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Abstract 
Structural covariance examines covariation of grey matter morphology between brain 
regions and across individuals. Despite significant interest in the influence of age on 
structural covariance patterns, no study to date has provided a complete lifespan 
perspective—bridging childhood with early, middle, and late adulthood—on the 
development of structural covariance networks. Here, we investigate the lifespan 
trajectories of structural covariance in six canonical neurocognitive networks: default, 
dorsal attention, frontoparietal control, somatomotor, ventral attention, and visual. By 
combining data from five open access data sources, we examine the structural covariance 
trajectories of these networks from 6-94 years of age in a sample of 1580 participants. 
Using partial least squares, we show that structural covariance patterns across the lifespan 
exhibit two significant, age-dependent trends. The first trend is a stable pattern whose 
integrity declines over the lifespan. The second trend is an inverted-U that differentiates 
young adulthood from other age groups. Hub regions, including posterior cingulate 
cortex and anterior insula, appear particularly influential in the expression of this second 
age-dependent trend. Overall, our results suggest that structural covariance provides a 
reliable definition of neurocognitive networks across the lifespan and reveal both shared 
and network-specific trajectories.  
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1. Introduction 

The human cerebral cortex is hierarchically organized into complex brain 

networks that can be considered at multiple levels of analysis (Mesulam, 1998). One such 

level is structural covariance, or how interindividual differences in regional brain 

structure covary with other brain structures across the population (Mechelli, Friston, 

Frackowiak, & Price, 2005; Alexander-Bloch, Giedd, & Bullmore, 2013). Structural 

covariance networks reflect shared variation in grey matter morphology (Mechelli et al., 

2005) and are assessed using measures such as cortical thickness and regional volume. 

These networks exhibit reproducible organization at both a population (Alexander-Bloch 

et al., 2013) and individual (Tijms, Seris, Willshaw, & Lawrie, 2012) level and have been 

identified across species (Pagani, Bifone, & Gozzi, 2016), underscoring their role as an 

intrinsic feature of cortical organization. Despite this reliability, the source of grey matter 

shared covariance patterns is unclear and has been hypothesized to reflect both genetic 

and plastic influences including maturational timing (Alexander-Bloch, Raznahan, 

Bullmore, & Giedd, 2013).  

Age is a significant moderator of both anatomical (Collin & van den Heuvel, 

2013; Hagmann et al., 2010) as well as functional (Dosenbach et al., 2010; Chan, Park, 

Savalia, Petersen, & Wig, 2014) connectivity. Some of the most extensive age effects 

occur in grey matter (Giorgio et al., 2010). Grey matter organization undergoes 

significant structural change with age including synaptic proliferation, pruning, and 

eventual atrophy (Low & Cheng, 2006; Fjell et al., 2010). Normative grey matter changes 

do not occur simultaneously, however, and show variation across cortex (Krongold, 

Cooper, & Bray, 2017; Raz et al., 2005), yielding significant differences in age-related 
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trajectories across structural covariance networks. There has therefore been substantial 

interest in the impacts of age on structural covariance networks, and how these age-

related trajectories may differ across neurocognitive networks.  

Investigations of structural covariance trajectories have largely focused on 

specific developmental periods including childhood and adolescence (Zielinski et al., 

2010) or aging (Montembeault et al., 2012). These studies have suggested the emergence 

of increasing long-range structural covariance across early development (Zielinski, 

Gennatas, Zhou, & Seeley, 2010) and increased local covariance with advancing age 

(Montembeault et al., 2012). Importantly, examining structural covariance networks in 

isolated developmental periods may limit our understanding of the normative life cycle of 

each of these networks (Zuo et al., 2017). Initial work examining trajectories over 

multiple developmental periods has found significant inter-network variation 

(Hafkemeijer et al., 2014).  

There has also been increasing interest in examining structural covariance 

networks from a lifespan perspective. However, to date existing lifespan structural 

covariance studies (i.e., those spanning a minimum of 35 years of development; Zuo et 

al., 2017) have only included subjects with a minimum age of 18 years and considered 

differences between young-, middle-, or older-adult groups (Li et al., 2013; Wu et al., 

2012). Results from these studies have largely been in agreement with those of individual 

developmental periods, with distributed structural covariance shifting to more local 

topology in older adulthood, though the timing of this transition is unclear and has 

differed between middle- (Wu et al., 2012) and younger- (Li et al., 2013) adulthood. 

Studies have also shown differences in structural covariance trajectories by network, with 
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primary sensory and motor networks showing few to no age-related changes across 

adulthood, while neurocognitive and semantic networks show a general shift from 

distributed to local covariance (Li et al., 2013).  

