Dolan RJ (2014) Attentional Modulation of Alpha/Beta and Gamma 662 
Oscillations Reflect Functionally Distinct Processes. J Neurosci 34:16117–16125. 663 

Brodski A, Paasch G-F, Helbling S, Wibral M (2015) The Faces of Predictive Coding. J Neurosci 35:8997–664 
9006. 665 

Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R (2011) Laminar differences in gamma and 666 
alpha coherence in the ventral stream. Proc Natl Acad Sci 108:11262–11267. 667 

Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR (2013) Power failure: why 668 
small sample size undermines the reliability of neuroscience. Nat Rev Neurosci Available at: 669 
http://www.nature.com/nrn/journal/vaop/ncurrent/full/nrn3475.html [Accessed May 8, 2013]. 670 

Cavanagh P (1991) What’s up in top-down processing. Represent Vis Trends Tacit Assumpt Vis Res:295–671 
304. 672 

Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 673 
TIST 2:27. 674 

Clark A (2012) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav 675 
Brain Sci Available at: http://bi.snu.ac.kr/Courses/aplc12/3-2.pdf [Accessed May 22, 2013]. 676 

Dhamala M, Rangarajan G, Ding M (2008) Estimating Granger causality from Fourier and wavelet transforms 677 
of time series data. Phys Rev Lett 100:018701. 678 

Dolan RJ, Fink GR, Rolls E, Booth M, Holmes A, Frackowiak RSJ, Friston KJ (1997) How the brain learns to 679 
see objects and faces in an impoverished context. Nature 389:596–598. 680 

Esterman M, Yantis S (2009) Perceptual expectation evokes category-selective cortical activity. Cereb 681 
Cortex:bhp188. 682 

Faes L, Nollo G, Porta A (2013) Compensated transfer entropy as a tool for reliably estimating information 683 
transfer in physiological time series. Entropy 15:198–219. 684 

Farah MJ, Tanaka JW, Drain HM (1995) What causes the face inversion effect? J Exp Psychol Hum Percept 685 
Perform 21:628–634. 686 

Frenzel S, Pompe B (2007) Partial mutual information for coupling analysis of multivariate time series. Phys 687 
Rev Lett 99:204101. 688 

Friston K (2005) A theory of cortical responses. Philos Trans R Soc B Biol Sci 360:815–836. 689 

Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138. 690 

George D, Hawkins J (2009) Towards a Mathematical Theory of Cortical Micro-circuits. PLoS Comput Biol 691 
5:e1000532. 692 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 6, 2017. ; https://doi.org/10.1101/089300doi: bioRxiv preprint 

https://doi.org/10.1101/089300


 

27 
 

Gómez C, Lizier JT, Schaum M, Wollstadt P, Grützner C, Uhlhaas P, Freitag CM, Schlitt S, Bölte S, Hornero 693 
R, Wibral M (2014) Reduced predictable information in brain signals in autism spectrum disorder. 694 
Front Neuroinformatics 8 Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924322/ 695 
[Accessed March 4, 2015]. 696 

Gómez-Herrero G, Wu W, Rutanen K, Soriano MC, Pipa G, Vicente R (2015) Assessing coupling dynamics 697 
from an ensemble of time series. Entropy 17:1958–1970. 698 

Granger CWJ (1969) Investigating Causal Relations by Econometric Models and Cross-spectral Methods. 699 
Econometrica 37:424–438. 700 

Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, Jerbi K, Litvak V, Maess B, Oostenveld 701 
R (2012) Good-practice for conducting and reporting MEG research. NeuroImage Available at: 702 
http://www.sciencedirect.com/science/article/pii/S1053811912009895 [Accessed April 5, 2013]. 703 

Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of 704 
coherent sources: Studying neural interactions in the human brain. Proc Natl Acad Sci U S A 705 
98:694–699. 706 

Grützner C, Uhlhaas PJ, Genc E, Kohler A, Singer W, Wibral M (2010) Neuroelectromagnetic Correlates of 707 
Perceptual Closure Processes. J Neurosci 30:8342–8352. 708 

Hohwy J (2013) The Predictive Mind. Oxford University Press. 709 

Holm S (1979) A Simple Sequentially Rejective Multiple Test Procedure. Scand J Stat 6:65–70. 710 

Huang Y, Rao RP (2011) Predictive coding. Wiley Interdiscip Rev Cogn Sci 2:580–593. 711 

Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex 712 
specialized for face perception. J Neurosci 17:4302–4311. 713 

Kemelmacher-Shlizerman I, Basri R, Nadler B (2008) 3D shape reconstruction of Mooney faces. In: 714 
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp 1–8 715 
Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4587769 [Accessed August 24, 716 
2012]. 717 

