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 2 

ABSTRACT 26 

We introduce a formula-based strategy and algorithm (JUMPm) for global metabolite identification 27 

and false discovery analysis in untargeted mass spectrometry-based metabolomics. JUMPm 28 

determines the chemical formulas of metabolites from unlabeled and stable-isotope labeled 29 

metabolome data, and derives the most likely metabolite identity by searching structure 30 

databases. JUMPm also estimates the false discovery rate (FDR) with a target-decoy strategy 31 

based on the octet rule of chemistry. With systematic stable isotope labeling of yeast, we identified 32 

2,085 chemical formulas (10% FDR), 892 of which were assigned with metabolite structures. We 33 

evaluated JUMPm with a library of synthetic standards, and found that 96% of the formulas were 34 

correctly identified. We extended the method to mammalian cells with direct isotope labeling and 35 

by heavy yeast spike-in. This strategy and algorithm provide a powerful a practical solution for 36 

global identification of metabolites with a critical measure of confidence. 37 

 38 

  39 
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INTRODUCTION  40 

Metabolomics aims to survey the global state of the small molecule profile in cells, tissues, and 41 

organisms. Metabolites are the substrates and products of myriad enzymatic reactions and are 42 

therefore considered to be direct readouts of biological activity. Many metabolites also function 43 

as building blocks, signaling factors, and molecular precursors which modify and regulate cellular 44 

components such as DNA, RNA, and protein. The human metabolome1 contains conventional 45 

cellular metabolites along with other chemicals derived from food, microbiota, and the 46 

environment. The role of the metabolome has been increasingly appreciated in both development 47 

and disease2. However, it is still a challenge to profile the complete metabolome due to the highly 48 

diverse chemical properties of small molecules and practical limitations of analytical strategies. 49 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a prevalent method for 50 

global metabolome profiling3. Combining nanoscale LC with high-resolution MS leads to the 51 

detection of thousands of high-confidence metabolite features in a complex sample4. Numerous 52 

software programs have been developed for processing large-scale datasets5-14. Most of these 53 

programs share a common workflow, including feature detection, peak alignment, and relative 54 

quantification with semi-automated identification and/or laborious manual validation of selected 55 

peak features. Structural annotation of the selected features is typically achieved by searching 56 

against empirical MS/MS spectral libraries such as METLIN15,16, HMDB1,17, or NIST18. 57 

Despite considerable progress in the development of software programs, identification of 58 

metabolites from untargeted studies remains a daunting task. One major limitation is that spectral 59 

libraries must be generated with synthetic standards. For instance, the NIST14 MS/MS database 60 

contains ~14,000 empirical MS/MS spectra, making it a precious but costly resource. To identify 61 

unknown metabolites, we need to consider potential compounds that may not be present in the 62 

spectral libraries. Theoretically there are more than 1060 compounds weighing 500 Da or less19; 63 

though the number of biologically relevant metabolites remains unknown. The largest public 64 

structure repository (PubChem) holds over 45 million entries20, though many of these compounds 65 
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are synthetic or otherwise not applicable for biological studies20. Nevertheless, it would be difficult 66 

to expand the empirical MS/MS database approach to cover all metabolites across biological 67 

experiments. The other limitation is that none of the currently available programs estimate the 68 

false discovery rate for metabolite identification, a widely recognized limitation in the field21. With 69 

the accumulation of metabolite entries in spectral libraries, the probability of randomly matching 70 

experimental MS/MS spectra to the libraries is increasing. In addition, small molecules often yield 71 

much fewer product ions than large compounds (e.g. peptides in proteomics), exacerbating the 72 

problem of by-chance spectrum matches.  73 

To address the limitations of spectral library searches and false discovery analysis, we 74 

propose a formula-based strategy for identifying metabolites, metabolome identification by 75 

systematic stable isotope labeling experiments (MISSILE), as well as a new program (JUMPm) 76 

for automated data analysis and false discovery evaluation. JUMPm is capable of processing 77 

unlabeled, partially labeled, and fully stable isotope labeled LC-MS/MS data. The MISSILE 78 

strategy substantially improves the confidence of formula assignment. We examined the 79 

MISSILE/JUMPm pipeline in yeast, extended it to mammalian cells, and validated it with a library 80 

of 500 synthetic compounds.  81 

 82 

RESULTS 83 

Theoretical evaluation of mass accuracy and isotope labeling on formula identification 84 