Despite this significant progress in understanding structural covariance during 

development and aging, the authors are unaware of any studies that have examined the 

development of large-scale structural covariance networks across the entire lifespan, 

including childhood and adolescence to old age. The changes seen in the developmental 

trajectory of large-scale functional networks (Zuo et al., 2017) suggest that a lifespan 

study of structural covariance networks may provide an important complement, yielding 

insights into cortical organization at the level of grey matter morphology. Indeed, 

previous work by Zielinski and colleagues (2010) supports the reflection of a network’s 

functional specialization in its age-specific structural covariance pattern.  Based on 

previous findings, we hypothesized that the distributed neurocognitive default, dorsal 

attention, frontoparietal control and ventral attention networks would show an inverted 

U-shaped trajectory of increasingly distributed structural covariance in early 

development, before shifting to more local covariance in advanced aging. Following 

results reported by Li and colleagues (2013) of age-independent patterns of structural 

covariance in somatomotor and visual networks across the adult lifespan, we predicted no 

age-dependent patterns of structural covariance in these networks. To examine these 

hypothesized lifespan trajectories, whole-brain structural covariance was assessed in a 

seed-based multivariate analysis (Spreng & Turner, 2013; Persson et al., 2014). This 

seed-based multivariate investigation allowed for the data-driven identification of 

significant age-related trajectories, based on the structural covariance of cortical grey 
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matter with the chosen seed regions. We examine trajectories of structural covariance 

networks across the lifespan to consider what these changes might reveal about their 

developmental organization.  

 

2. Materials and Methods 

In this study, our primary aim was to provide comprehensive mapping of the 

neurocognitive large-scale structural covariance networks across the entire lifespan. We 

collapsed cross-sectional data across five publicly available datasets to provide a 

normative sample ranging from six to ninety-four years of age. This also afforded us 

sufficient power for reliable estimates of structural covariance networks at six 

developmental epochs: Age Group 1 (6-15y), Age Group 2 (16-25y), Age Group 3 (26-

35y), Age Group 4 (36-59y), Age Group 5 (60-75y), and Age Group 6 (76-94y). We 

assessed the structural covariance of six large-scale neurocognitive networks well 

represented in the literature: The default network (DN), dorsal attention network (DAN), 

frontoparietal control network (FPCN), somatomotor network (SM), ventral attention 

network (VAN), and visual systems. 

2.1. Image Acquisition 

Data were collated from five open access data sources: National Institutes of 

Health Pediatric MRI Data Repository (NIH-Peds; Brain Development Cooperative 

Group & Evans, 2007): Release 5, Human Connectome Project (HCP): 500 subjects 

release, Nathan Kline Institute-Rockland Sample (NKI-RS; Nooner et al., 2012): Release 

5, Open Access Series of Imaging Studies (OASIS), and Alzheimer’s Disease 
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Neuroimaging Initiative (ADNI). A complete listing of T1-weighted anatomical image 

acquisition procedures for each data source is provided in Table 1.  

 

Table 1 
Image Acquisition Parameters by Data Source. 

 
Scanner 
Strength 

(T) 

TR 
(ms) 

TE 
(ms) 

TI 
(ms) 

TD 
(ms) 

Flip 
Angle 
(deg.) 

FOV 
(mm) 

Voxel Size 
(mm) 

NIH-
Peds 

1.5 
22-
25 

10-11  
 

 
256×160-

180 
1.0 × 1.0 × 

1.0-1.5 

HCP 3 2400 2.14 1000 0 8 224×224 0.7 × 0.7 × 
0.7 

NKI-RS 3 1900 2.52 900 0 9 250×250 
1.0 × 1.0 × 

1.0 

OASIS 1.5 9.7 4.0 20 200 10 256×256 
1.0 × 1.0 × 

1.25 

ADNI 1.5 2400 
min. 
full 

1000 0 8 240×240 
0.94 × 0.94 

×1.2 
 

 

2.2. Participant Characteristics 

From each sample, only healthy control participants older than six years of age 

with no diagnosed history of DSM Axis I or II disorder were considered. Six years was 

chosen as the lowest estimate for lifespan characterization, since previous work has 

indicated that normalization for children less than six years is likely to introduce 

significant artifacts (Muzik, Chugani, Juhász, Shen, & Chugani, 2000) as grey matter 

volume in younger children is less than 95% of that observed in adults (Caviness, 

Kennedy, Richelme, Rademacher, & Filipek, 1996). For individuals meeting these 

criteria, the T1-weighted anatomical image was selected. In the case of longitudinal data, 

only the first time point was selected for each participant.  
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All T1-weighted anatomical images (n = 1667) were visually inspected for quality 

assurance: images that showed evidence of artifacts were excluded (n = 87), yielding a 

final sample size of n = 1580 (age M = 35y, SD = 23y, Range = 6 - 94y; 659 males; 859 

scanned at 1.5T and 721 at 3T). Participants were then sorted into the following age 

groups: Age Group 1 (6-15y), Age Group 2 (16-25y), Age Group 3 (26-35y), Age Group 

4 (36-59y), Age Group 5 (60-75y), and Age Group 6 (76-94y). See Table 2 for sample 

sizes and participant characteristics by age group. 

 

Table 2  
Participant Characteristics by Age Group. 