Kok P, Failing MF, de Lange FP (2014) Prior expectations evoke stimulus templates in the primary visual 718 
cortex. J Cogn Neurosci 26:1546–1554. 719 

Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69:066138. 720 

Kriegeskorte N, Formisano E, Sorger B, Goebel R (2007) Individual faces elicit distinct response patterns in 721 
human anterior temporal cortex. Proc Natl Acad Sci 104:20600–20605. 722 

Lindner M, Vicente R, Priesemann V, Wibral M (2011) TRENTOOL: A Matlab open source toolbox to analyse 723 
information flow in time series data with transfer entropy. BMC Neurosci 12:119. 724 

Lizier JT (2014) JIDT: an information-theoretic toolkit for studying the dynamics of complex systems. Comput 725 
Intell 1:11. 726 

Lizier JT, Prokopenko M, Zomaya AY (2012) Local measures of information storage in complex distributed 727 
computation. Inf Sci 208:39–54. 728 

Makeig S, Bell AJ, Jung T-P, Sejnowski TJ (1996) Independent component analysis of 729 
electroencephalographic data. Adv Neural Inf Process Syst:145–151. 730 

Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 731 
164:177–190. 732 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 6, 2017. ; https://doi.org/10.1101/089300doi: bioRxiv preprint 

https://doi.org/10.1101/089300


 

28 
 

Mayer A, Schwiedrzik CM, Wibral M, Singer W, Melloni L (2015) Expecting to See a Letter: Alpha 733 
Oscillations as Carriers of Top-Down Sensory Predictions. Cereb Cortex:bhv146. 734 

Michalareas G, Vezoli J, van Pelt S, Schoffelen J-M, Kennedy H, Fries P (2016) Alpha-Beta and Gamma 735 
Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas. 736 
Neuron Available at: http://www.sciencedirect.com/science/article/pii/S0896627315011204 737 
[Accessed February 26, 2016]. 738 

Mooney CM (1957) Age in the development of closure ability in children. Can J Psychol Can Psychol 739 
11:219–226. 740 

Mooney CM, Ferguson GA (1951) A new closure test. Can J Psychol Can Psychol 5:129–133. 741 

Mumford D (1992) On the computational architecture of the neocortex. Biol Cybern 66:241–251. 742 

Nolte G (2003) The magnetic lead field theorem in the quasi-static approximation and its use for 743 
magnetoencephalography forward calculation in realistic volume conductors. Phys Med Biol 744 
48:3637–3652. 745 

Nowotny T (2014) Two challenges of correct validation in pattern recognition. Comput Intell 1:5. 746 

Oldfield RC (1971) The assessment and analysis of handedness: The Edinburgh inventory. 747 
Neuropsychologia 9:97–113. 748 

Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced 749 
analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:1. 750 

Pashkam MV, Xu Y (2014) Decoding visual object representation in human parietal cortex. J Vis 14:1307–751 
1307. 752 

Pelt S van, Heil L, Kwisthout J, Ondobaka S, Rooij I van, Bekkering H (2016) Beta- and gamma-band activity 753 
reflect predictive coding in the processing of causal events. Soc Cogn Affect Neurosci:nsw017. 754 

Percival DB, Walden AT (1993) Spectral Analysis for Physical Applications. Cambridge University Press. 755 

Pernet CR, Wilcox RR, Rousselet GA (2013) Robust correlation analyses: false positive and power validation 756 
using a new open source Matlab toolbox. Front Psychol 3:606. 757 

Pitcher D, Walsh V, Duchaine B (2011) The role of the occipital face area in the cortical face perception 758 
network. Exp Brain Res 209:481–493. 759 

Puri AM, Wojciulik E, Ranganath C (2009) Category expectation modulates baseline and stimulus-evoked 760 
activity in human inferotemporal cortex. Brain Res 1301:89–99. 761 

Ragwitz M, Kantz H (2002) Markov models from data by simple nonlinear time series predictors in delay 762 
embedding spaces. Phys Rev E 65:056201. 763 

Ranganath C, Cohen MX, Dam C, D’Esposito M (2004) Inferior Temporal, Prefrontal, and Hippocampal 764 
Contributions to Visual Working Memory Maintenance and Associative Memory Retrieval. J Neurosci 765 
24:3917–3925. 766 

Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-767 
classical receptive-field effects. Nat Neurosci 2:79–87. 768 

Rousseeuw PJ (1984) Least median of squares regression. J Am Stat Assoc 79:871–880. 769 