We aim to unambiguously determine the chemical formula of a precursor ion and then search its 85 

MS/MS spectra against the metabolome database to identify candidate structures. To simulate 86 

this process, we searched the known masses of all unique formulas in the human metabolome 87 

database1 (HMBD, n = 8,255 up to 1,250 Da, Figure 1a) against a theoretical database of 88 

formulas (n = ~265,000,000, Online Methods). At a given mass tolerance, searches in the higher 89 

mass range showed a larger degree of ambiguous matches, consistent with the observation that 90 

molecular mass is exponentially correlated with the number of possible formulas22 (Figure 1b, 91 
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Supplementary Table 1). We then simulated the effect of the MISSILE strategy which provides 92 

additional information on the stoichiometry of labeled atoms (C, H, N, O, P, or S, Figure 1c, 93 

Supplementary Fig. 1). Although each element alone provides limited discriminatory power, the 94 

combination of two (e.g. C and N) or more elements dramatically improves identification, resulting 95 

in a unique formula for almost all searches across the mass range. We therefore focused our 96 

efforts on achieving carbon and nitrogen labeling. This theoretical analysis demonstrates the 97 

potential advantage of the MISSILE strategy for formula identification.  98 

 99 

JUMPm: automated metabolite formula determination and spectral matching 100 

We developed JUMPm, a software program that automates the global analysis of unlabeled or 101 

stable-isotope labeled data using our formula-based strategy (Figure 2a). Our analysis uses 102 

metabolite chemical formulas to narrow down the possible structure candidates for a given peak 103 

and control the rate of false discovery. JUMPm accepts raw mass spectrometry data as input and 104 

then performs deisotoping, decharging, noise characterization, mass calibration, and feature 105 

detection prior to formula and structure searches (Online Methods, and Supplementary Figs. 106 

2-4). For unlabeled or partially labeled samples, the program uses isotope pattern analysis to 107 

estimate the carbon atom number during the formula search (Supplementary Figs. 5,6). For 108 

labeled samples (i.e. MISSILE), JUMPm detects the labeled ion pairs with a Pairing score 109 

algorithm (Pscore, Online Methods), which considers three parameters including the unique 110 

isotopic mass defect of the 13C and 15N labels, the relative ion intensity, and the shape of the co-111 

eluting peaks (Figure 2b, Supplementary Figs. 7,8, Online Methods). 112 

Once the metabolite formulas are identified, JUMPm finds any associated MS/MS spectra 113 

and searches them against a user-specified structure database (e.g. YMDB, HMDB, or 114 

PubChem), narrowing the search to only the candidates with that formula (Supplementary Figs. 115 

9,10). This step significantly reduces the chance of a spurious annotation compared to traditional 116 

metabolite identification strategies such as accurate mass search, or spectral library search. 117 
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JUMPm predicts the MS/MS fragments of database structures (with Metfrag23 or CFM-ID 118 

algorithms24) and ranks the candidates by a Matching score (Mscore) which compares the 119 

theoretical (in silico) and observed peaks (Figure 2c, Supplementary Fig. 11, Online Methods). 120 

A single chemical formula may have a large number of structural isomers (mean = 37 in 121 

PubChem) that may not be readily differentiated by MS/MS ions. For example, the formula 122 

C9H11NO2 yields 2,521 PubChem structural candidates that can be clustered into five analytical 123 

families based on shared fragments (Figure 2d, Online Methods). When searched against a 124 

curated database (e.g. HMDB), only 8 candidates are detected (large red dots in Figure 2d), with 125 

phenylalanine being the top hit. This analysis indicates that excessive search space increases 126 

the chance of spurious matches and reduces the possibility of identifying genuine metabolites, 127 

suggesting that the ideal database should be biologically relevant and contain expected 128 

compounds but be limited in size. 129 

 130 

False discovery evaluation with a metabolite target-decoy strategy  131 

We implemented a target-decoy strategy to assess the degree of confidence in JUMPm 132 

metabolite identification. The target-decoy search strategy is a well-established method to 133 

analyze the false discovery rate (FDR) in other fields (e.g., proteomics25,26), so we developed a 134 

similar strategy to measure the rate of formula identification due to random chance. The target-135 

decoy strategy typically uses a composite database containing half targets and half decoys such 136 

that the number of decoy hits (nd) are assumed to reflect the frequency of false matches. 137 