Age Group 
Sample Size 

(Males) 
Age in Years  

M (SD) 
Scanned at 

1.5T/3T  
6-15y 330 (159) 10 (2.66) 306/24 

16-25y 302 (139) 21 (2.8) 176/126 
26-35y 472 (192) 30 (2.74) 31/441 
36-59y 139 (38) 49 (6.29) 68/71 
60-75y 203 (82) 70 (4.16) 157/46 
76-94y 134 (49) 81 (4.28) 121/13 

 

2.3. Segmentation and Preprocessing 

Each age group was separately submitted to voxel-based morphometry 

(Ashburner & Friston, 2000) using the VBM8 toolbox (www.neuro.uni-jena.de/vbm/) 

implemented in Matlab (MATLAB 8.0, MathWorks, Natick, MA, 2012). Images were 

first segmented into grey matter, white matter, and cerebrospinal fluid using an extension 

of the New Segmentation algorithm. Grey matter images for this age group were then 

affine registered to the MNI template and carried to the Diffeomorphic Anatomical 

Registration through Exponentiated Lie Algebra toolbox (DARTEL; Ashburner, 2007) 

where they were iteratively aligned to create an age-group-specific template in MNI 
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space. The six resulting age-group-specific templates were themselves then iteratively 

aligned again using DARTEL to create a study-specific template in MNI space. 

Importantly, this study-specific template equally weighted each of the age ranges 

represented by the six age groups.  

Finally, previously segmented images were aligned to the study-specific template 

of interest using DARTEL high-dimensional normalization within VBM8. Non-linear 

only modulation was applied to grey matter images to derive regional differences in grey 

matter volume, correcting for total intracranial volume. Modulated grey matter images 

were iteratively smoothed to 8mm FWHM using 3dBlurToFWHM in AFNI (Cox, 1996) 

and carried forward for further analysis.   

2.4. Network Identification 

In this study, we sought to examine the structural covariance of the large-scale 

neurocognitive networks, including the DN, DAN, FPCN, SM, VAN, and visual 

networks. To examine each of these six networks, grey matter volumes for selected high-

confidence seeds reported in Yeo et al. (2011) were extracted. Although Yeo and 

colleagues (2011) report high-confidence seeds for seven networks, we chose to exclude 

the reported “limbic network” as recent work has raised concerns regarding its test-retest 

reliability (Holmes et al., 2015).  

For each of the six remaining networks we selected the top two high-confidence 

seeds reported by Yeo and colleagues (2011) as well as the contralateral seed regions, 

where contralateral seeds were chosen by changing the sign of the x-coordinate on each 

of the original high-confidence seeds. An exception to this procedure was made for the  
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Table 3 
Selected Seeds for Each Network. 

Network 
Affiliation 

x y z Laterality Anatomical Label 

Default 

-7 49 18 L Medial Prefrontal Cortex 

-7 -52 26 L Posterior Cingulate Cortex 

-41 -60 29 L Inferior Parietal Lobule 

 41 -60 29 R Inferior Parietal Lobule 

Dorsal 

Attention 

-22 -8 54 L Frontal Eye Fields 

 22 -8 54 R Frontal Eye Fields 

-51 -64 -2 L 
Middle Temporal Motion 

Complex 

 51 -64 -2 R 
Middle Temporal Motion 

Complex 

Frontoparietal 

Control 

-40 50 7 L Frontal Pole 

 40 50 7 R Frontal Pole 

-43 -50 46 L Anterior Inferior Parietal Lobule 

 43 -50 46 R Anterior Inferior Parietal Lobule 

Ventral 

Attention 

-5 15 32 L Anterior Cingulate Cortex 

 5 15 32 R Anterior Cingulate Cortex 

-31 11 8 L Anterior Insula 

 31 11 8 R Anterior Insula 

Somatomotor 

-41 -20 62 L Precentral Gyrus (Hand) 

 41 -20 62 R Precentral Gyrus (Hand) 

-55 -4 26 L Precentral Gyrus (Tongue) 

 55 -4 26 R Precentral Gyrus (Tongue) 

Visual 

-3 -74 23 L Extrastriate Visual Cortex 

 3 -74 23 R Extrastriate Visual Cortex 

-16 -74 7 L Visual Area 1 

 16 -74 7 R Visual Area 1 

Coordinates (x, y, z) are in MNI stereotaxic space.  
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DN, which is known to separate into anterior and posterior components (Uddin, Kelly, 

Biswal, Castellanos, & Milham, 2009). Therefore, for the DN we selected the highest 

confidence seed and its contralateral seed. We then selected the second highest 

confidence seed in posterior cingulate cortex as well as the fourth highest confidence 

seed in medial prefrontal cortex, in order to ensure that both the anterior and posterior 

DN components were represented in structural covariance estimates. A listing of all 24 

seeds for the six networks examined is presented in Table 3 along with their respective 

anatomical label, and a visual representation of their location on cortex is presented in 

Figure 1.  

For each seed, grey matter volumes were extracted from a 10.5mm edge cubical 

ROI. Extracted grey matter volumes were then averaged across the four seeds for each 

participant. We chose to average grey matter volumes from multiple seeds to provide 

reliable, long-range estimates of network-specific structural covariance. This is in 

contrast to the more local estimates of structural covariance provided by grey matter 

volume from a singe seed region. All six neurocognitive networks were examined by 

averaging the extracted grey matter volumes for each of the network-specific seeds, 

resulting in a 1580 × 1 vector for each network. For each of the analyses, this vector Y 

represented the average grey matter volume for each participant of key nodes within the 

network. The resulting Y vectors were submitted to Partial Least Squares (PLS; 

McIntosh, Bookstein, Haxby, & Grady, 1996). Additionally submitted to PLS were 

matrices of participant structural images, X, where X is an N subjects x N voxels matrix 

representing voxel-wise estimates of grey matter volume for each participant.  