Rousseeuw PJ, Driessen KV (1999) A fast algorithm for the minimum covariance determinant estimator. 770 
Technometrics 41:212–223. 771 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 6, 2017. ; https://doi.org/10.1101/089300doi: bioRxiv preprint 

https://doi.org/10.1101/089300


 

29 
 

Rousselet GA, Pernet CR (2012) Improving standards in brain-behavior correlation analyses. Front Hum 772 
Neurosci 6:119. 773 

Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85:461. 774 

Sedley W, Gander PE, Kumar S, Kovach CK, Oya H, Kawasaki H, Iii MAH, Griffiths TD (2016) Neural 775 
signatures of perceptual inference. eLife 5:e11476. 776 

Slepian D (1978) Prolate spheroidal wave functions, Fourier analysis and uncertainty. Bell Syst Tech J 777 
57:1371–1429. 778 

Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J (2006a) Predictive Codes for 779 
Forthcoming Perception in the Frontal Cortex. Science 314:1311–1314. 780 

Summerfield C, Egner T, Mangels J, Hirsch J (2006b) Mistaking a house for a face: neural correlates of 781 
misperception in healthy humans. Cereb Cortex N Y N 1991 16:500–508. 782 

Trapp S, Lepsien J, Kotz SA, Bar M (2015) Prior probability modulates anticipatory activity in category-783 
specific areas. Cogn Affect Behav Neurosci:1–10. 784 

Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. Proc 785 
Natl Acad Sci 105:19514–19519. 786 

Van Belle G, De Graef P, Verfaillie K, Busigny T, Rossion B (2010) Whole not hole: Expert face recognition 787 
requires holistic perception. Neuropsychologia 48:2620–2629. 788 

Van Veen BD, Van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via 789 
linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880. 790 

Verboven S, Hubert M (2005) LIBRA: a MATLAB library for robust analysis. Chemom Intell Lab Syst 75:127–791 
136. 792 

Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy—a model-free measure of effective 793 
connectivity for the neurosciences. J Comput Neurosci 30:45–67. 794 

Vuilleumier P, Schwartz S (2001) Emotional facial expressions capture attention. Neurology 56:153–158. 795 

Wibral M, Lizier JT, Vögler S, Priesemann V, Galuske R (2014) Local active information storage as a tool to 796 
understand distributed neural information processing. Front Neuroinformatics 8 Available at: 797 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904075/ [Accessed March 19, 2015]. 798 

Wibral M, Pampu N, Priesemann V, Siebenhühner F, Seiwert H, Lindner M, Lizier JT, Vicente R (2013) 799 
Measuring information-transfer delays. PloS One 8:e55809. 800 

Wibral M, Rahm B, Rieder M, Lindner M, Vicente R, Kaiser J (2011) Transfer entropy in 801 
magnetoencephalographic data: Quantifying information flow in cortical and cerebellar networks. 802 
Prog Biophys Mol Biol 105:80–97. 803 

Wiener N (1956) The theory of prediction. Mod Math Eng N Y McGraw-Hill:165–190. 804 

Wilson GT (1972) The factorization of matricial spectral densities. SIAM J Appl Math 23:420–426. 805 

Wollstadt P, Martínez-Zarzuela M, Vicente R, Díaz-Pernas FJ, Wibral M (2014) Efficient transfer entropy 806 
analysis of non-stationary neural time series. PLoS One 9:e102833. 807 

Zhen Z, Fang H, Liu J (2013) The hierarchical brain network for face recognition. PloS One 8:e59886. 808 

Zipser D, Kehoe B, Littlewort G, Fuster J (1993) A spiking network model of short-term active memory. J 809 
Neurosci 13:3406–3420. 810 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 6, 2017. ; https://doi.org/10.1101/089300doi: bioRxiv preprint 

https://doi.org/10.1101/089300


 

30 
 

Tables & Figures 811 

Table 1: Correlation of single trial power and single trial predictable information (measured by AIS) 812 

in the face prediction network 813 

 OFA aIT PPC V1 FFA 
8-14 Hz 
(alpha) 

rho = 0.58 
p < 0.001  

rho = 0.54 
p < 0.001  
 

rho = 0.59 
p < 0.001 

 

rho = 0.61 
p < 0.001  
 

rho = 0.58 
p < 0.001 

14-32 Hz 
(beta) 

rho = 0.53 
p < 0.001 
 

rho = 0.52 
p < 0.001 
 

rho = 0.53 
p <0.001 
 

rho = 0.52 
p < 0.001 
 

rho = 0.54 
p < 0.001 
 

32-56 Hz 
(low gamma) 