Therefore the FDR of target matches (nt) can be estimated by the equation (FDR = nd / nt). The 138 

search results (target and decoy matches) are then filtered together by other parameters (e.g. 139 

mass accuracy and matching scores) to reduce the FDR to a user-defined level (Supplementary 140 

Fig. 11c). 141 

The main challenge in applying this concept to metabolomics is to create decoys that 142 

adequately mimic targets yet are not valid hits, similar to reversed or randomized protein 143 
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sequences in proteomics25,26. In chemical compounds, carbon, nitrogen, and oxygen follow the 144 

octet rule of chemistry, such that each atom has eight electrons in its valence shell (Figure 3a, 145 

3b). There are rare exceptions to the rule27,28 (e.g., radicals or expanded octets), but we found 146 

that all of the HMDB entries follow the octet rule after accounting for these rare exceptions 147 

(Supplementary Table 2). To create decoy metabolites, we strategically violated the octet rule 148 

by adding one hydrogen atom to each formula in the database without changing the charge state 149 

of the entry (Figure 3c). These decoys mimic the mass distribution of targets, but can only be 150 

assigned due to by-chance matches. To test this strategy, we generated a negative control (null) 151 

dataset by shifting the 12C ion masses (+ 4.5 Da) of a raw file, creating essentially random masses. 152 

When searched against the composite target-decoy database, the target and decoy matches had 153 

an almost equal number (99%), indicating that all of the target hits from the null dataset are due 154 

to random matches (Figure 3d, dashed line, Supplementary Fig. 12a).  155 

In contrast, when we searched the authentic dataset (non-random input) (Figure 3d, solid 156 

line), there was a clear preference for the target database with an FDR of 10%, indicating that 157 

the pairing score algorithm accurately detected real isotope labels corresponding to real 158 

metabolite structures. For the authentic dataset, formulas with higher Pscores tended to have a 159 

lower FDR, suggesting a negative correlation between the Pscore and FDR (Supplementary Fig. 160 

12b). When searching the LC-MS/MS data with a large mass tolerance (50 ppm), most of the 161 

targets were centered within a ± 2 ppm window, but the frequency of targets and decoys was 162 

equal outside of the window, indicating that those formulas were found due to by-chance matches 163 

because of the low mass accuracy (Figure 3e). We also inspected the formula distribution with 164 

respect to the mass defect of the labels (i.e., 13C and 15N, Supplementary Fig. 12c). Only target 165 

formulas were identified within ± 0.001 Da of the theoretical isotope mass difference (i.e. 1.00335 166 

for carbon, 0.99703 for nitrogen). These results demonstrate that the target-decoy strategy is a 167 

powerful tool for assessing the confidence of identified formulas. 168 

 169 
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 8 

Large-scale metabolome analysis in yeast by MISSILE/JUMPm 170 

To explore the MISSILE/JUMPm pipeline for global metabolite identification, we carried out a 171 

comprehensive analysis of the yeast metabolome. First we characterized the labeling efficiency 172 

of the MISSILE strategy in yeast. The yeast strain grew at the same rate in the heavy isotope-173 

labeled media (e.g. 12C15N or 13C14N) as in the standard unlabeled (12C14N) media (doubling time 174 

= 2.2 hr, Supplementary Fig. 13a,b). We then assessed the labeling efficiency by analyzing each 175 

yeast culture alone or mixed (12C14N + 13C14N; 12C14N + 12C15N, Figure 4a-c). There were no 176 

unlabeled peaks detected in the labeled samples, indicating complete labeling in yeast. Because 177 

the isotopic pattern of metabolites is largely determined by 13C, we observed that the 13C14N 178 

sample displayed a different (reversed) isotopic pattern from the unlabeled sample. Further 179 

analysis determined that the global labeling purity of the 12C15N and 13C14N isotope labels was at 180 

least 99% pure across the detected formulas (Supplementary Fig. 14, Online Methods). 181 

 Metabolites exhibit a diverse array of chemical properties, so we analyzed a mixture of all 182 

three yeast labels (12C14N + 13C14N + 12C15N) by four different LC-MS/MS conditions, including 183 

reverse-phase and HILIC chromatography in both positive and negative ionization modes, in 184 

triplicate (Online Methods). The four conditions were largely complementary with some overlap 185 

in identified metabolites (Figure 4d, Supplementary Fig. 15), totaling 2,085 metabolite formulas 186 