2.5. Partial Least Squares (PLS) Analyses 
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PLS is a data-driven multivariate statistical technique capable of identifying 

patterns of structural covariance (Spreng & Turner, 2013; Persson et al., 2014). We 

utilized seed PLS to identify patterns of covariance between grey matter integrity in seed 

regions and whole brain structural MRI images (for a review, see Krishnan, Williams, 

McIntosh, & Abdi, 2011). Here, we adopt the nomenclature used in Mišić and colleagues  

(2016). 

2.5.1. Derivation of Covariance Matrix 

For experimental analyses, our seed value was the average grey matter volume of 

four selected high-confidence seeds reported in Yeo et al. (2011). The vector Y 

representing this average grey matter volume was cross-correlated with a matrix X of 

participant’s structural images. Importantly, this participant image matrix contained six 

sub-matrices X1..6 corresponding to each age group. We retained this age group 

organization in our PLS analyses in order to directly compare age groups in their 

structural covariance between average network and whole brain grey matter volume. The 

vector Y can therefore be considered as containing six sub-vectors, corresponding to the 

participant age groups. Both the grey matter volume vector and image matrix were 

centered and normalized within age groups such that their cross-correlation resulted in a 

covariance vector Z according to: 

Y1..6
TX1..6  = Z1..6 (1) 

Note that this covariance vector is equivalent to a correlation vector due to the 

described within-group normalization. The resulting covariance vector Z measures the 

degree to which the network average and whole brain grey matter volumes covary at a 

voxel-wise level across participants.  
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2.5.2. Singular Value Decomposition 

Using singular value decomposition (SVD; Eckart & Young, 1936), the 

covariance vector Z from Eq. (1) was then decomposed into: 

Z1..6  = UΔVT (2) 

where V is the orthonormal matrix of right singular vectors, U is the orthonormal 

matrix of left singular vectors, and Δ is the diagonal matrix of singular values. The right 

and left singular vectors represent the grey matter seed integrity profiles and spatial 

patterns that best characterize the covariance vector Z. The triplet of the right and left 

singular vectors and the singular values forms a set of mutually orthogonal Latent 

Variables (LVs) where the number of LVs derived is equal to the rank of the covariance 

vector Z. In our analyses, this identified six LVs for each network corresponding to the 

six sub-matrices of Z. Each LV was tested for statistical significance with 5000 

permutations and cross-validated for reliability with 1000 bootstraps. Bootstrap ratios, 

derived from dividing the weight of the singular-vector by the bootstrapped standard 

error, are equivalent to z-scores and were used to threshold significant LV spatial patterns 

at a 95% confidence interval for projection and interpretation.  

Patterns were considered for further analysis based on two criteria. First, LVs 

must be statistically significant by permutation testing at the level of p < 0.001. Second, 

LVs must account for a minimum of 5% of the covariance in the data.  

2.5.3. Derivation of Subject Scores 

We also quantified individual contributions to each LV by deriving subject scores. 

Of particular interest in this work are the subject scores known in PLS nomenclature as 

“brain scores,” which assess the contribution of each individual to the group structural 
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covariance pattern. Multiplying the original matrix X1..6 of participant structural images 

by the matrix of right singular vectors V derive these brain scores as follows: 

L = X1..6 V (3) 

where L is a matrix of brain scores. Recall from Eq. (2) that the right singular 

vector V represents the seed-integrity profiles that best characterizes the covariance 

matrix Z, such that multiplying this singular vector by the participant structural images 

derives the seed integrity profiles for each participant that reflect their contribution to the 

group structural covariance pattern. The matrix of brain scores L was extracted for each 

LV where, for each participant, this brain score value represents a weighted value of grey 

matter integrity within the regions identified in the group image.  

By correlating brain score values for all subjects within each of the six age groups 

with their input grey matter integrity values, we were able to assess grey matter integrity 

in these regions for each age group separately. Computed confidence intervals on these 

correlations provide a means to assess the reliability of the structural covariance patterns 

in each age group; confidence intervals which cross zero are considered unreliable and 

are not interpreted in the results. To account for potential confounds, we ran a multiple 

regression of these brain scores controlling for scanner strength and gender. Although we 

present results corrected for age and gender, controlling for these variables did not 

qualitatively affect the results (see Supplementary Figure 1 for an exemplar network). 

Corrected brain scores were plotted against age to visualize the covariance of the 

associated spatial pattern across the population. Due to the heterogeneity of resulting age-

dependent trajectories, summary statistics for models fit to these corrected brain scores 

are available in Supplementary Tables 1 and 2. For those models who show a “peak” in 
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their age-dependent trajectory, the age at which this functional maximum occurs is noted 

in Supplementary Table 2.   

 

3. Results 

 We investigated the structural covariance of previously identified large-scale 

neurocognitive networks including the DN, DAN, FPCN, SM, VAN, and visual 

networks. Using PLS, we identified patterns of structural covariance for each of the six 

networks examined.  

3.1 Neurocognitive Network Structural Covariance Patterns 

 PLS analyses of each of the large-scale networks examined yielded multiple 

significant latent variables (LVs), corresponding to reliable patterns of structural 

covariance within each network. We review significant results for each of the networks in 

turn. 