rho = 0.13 
p < 0.001 

rho = 0.10 
p < 0.001 

rho = 0.17 
p < 0.001  
 

rho = 0.14 
p < 0.001  

rho = 0.13 
p < 0.001  

56-64 Hz 
(Mid-gamma) 

rho = 0.06 
p < 0.001 
 

rho = -0.004 
p=0.22 
 

rho = 0.07 
p < 0.001 
 

rho = 0.07 
p < 0.001 
 

rho = 0.02 
p < 0.001 
 

64-150 Hz 
(High-
gamma) 

rho = -0.07 
p < 0.001 
 

rho = -0.14 
p <0.001 
 

rho = -0.04 
p < 0.001 
 

rho =-0.04 
p  <0.001 
 

rho=-0.09 
p < 0 .001 
 

 814 

 815 

Figure 1. Central idea of the study. Typically, pre-activated prior knowledge related to the 816 

content of a prediction has to be maintained as the brain will not know exactly when it will be 817 

needed. If there is a reliable neural code that maps between content and activity, maintained 818 

activated prior knowledge should lead to brain signals that are themselves predictable over time 819 

(here the brain signals are depicted as identical, although the relation between past and future will 820 

almost certainly be much more complicated). Figure elements obtained from OpenCliparts Library 821 

(http://www.opencliparts.org) and modified. 822 
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 823 

Figure 2. Experimental design. Top and bottom: Exemplary stimulus presentation in Face blocks 824 

(top) and in House blocks (bottom). Face and House icons on the left indicate Face and House 825 

blocks, respectively. Middle: Depiction of stimulus categories and timing. The beginning of the 826 

response time window is indicated by the hand icon. Red horizontal bars mark the analysis 827 

interval. SCR - Scrambled Mooney stimuli, not representing a face or house. 828 

 829 

Figure 3. Sensor-level frequency analysis - defining frequency bands. Power spectra for all of 830 

the significant clusters (one positive and one negative cluster) at the sensor level (permutation t-831 

metric, contrast [0.05s 0.35s] vs [-0.35s -0.05s] around stimulus onset, t values masked by p < 832 

0.05, cluster correction, n = 52).  Frequency analysis at the sensor level was calculated using both 833 

blocks types jointly. Task-related increases in power are shown in red (positive cluster) and task-834 

related decreases in blue (negative cluster). Black dashed lines frame the identified frequency 835 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 6, 2017. ; https://doi.org/10.1101/089300doi: bioRxiv preprint 

https://doi.org/10.1101/089300


 

32 
 

ranges. 836 

 837 

Figure 4. Behavioral results. Depiction of hitrates and reaction times of correct responses for (A) 838 

Face blocks and (B) House blocks. Equivalent conditions in different block types are marked in red 839 

and grey, respectively. Asterisks indicate significant differences based on Wilcoxon signed-rank 840 

tests within block type (n = 52; Bonferroni-Holms corrected for multiple comparisons). Error bars 841 

indicate standard deviation. SCR – scrambled Mooney stimuli. 842 
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  843 

Figure 5. Statistical analysis of predictable information (measured by AIS) at the MEG 844 

source level. Results of whole-brain dependent samples permutation t-metric contrasting Face 845 

blocks and House blocks (n=52, t-values masked by p<0.05, cluster correction). Peak voxel 846 

coordinates in MNI space are shown at the top for each brain location; z-values are displayed 847 

below each brain slice. OFA = occipital face area; FFA = fusiform face area; aIT= anterior inferior 848 

temporal cortex; PPC = posterior parietal cortex; V1 = primary visual cortex 849 

  850 
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 851 

Figure 6. Analysis of information transfer in the prestimulus interval. Results of dependent 852 

sample permutation t-tests on transfer entropy (TE) values (Face blocks vs House blocks, n = 52, 853 

p< 0.05, fdr corrected). Red arrows indicate increased information transfer for Face blocks, blue 854 

arrows indicate increased information transfer for House blocks. Illustration of the resulting network 855 

in A) a view from the back of the brain, B) view from the top of the brain, C) depiction of the 856 

network hierarchy (based on the hierarchy in (Zhen et al., 2013; Michalareas et al., 2016). 857 
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 858 

Figure 7.  Frequency resolved Granger causality – post-hoc test for TE analysis. Granger 859 
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causality for Face blocks and House blocks as well as random/permutation conditions. Green 860 

shaded regions indicate significant differences between Face and House blocks with cluster 861 

correction (dependent samples permutation t-test, n = 52, p<0.05). Frequency ranges were only 862 

considered as significant, if granger values for both block types in these frequencies also 863 

significantly differed from the random conditions (dependent samples permutation t-tests, n = 52, 864 

Bonferroni-Holms correction). 865 

 866 
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