(10% FDR, Supplementary Table 3). This global, untargeted analysis covered 76% of the 187 

metabolites in the glycolytic pathway and TCA cycle (Figure 4e).  To annotate the structures of 188 

the identified formulas, we matched the MS/MS spectra for each formula with various structure 189 

candidates across two databases; the yeast metabolome database (YMDB) and HMDB (Online 190 

Methods). We identified 892 metabolite structures in this study (Supplementary Table 4), which 191 

was limited by the lack of database candidates for many of the 2,085 formulas. We further 192 

examined the JUMPm algorithm at the fragment level by manually verifying the fragment formulas 193 

for a well-known compound, phenylalanine (Supplementary Fig. 15a-d). This structure 194 
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annotation was validated by searching against the NIST14 MS/MS standard library, returning a 195 

probability score of 98.7% (R.Match: 997/1000) for phenylalanine. 196 

We also investigated the impact of adducts on formula determination by JUMPm. Adducts 197 

are inorganic charge carriers (e.g., Na+, Cl-) or small acids/bases (e.g., formic acid, ammonia) in 198 

the sample matrix or LC mobile phase, which weakly bond with the analyte in the gas-phase 199 

during ionization. Adducts alter the m/z of the analyte, but do not contribute to the mass shift of 200 

MISSILE labeled metabolites (Figure 4f), and typically do not affect the MS/MS fragmentation 201 

pattern (Supplementary Fig. 16a,b). We implemented a function in JUMPm to consider the mass 202 

shift of user-defined adducts and identified 8 formic acid adducts from one raw file 203 

(Supplementary Table 5). 204 

 205 

Validation of MISSILE/JUMPm-identified metabolites with a synthetic standard library 206 

To determine how reliably JUMPm identifies metabolites in untargeted metabolomics, we 207 

analyzed the heavy stable isotope labeled yeast extracts mixed with a commercially available 208 

metabolite library (500 synthetic standards with 394 unique formulas). First, we examined the 209 

quality of the library by dividing it into 20 cocktails for LC-MS/MS runs. A total of 337 (67%) of the 210 

standards were detected (S/N >100) in the LC-MS/MS runs with retention times recorded 211 

(Supplementary Table 6, Online Methods). Then we spiked the library into the 13C14N and 212 

12C15N yeast metabolite extracts to recapitulate a MISSILE analysis (Figure 5a). JUMPm detected 213 

the MISSILE pairs arising from unlabeled standards co-eluting with corresponding labeled yeast 214 

metabolites. For instance, fructose 1,6-bisphosphate was identified based on two peaks (the 215 

12C14N  peak from the library and the 13C14N peak from the labeled yeast, Figure 5b) by JUMPm, 216 

matching the correct formula (C6H14O12P2). The annotation was further confirmed by the retention 217 

time of the standard in a separate run (Figure 5c). In another case, JUMPm identified and 218 

differentiated two distinct metabolites with the same formula but at different retention times; 219 

adenosine monophosphate (AMP, C10H14N5O7P) and dGMP (Figure 5b-d). Overall, we detected 220 
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91 standards with corresponding labeled yeast metabolites (4% FDR) in the spike-in experiment 221 

(Figure 5e, Supplementary Table 7). For 87 (96%) of these hits, JUMPm reported the same 222 

formula as the standard compound, in agreement with the estimated FDR. Further, the exact 223 

structural isomer for each formula was correctly annotated by JUMPm for 54% of the detected 224 

metabolites with data-dependent MS/MS scans. For those hits with different structures from the 225 

known standard, we found that the JUMPm annotation was typically a nearly indistinguishable 226 

isomer (e.g., xanthurenic acid vs. zeanic acid), which are generally not differentiated in a global 227 

LC-MS/MS analysis. 228 

We also used the standards to evaluate the reliability of the widely used spectral library 229 

search strategy (e.g. NIST14 MS/MS) for metabolite identification.  The NIST14 database 230 

contains spectra from 8,351 small molecules across 193,119 scans18.  When searching the 231 

MS/MS spectra from the detected standards analyzed alone (n=337), NIST14 found the true 232 

formula for 50% of the standards (Supplementary Fig. 17a-c). Then we tried searching our 233 

structures (n=892) from the global yeast dataset (Table 4) with NIST14.  Since the NIST14 234 

MS/MS library is built from experimental spectral from unlabeled (12C14N) standards, MS/MS 235 

scans from labeled yeast parent ions (12C15N and 13C14N) served as negative controls 236 