3.1.1. Default Network 

 Two significant LVs were identified for the DN and are presented in Figure 2. In 

the first LV (p < 0.0002; 61.57% covariance explained), seeded regions, along with 

homologous contralateral regions, covary together as well as with parahippocampal 

cortex and lateral temporal cortex (Fig 2A). Covariance extended to non-canonical DN 

regions including posterior insula. All age groups showed a robust positive association 

with this pattern (Figure 2B); this suggests that this latent variable corresponds to the 

structural covariance of the DN as it is preserved across the lifespan. Extracted brain 

scores (Fig 2C) revealed that the integrity of this structural covariance pattern declines 

with advancing age rapidly before reaching a plateau at approximately 70 years of age.  
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 The second significant LV (p < 0.0002; 13.71% covariance explained) showed 

structural covariance patterns of developmental change in the DN. Age Group 2 (16-25y) 

showed a unique pattern of increased structural covariance with medial prefrontal cortex 

and anterior insula compared to all other age groups examined (Figure 2D, E). Age 

groups with reliable correlations of brain scores and behavior—those for which the 

confidence interval did not cross zero and were therefore considered interpretable—

included the Age Group 1 (6-15y), Age Group 3 (26-35y), Age Group 5 (60-75y), and 

Age Group 6 (76-94y) cohorts. Compared to Age Group 2 (16-25y), each of these cohorts 

showed relatively increased structural covariance between seeded DN regions and 

sensorimotor structures including motor and visual cortices as well as thalamus. Across 

the lifespan, this pattern shows a nearly linear decrease with advancing age (Figure 2F), 

suggesting that older adults are less strongly aligning to the structural covariance pattern 

depicted in Figure 2D.  

3.1.2. Dorsal Attention Network 

 Two significant LVs were identified for the DAN and are presented in Figure 3. 

In line with results presented for the DN, the first significant DAN LV (p < 0.0002; 

70.93% covariance explained) showed seeded regions positively covarying together as 

well as with canonical DAN regions such as intraparietal sulcus (Figure 3A). Covariance 

also extended to other, non-canonical DAN regions, including posterior insula and 

subgenual cingulate. All age groups showed a robust association with this pattern (Figure 

6B). Brain scores reveal that the integrity of this pattern shows rapid decline with 

advancing age before plateauing at approximately 70 years (Figure 3C).  
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The second significant LV (p < 0.0002; 9.52% covariance explained) revealed 

developmental changes in the structural covariance pattern of the DAN.  Age Group 2 

(16-25y) showed uniquely increased structural covariance with medial prefrontal cortex 

and anterior insula. Older age groups show relatively increased structural covariance 

between the seeded DAN regions and areas including motor and visual cortices as well as 

subcortical structures. Inspection of brain scores (Figure 3F) reveals an inverted U-

shaped trajectory, with integrity of the structural covariance pattern reaching its peak in 

middle adulthood, while very young and very old individuals show significantly less 

integrity for the derived group structural covariance patterns.  

3.1.3. Frontoparietal Control Network 

 Two significant LVs were identified for the FPCN and are depicted in Figure 4. 

Similar to results seen for the DN and DAN, the first significant LV (p < 0.0002; 78.05% 

covariance explained) showed a structural covariance pattern that was positively 

associated with all examined age groups, but showed a non-linear decline in integrity 

across the lifespan. Seeded FPCN regions positively covary together, as well as with 

structures consistently associated with cognitive control, such as lateral prefrontal cortex, 

and non-canonical FPCN regions, such as posterior insula.  

 The second LV (p < 0.0002; 7.96% covariance explained) revealed developmental 

trajectories of structural covariance patterns in the FPCN. There was a significant 

dissociation between Age Groups 1 and 2 (6-25y) as compared to middle and late Age 

Groups 4 and 5 (36-75y). Younger age groups show increased structural covariance with 

structures both within the canonical FPCN such as precuneus as well as with non-

canonical regions such as lateral temporal cortex. Older age groups, however, show 
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relatively increased structural covariance for sensorimotor structures such as motor cortex 

and thalamus. Brain scores suggest an inverted U-shaped trajectory similar to that seen 

for the DAN, with the integrity of the structural covariance pattern at its highest levels in 

middle adulthood.  

3.1.4. Somatomotor Network 

 Two significant LVs were identified for the SM and are depicted in Figure 5. In 

agreement with the previously reported networks, the first significant LV (p < 0.0002; 

72.91% covariance explained) showed a structural covariance pattern that is positively 

associated with all examined age groups and shows a non-linear decline with advancing 

age. Seeded regions covaried together as well as with the motor strip. Covariance 

extended to areas outside the canonical motor network such as lateral prefrontal cortex 

and subcortical regions.  

 The second LV (p < 0.0002; 9.17% covariance explained) showed a significant 

dissociation between Age Groups 1 and 2 (6-25y) as compared to Age Groups 4, 5, and 6 

(36-94y). Younger age groups show increased structural covariance with structures 

outside of the canonical motor network such as lateral temporal cortex and mid-insula, 

while older age groups show relatively increased structural covariance local to the seed 

regions and to thalamus. Similar to the individual subject score trajectories seen for the 

DAN and FPCN, there is an inverted U-shaped trajectory in the integrity of this structural 

covariance pattern, with integrity reaching a peak in middle adulthood before beginning 

to decline.  

3.1.5. Ventral Attention Network 
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 Two significant LVs were identified for the VAN and are presented in Figure 6. 

The first LV (p < 0.0002; 70.93% covariance explained) again shows a structural 

covariance pattern positively associated with all examined age groups. Seeded VAN 

regions positively covary together and with the mid- and posterior insula as well as with 

the medial prefrontal cortex. Extracted brain scores revealed a non-linear decline in the 

integrity of this structural covariance pattern across the lifespan.  

 The second significant LV (p < 0.0002; 13.83% covariance explained) revealed a 

pattern of developmental change similar to that seen in DN, with individuals in Age 

Group 2 (16-25y) and Age Group 4 (36-59y) showing a unique structural covariance 

pattern compared to all other age groups. Specifically, these two groups showed 

increased structural covariance with medial prefrontal as well as parahippocampal cortex. 

Other age groups showed increased structural covariance with sensorimotor structures 

such as motor and visual cortices. Similarly to the DN, there is a near linear decrease in 

structural integrity across the lifespan, with older adults showing decreased structural 

covariance between seeded VAN regions and sensorimotor structures.  

3.1.6. Visual Network  

 One significant LV (p < 0.0002; 58.28% covariance explained) was identified for 

the visual network and is presented in Figure 7. As in previous networks, the significant 

LV revealed a structural covariance pattern that was positively associated with all 

examined age groups and non-linearly declined with age.  Seeded visual regions showed 

positive structural covariance with visual cortex as well as with non-canonical visual 

regions such as the posterior insula and mid-cingulate. 
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4. Discussion 

In this study, we examined the lifespan trajectories of structural covariance with publicly 

available cross-sectional data. For the six neurocognitive networks examined, our results 

revealed two broad developmental patterns: a stable pattern of structural covariance that 

reflects network-specific features and persists across the lifespan, and an age-dependent 

pattern of structural covariance that reveals shared age-related trajectories of structural 

covariance across networks.  

4.1 Persistent Patterns of Structural Covariance  

Across all networks, the first significant latent variable identified a structural 

covariance pattern whose spatial extent was unique to the network of interest and 

persisted across age groups. Despite the stability of these structural covariance patterns 

over the lifespan, inspection of individual subject or “brain” scores (panel C, Figures 2-7) 

revealed that integrity of these patterns declines rapidly with advancing age before 

plateauing at approximately 70 years.  

These findings extend on previous work showing a sharp decline in within-

network structural covariance from young adulthood to middle age that persists into older 

adulthood (Li et al., 2013). Although our results show that network-specific structural 

covariance patterns were stable across the lifespan, we find that children and adolescents 

show even higher levels of integrity to these structural covariance patterns compared to 

young adults. This decline in integrity to structural covariance patterns over the lifespan 

may be related both to the increase in myelination across early development and its 

effects on grey-white matter tissue contrast (Lenroot & Giedd, 2006), as well as to the 

decline of cortical grey matter volume with age (Allen, Bruss, & Damasio, 2005). 
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4.2 Age-Dependent Patterns of Structural Covariance 

In addition to stable patterns of structural covariance, DN, DAN, FPCN, SM, and 

VAN networks showed an additional, age-dependent pattern that differentiated young 

adulthood from either end of the lifespan.  

 Examination of brain scores in the DAN, FPCN, and SM (panel F, Figures 3-5) 

reveals that these align with an inverted U-shaped trajectory. These latent variables also 

showed overlapping features of structural covariance at a group level (panel D of Figures 

3-5). In young adulthood, seeded regions showed structural covariance with areas 

including medial prefrontal cortex, posterior cingulate, insular cortex, and temporal 

cortex— association cortices corresponding to functional hubs (van den Heuvel & 

Sporns, 2013). In both childhood and older adulthood, however, seeded regions showed 

structural covariance with sensorimotor structures including motor and visual cortices 

and thalamus. These findings support previous work showing that structural covariance 

networks grow increasingly distributed over early development before shifting to a more 

localized topology in advanced aging (Wu et al., 2012). Our results in the DAN, FPCN, 

and SM suggest that distributed patterns of structural covariance peak in middle 

adulthood before returning to a relatively localized topology in older adulthood.  

 The second significant latent variables of the DN and VAN share spatial features 

of structural covariance with the second latent variables of the DAN, FPCN, and SM; 

however, their trajectories (panel F, Figures 2 and 6) do not show a reliable, inverted U-

shape. One possible explanation for this is that the selected seed regions for the DN and 

VAN included regions such as the medial prefrontal cortex, posterior cingulate, and 

insular cortex. These regions are known functional hubs (van den Heuvel & Sporns, 
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2013) and, in the second latent variable of DAN, FPCN, and SM, their structural 

covariance reliably differentiates young adulthood from other portions of the lifespan. In 

PLS, successive latent variables contribute unique, additional portions of variance. Since 

these seed regions strongly contribute to the structural covariance of the DN and VAN 

first latent variables, it is possible that the appearance of a near linear decline in the 

second latent variable—rather than an inverted U-shaped trajectory—is due to the 

exclusion of medial prefrontal cortex, posterior cingulate, and insular cortex from the 

second latent variables of the DN and VAN and their explained covariance. This would 

suggest that these regions are particularly important in shaping age-dependent patterns of 

structural covariance.  