(Supplementary Fig. 17d). About 22% of the NIST14 searches from our unlabeled yeast spectra 237 

gave the same formula as determined by JUMPm (Supplementary Fig. 17e).  When we tried 238 

searching spectra from labeled parents against NIST14 (Table 4), none of the reported formulas 239 

matched the JUMPm formula. When JUMPm and NIST14 agreed on the formula for a given 240 

spectrum, these spectra had a statistically significant (p=0.0007) but small increase in their 241 

average score, similar to the difference observed between the true and false spectra of the 242 

standard compounds (Supplementary Fig. 17c).  Therefore, spectral libraries (e.g., NIST14 243 

MS/MS) can identify true hits, but are prone to high rates of false discovery (Supplementary Fig. 244 

17f).  245 

 246 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2016. ; https://doi.org/10.1101/089904doi: bioRxiv preprint 

https://doi.org/10.1101/089904
http://creativecommons.org/licenses/by-nd/4.0/


 11 

MISSILE in other experimental systems 247 

We further attempted the MISSILE strategy in human embryonic kidney 293 cells (HEK293), 248 

opening the way for labeled analyses in more complex samples. We identified HEK293 cell 249 

metabolites by directly labeling HEK293 cells with 13C-6-glucose in place of standard glucose or 250 

by spiking-in heavy labeled yeast extracts (Supplementary Fig. 5b,c). JUMPm is able to 251 

accommodate a variety of isotope labeling conditions, according to the user’s experimental 252 

design. We first mixed unlabeled and 13C-6-glucose labeled HEK293 cell extracts for LC-MS/MS 253 

analysis. Because there are multiple carbon sources in the cell culture media, we achieved ~50% 254 

purity among metabolites with glucose-derived 13C atoms. Therefore, we used the partial labeling 255 

search option in JUMPm, which enables JUMPm to detect partially labeled ion clusters and use 256 

isotope pattern simulation to determine the number of carbon atoms in the formula. Using this 257 

function, JUMPm identified 71 metabolite formulas from directly labeled HEK293 samples 258 

(Supplementary Table 8). We were also able to identify 219 unique formulas and 197 structures 259 

from unlabeled HEK293 cells by spiking-in heavy metabolites from yeast cells with an FDR of 3% 260 

(Supplementary Table 9).  261 

 262 

DISCUSSION 263 

MISSILE/JUMPm is a comprehensive strategy for global identification of metabolite formulas and 264 

structures. Many isotope labeling conditions are possible, likely in any organism that can be grown 265 

with synthetically defined (SD) media, or where the carbon and/or nitrogen sources can be 266 

efficiently replaced with isotope labeled sources. Alternatively, a wide range of samples can be 267 

analyzed with the spike-in strategy, as long as the metabolites are found in both yeast and the 268 

system being studied. The use of isotope labeled samples increases the confidence of metabolite 269 

identifications in untargeted experiments and helps exclude false matches in MS/MS database 270 

searches by only considering candidates with the specified chemical formula. A chemical is also 271 

a useful annotation for unknown structures that can be referenced in subsequent studies. Tandem 272 
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MS data (MS/MS) can be used to probe the substructure of novel metabolites, providing 273 

hypotheses for the chemical structure. Therefore the user’s choice of structure database will 274 

depend on the analyzed samples and experimental goals. We recommend searching HMDB for 275 

biological studies and routine identifications while PubChem may be useful for novel 276 

structure/similarity searches. Custom structure databases are also easily accommodated (Online 277 

methods).  For example, results from MISSILE samples can be used to generate custom libraries 278 

for future analyses of unlabeled samples in the same experimental system. 279 

Stable isotope labeling can improve the accuracy of metabolite formula identifications29-34 280 

by greatly reducing the pool of candidate structures during annotation. We used isotope labeling 281 

methods to exploit the light-vs-heavy mass difference to experimentally determine the partial 282 

stoichiometry of a metabolite’s chemical formula. When combined with accurate mass we were 283 

able to determine a unique chemical formula. Global formula determination will expedite 284 

identification of known compounds, and aid in the discovery of unknown structures. Further, we 285 

automated the analysis of MISSILE data by developing the JUMPm software which can derive 286 

formulas and compare MS/MS spectra against the theoretical fragments of any database 287 

structure23,35.  288 

Despite the advantages of the MISSILE method, there are several limitations of the 289 

approach. Inherently, a chemical formula is not a unique designation because many possible 290 

isomers may exist for a single formula. Exhaustive de novo structure generators routinely identify 291 

thousands to millions of potential structures for a given formula depending on the number of 292 

atoms36. Between constitutional and stereoisomers, the latter provide the biggest challenge for 293 

identification by tandem mass spectrometry. Constitutional isomers may have very different 294 

structures despite sharing the same chemical formula, and therefore typically give rise to unique 295 

MS/MS fragments. In contrast, stereoisomers typically generate the same MS/MS fragments, 296 

making it impossible to differentiate these candidates with LC-MS/MS alone. These limitations 297 

are also shared by traditional metabolite identification methods.  These challenges may be 298 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2016. ; https://doi.org/10.1101/089904doi: bioRxiv preprint 

https://doi.org/10.1101/089904
http://creativecommons.org/licenses/by-nd/4.0/


 13 

addressed by reporting metabolite “groups”, similar to proteomics, and by improving the accuracy 299 

of fragment prediction algorithms.  The exact structure of crucial hits may also be identified as 300 

needed by other analytical techniques including NMR.   301 

Coverage is a critical issue for large-scale metabolome analyses.  The number of identified 302 

metabolites will be affected by analytical coverage i.e., how many peaks are detected by LCMS, 303 

and by bioinformatic coverage i.e., and by how many authentic peaks are detected and annotated 304 

by JUMPm.  In this study we used commercially available standards and spectral libraries based 305 

on human metabolites.  When applying these tools to the analysis of yeast samples, we observed 306 

a significant drop in the identification rate.  JUMPm is agnostic with respect to formula 307 

identification, so it is not affected by the selection bias found in empirical libraries.  Analytical 308 

coverage is still a major challenge for metabolomics.  While the four LCMS methods employed in 309 

this study were complementary, we still did not detect a significant number of the synthetic 310 

standards.  After manual inspection we found that some of the missing compounds were present 311 

as dimers (multimers), in-source fragments, or other more complex forms.  We also found that 312 

some previously detected standards were no longer observed when we spiked-in the highly 313 

complex yeast metabolite extracts, reducing the number of detected standards with 314 

corresponding labeled yeast structures.  These results also point to a large number of yeast 315 

metabolites that are not currently annotated in any structure database (e.g., YMDB).  In-depth 316 

analysis of multiple sample types will improve database coverage and help identify novel 317 

structures.    318 

In summary, we have developed the MISSILE strategy along with JUMPm for the 319 

automated global analysis of metabolite formulas and structures in untargeted studies. JUMPm 320 

processes unlabeled, partially labeled, and fully labeled data, making it applicable to most 321 

systems of interest. We also introduced a novel target-decoy method for metabolomics, which 322 

estimates the FDR for identification, ensuring high-confidence results. We evaluated our strategy 323 

and software with a variety of datasets including a standard library, demonstrating that 324 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2016. ; https://doi.org/10.1101/089904doi: bioRxiv preprint 

https://doi.org/10.1101/089904
http://creativecommons.org/licenses/by-nd/4.0/


 14 

MISSILE/JUMPm is a simple and robust solution for untargeted metabolomics studies (freely 325 

available). 326 

 327 

JUMPm download link: 328 

https://docs.google.com/uc?id=0B-8nCkZ-m2LhbHYwSm9vQ2RIMHM 329 

Database download link: 330 

https://docs.google.com/uc?id=0B-8nCkZ-m2LhbUczaDBjbDE4a2s 331 
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FIGURES and LEGENDS 349 

 350 

 351 

Figure 1. Simulated chemical formula searches with varying information. (a) Histogram of unique 352 

metabolite formula entries in the HMDB up to a mass of 1,250 Da. (b) Heat map of possible 353 

formula matches in the theoretical database as a function of mass tolerance (ppm) and precursor 354 

ion mass (Da. 8,255 HMDB mass inquiries). Colors indicate the number of possible formulas for 355 

any given search condition. (c) Metabolite formula searches restricted by known atom 356 

stoichiometry of assigned elements, with a mass tolerance of 4 ppm. 357 
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 358 

Figure 2. Overview of JUMPm workflow and an example analysis of phenylalanine in yeast. (a) 359 