Previous investigations of structural covariance have found variation in the extent 

to which networks show age-related changes. For example, relatively flat patterns of 

structural covariance across adulthood have been seen in the visual network (Li et al., 

2013) as well as in temporal, auditory, and cerebellar networks (Hafkemeijer, et al. 

2014). Our finding that the visual network did not have a significant second latent 

variable suggests that there is not a significant age-dependent pattern of structural 

covariance for this network, in agreement with this previous work.  

Contrary to our initial hypotheses, we did find age-dependent structural 

covariance trajectories for SM, where existing literature suggests that there are little to no 

age-related changes (Li et al., 2013). In the present work, we find SM to exhibit the same 

age-dependent pattern of structural covariance as DAN and FPCN. Future longitudinal 

studies of structural covariance patterns will be important to address the impact of age on 

specific cortical networks.   
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Overall, our results therefore suggest that the structural covariance patterns of 

large-scale neurocognitive networks each have a unique spatial topology; however, 

neurocognitive networks also show overlapping patterns of age-dependent structural 

covariance.  

4.3 Relationship of Structural Covariance to Function 

Structural covariance networks have been extensively linked to neural function 

via their marked disruptions in pathology and pathological aging (Bassett et al., 2008; 

Hafkemeijer et al., 2016; Spreng & Turner, 2013; Valk, Martino, Milham, & Bernhardt, 

2015). Alongside functional connectivity, shared structural covariance has been 

suggested as a defining characteristic of large-scale networks (Seeley, Crawford, Zhou, 

Miller, & Grecius, 2009, see also Di et al., 2017). It is worth considering, therefore, these 

lifespan patterns of structural covariance in light of the existing literature on the 

development of functional connectivity across the lifespan.  

In our work, the first significant latent variable seen in all examined networks 

showed a stable pattern of structural covariance whose integrity declined across the 

lifespan. This is similar to patterns of decreasing within network functional connectivity 

with advancing age (Betzel et al., 2014). The second latent variable seen in all 

networks—with the exception of the visual network—showed an age-dependent pattern 

that distinguished young adulthood from both childhood and advanced aging. These 

results mirror developmental trajectories commonly reported in functional connectivity 

studies with increased functional integration across networks in childhood, peak 

functional segregation between networks in young adulthood, and de-differentiation of 

network functional connectivity in older adulthood (Collin & van den Heuvel, 2013).  
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The significant overlap of structural covariance trajectories found in the current 

investigation and those trajectories reported in the functional connectivity literature 

suggest that a lifespan perspective may help illuminate the noted relationship between 

structural covariance and neural function. Directly assessing the relationship between 

structural covariance and functional connectivity, however, is a topic for future research 

aided by the collection of multi-modal imaging data in lifespan samples (e.g., Glasser et 

al., 2016; Nooner et al., 2012).  

4.4. Methodological Considerations 

Although this study was able to leverage the increasing amount of anatomical data 

available in open-access repositories, it included important methodological 

considerations related to age group definition, scanner acquisition strength, and motion 

correction. Although we sought to create cohorts representing neurobiologically 

meaningful age ranges, this resulted in unequal representation in both sample size and 

age range considered. Our smallest included age group, Age Group 6 (76-94y) included 

134 participants, while our largest age group, Age Group 3 (26-35y) included 472 

participants. Although differing sample sizes across groups will invariably yield more 

variable estimates of group-wise covariance, we note that our estimates have statistical 

power comparable to the smallest group size considered. At 134 subjects, this is still 

significantly higher powered than current standards for MRI data collection, particularly 

in lifespan samples. An additional consideration with our selection of age cohorts is the 

age range considered in each age group. Age Group 4, defined here as ages 36-59, spans 

a larger time period than any of the other cohorts considered. This was in large part due 

to the paucity of openly available data for that cohort, particularly when compared to 
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other cohorts such as younger adulthood. The continuing collection of multi-modal data 

for lifespan initiatives such as NKI-RS (Nooner et al., 2012), the HCP Lifespan Project 

(Glasser et al., 2016), and UK Biobank (Miller et al., 2016) will increase the availability 

of high-quality data to investigate such questions.  

Differences in scanner acquisition strength across data sources provide an 

additional important methodological consideration. Several data sources, including those 

representing the youngest and oldest subjects, were acquired at 1.5T, while young adults 

were acquired at 3T. Although it is likely that subtle differences between groups may 

have been introduced by MR field strength, inspection of individual subject scores from 

the two included lifespan data sources (OASIS and NKI-RS) indicate that these subjects 

do not show divergent results from those seen in the age-restricted datasets or from one 

another. This is suggestive of general agreement in structural covariance trends across 

scanner field strength, as OASIS was collected at 1.5T while NKI-RS was collected at 

3T. Further, we controlled for MR field strength across groups by adjusting individually 

derived subject scores and found similar results for both raw and corrected subject scores. 

Future work assessing structural covariance across the lifespan should nonetheless aim to 

examine scans acquired at the same MR field strength and ideally on the same scanner.  