Conceptual workflow for a stable-isotope labeling experiment with JUMPm data analysis. Yeast 360 

cultures were grown individually in various isotope labeled media conditions. Metabolites were 361 

extracted and combined in equal ratios to generate a mixed-label sample (phenylalanine MS1 362 

shown). The three labeled peaks for a metabolite make up a “MISSILE” group. Full scan data are 363 

used for chemical formula determination and FDR estimation, while MS/MS data are used for 364 
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structural identification of compounds with matching formulas. (b) The quality of each MISSILE is 365 

scored with three parameters. The Pscore is used to discriminate authentic MISSILEs from 366 

random matches. (c) For each MISSILE, the relevant MS/MS spectra are scored (Mscore) and 367 

annotated with the top match. MS/MS spectra from labeled metabolites include the extra mass of 368 

isotope labels in the product ions. (d) Hierarchical clustering of all structure candidates by 369 

predicted fragments for the example metabolite (HMDB candidates: large red dots; PubChem 370 

candidates: small dots). Representative structures from each colored group are shown. All 371 

candidates share the neutral formula C9H11NO2. 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 
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 383 

Figure 3. False discovery rate (FDR) estimation in JUMPm. (a) Common biological elements 384 

which follow the octet rule. Each element has a characteristic number of electrons available for 385 

bonding. (b) The valid Lewis structure for methane (CH4) shows shared electrons between 386 

hydrogen and carbon according to the octet rule. (c) Generation of decoy chemical formulas by 387 

computational addition of a hydrogen atom to each database formula, yielding an invalid structure 388 

without a change in the charge state. JUMPm treats all decoy formulas as neutral, ensuring that 389 

they are invalid. The impossible decoy structure for methane’s formula is shown.  (d) FDR of 390 

authentic labeled yeast data (4%, n=102) and null data (~100%, n=6 targets, n=5 decoys). The 391 

relative ratio of decoy to target hits is an estimate of the FDR. (e) Histogram of target and decoy 392 

hits with respect to mass error during JUMPm search. Target and decoy hits are bins of 2 ppm 393 

across the mass error range (0.5 ppm within grey rectangle); a zoomed-in range is also shown.  394 

 395 

 396 
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 397 

Figure 4. Large-scale metabolome analysis in yeast by MISSILE/JUMPm. (a-c) Labeling 398 

efficiency of stable isotopes in yeast with an example metabolite (494.3256 m/z). Labeled yeast 399 

samples were analyzed alone or mixed to assess the purity. (d) Overlap among triplicate analyses 400 

of labeled yeast metabolite extracts using C18 and HILIC columns in positive and negative mode, 401 

n=12 raw files searched by JUMPm (Online Methods). (e) Annotated map of the glycolytic and 402 
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TCA metabolic pathways using JUMPm search results from yeast. Some compounds were 403 

identified by formula and the top MS/MS structure hit (dark green) or by formula only (light green). 404 

(f) MS1 spectrum of trehalose from a mixture of 12C and 13C yeast lysate. Compound identity was 405 

confirmed by external standards. [M-H]- denotes the negative mode molecular ion, while [M+FA-406 

H]- denotes the negative mode formic acid adduct of trehalose. The formic acid adduct increases 407 

the apparent m/z, but does not affect the mass shift of the isotope label. Both isotope labeled 408 

pairs show a shift of 12 carbons. 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 
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Figure 5. Validation of JUMPm-identified metabolites with synthetic standards. (a) Workflow for 429 

the spike-in experiment. Synthetic standards (black, n=500) were spiked-in with 12C15N (green), 430 

13C14N (blue) labeled yeast extract, or both. (b) Extracted ion chromatograms of the standards 431 

and corresponding labeled yeast metabolites from the spike-in sample, showing the same 432 

retention time and peak shape. (c) Extracted ion chromatograms of the unlabeled standard in 433 

separate runs of the standard alone to confirm the retention time.  (d) MS1 scan from the spiked-434 

in sample to show the matching of unlabeled and labeled peaks.  (e) Overall statistics on the 435 

detected standards by JUMPm. Left, the number of standards detected across the 20 cocktails 436 

by C18 and HILIC methods (Online methods). Right, the number of standards with 437 

corresponding labeled yeast metabolites for which JUMPm assigned the correct formula and 438 

structure for the spike-in analysis. Targets are correct formulas, while decoys are false formulas.  439 

Exact structures are from the known standards correctly identified by JUMPm, while  regioisomers 440 

are JUMPm reported structures that are highly related to the known structure but differ slightly 441 

(e.g., glucose 1-phosphate vs. glucose 6-phosphate).  442 

 443 
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