A limitation of the current study is the inability to implement motion correction of 

structural images. Recent work has shown that head motion may introduce artifacts into 

anatomical images, affecting automated estimates of structure (Alexander-Bloch et al., 

2016; Savalia et al., 2016). Although acquisition of a resting-state scan has been proposed 

to flag high-motion subjects for exclusion from structural analyses (Alexander-Bloch et 

al., 2016; Savalia et al., 2016), not all of the datasets utilized also provided at least one 
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resting-state scan for each subject. We therefore caution that estimates of age-group 

differences may be inflated by uncorrected motion. Each of these methodological 

considerations can be addressed in future work, as comprehensive samples of participants 

across the lifespan with both structural and functional imaging become increasingly 

available.  

 In this study we utilized open-access, cross-sectional data sources to examine 

structural covariance patterns of six neurocognitive networks across the lifespan. Using 

multivariate PLS analysis, we found that all networks exhibited stable patterns of 

network specific structural covariance, and with the exception of the visual network 

showed a second, age-dependent pattern of structural covariance that mirrored 

developmental trends seen in the functional connectivity literature. The present results 

confirm the utility of structural covariance in defining neurocognitive networks and 

reveal both shared and network specific trajectories of structural covariance across the 

lifespan.  
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Figure 1. Selected seeded regions. The four selected seeded regions for each of the six 
neurocognitive networks are depicted in colors corresponding to their Yeo and colleagues (2011) 
labeling.  
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Figure 2. Structural covariance of the default network. (A) The spatial pattern for the first latent 
variable, thresholded at 95% of the bootstrap ratio. (B) The bootstrapped correlation of brain 
scores with the averaged grey matter volume estimates of default network seeds by age group for 
the first latent variable. (C) The individual brain scores from the first latent variable corrected for 
scanner strength and gender are plotted as a function of age. (D) Spatial pattern for the second 
latent variable, thresholded at 95% of the bootstrap ratio. (E) The bootstrapped correlation of 
brain scores with averaged grey matter volume estimates of default network seeds by age group 
for the second latent variable. (F) The individual brain scores from the second latent variable 
corrected for scanner strength and gender are plotted as a function of age.  
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Figure 3. Structural covariance of the dorsal attention network. (A) The spatial pattern for the 
first latent variable, thresholded at 95% of the bootstrap ratio. (B) The bootstrapped correlation 
of brain scores with averaged grey matter volume estimates of dorsal attention network seeds by 
age group for the first latent variable. (C) The individual brain scores from the first latent 
variable corrected for scanner strength and gender are plotted as a function of age. (D) Spatial 
pattern for the second latent variable, thresholded at 95% of the bootstrap ratio. (E) The 
bootstrapped correlation of brain scores with averaged grey matter volume estimates of dorsal 
attention network seeds for the second latent variable. (F) The individual brain scores from the 
second latent variable corrected for scanner strength and gender are plotted as a function of age. 
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Figure 4. Structural covariance of the frontoparietal control network. (A) The spatial pattern for 
the first latent variable, thresholded at 95% of the bootstrap ratio. (B) The bootstrapped 
correlation of brain scores with averaged grey matter volume estimates of frontoparietal control 
network seeds. (C) The individual brain scores from the first latent variable corrected for scanner 
strength and gender are plotted as a function of age. (D) Spatial pattern for the second latent 
variable, thresholded at 95% of the bootstrap ratio. (E) The bootstrapped correlation of brain 
scores with averaged grey matter volume estimates of default network seeds by age group for the 
second latent variable. (F) The individual brain scores from the second latent variable corrected 
for scanner strength and gender are plotted as a function of age. 
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Figure 5. Structural covariance of the somatomotor network. (A) The spatial pattern for the first 
latent variable, thresholded at 95% of the bootstrap ratio. (B) The bootstrapped correlation of 
brain scores with bootstrapped averaged grey matter volume estimates of somatomotor network 
seeds by age group for the first latent variable. (C) The individual brain scores from the first 
latent variable corrected for scanner strength and gender are plotted as a function of age. (D) 
Spatial pattern for the second latent variable, thresholded at 95% of the bootstrap ratio. (E) The 
bootstrapped correlation of brain scores with averaged grey matter volume estimates of 
somatomotor network seeds by age group for the second latent variable. (F) The individual brain 
scores from the second latent variable corrected for scanner strength and gender are plotted as a 
function of age. 
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Figure 6. Structural covariance of the ventral attention network. (A) The spatial pattern for the 
first latent variable, thresholded at 95% of the bootstrap ratio. (B) The bootstrapped correlation 
of brain scores with averaged grey matter volume estimates of ventral attention network seeds by 
age group for the first latent variable. (C) The individual brain scores from the first latent 
variable corrected for scanner strength and gender are plotted as a function of age. (D) Spatial 
pattern for the second latent variable, thresholded at 95% of the bootstrap ratio. (E) The 
bootstrapped correlation of brain scores with averaged grey matter volume estimates of ventral 
attention network seeds by age group for the second latent variable. (F) The individual brain 
scores from the second latent variable corrected for scanner strength and gender are plotted as a 
function of age. 
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Figure 7. Structural covariance of the visual network. (A) The spatial pattern for the first latent 
variable, thresholded at 95% of the bootstrap ratio. (B) The bootstrapped correlation of brain 
scores with averaged grey matter volume estimates of visual network seeds by age group for the 
first latent variable. (C) The individual brain scores from the first latent variable corrected for 
scanner strength and gender are plotted as a function of age.  
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