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Abstract 

Over 90% of genetic variants associated with complex human traits map to non-coding regions, 

but little is understood about how they modulate gene regulation in health and disease. In one 

mechanism, disease-causing variants directly affect the activity of one or more cis-regulatory 

elements in specific cell types leading to dysregulation of gene expression. To identify such 

cases, we collected Assay for Transposase-Accessible Chromatin (ATAC-seq) profiles from 

activated primary CD4+ T cells of 105 healthy donors and analyzed them to characterize the 

inter-individual variability in “ATAC-peaks” of chromatin accessibility and to identify its 

genetic basis. Interestingly, we found that ATAC-peaks are co-accessible across loci at kilobase 

and megabase scales, in patterns consistent with 3D chromosome organization as measured by in 

situ-Hi-C in the same cells. Genetic variants associated with ATAC-peaks (ATAC-QTLs) are 

widespread and those associated with correlated peaks impart the strongest genetic effects. 

ATAC-QTLs disrupt binding sites for transcription factors important for CD4+ T cell 

differentiation and activation, overlap and mediate expression QTLs from the same cells, and are 

enriched for autoimmune disease variants. ATAC-QTLs associated with co-accessible peaks are 

further enriched in the same chromatin contact domains as the associated peaks and regions of 

the genome annotated as super enhancers. Accessibility of regulatory elements varies in 

correlated manner between individuals, and is determined by genetic variation following patterns 

that reflects the 3D organization of the genome, and mediate genetic effects on gene expression. 

Our results provide insights into how genetic variants modulate cis-regulatory elements, in 

isolation or in concert, and influence gene expression in primary immune cells that play a key 

role in many human diseases.
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Introduction 

The vast majority of disease-associated loci identified through genome-wide association studies 

(GWAS) 1-3 are located in non-coding regions of the genome, often distant from the nearest gene 

4. Quantitative trait loci (QTL) studies that map genetic variants associated with molecular traits 

have provided a framework for assessing the gene regulatory effects of disease-associated loci. 

For example, thousands of non-coding variants associated with gene expression (expression 

QTLs – eQTLs), a significant number of which overlap GWAS loci, have been identified in 

diverse cell types and tissues 5, including in resting 6-8 and in stimulated immune cells 9,10, 

suggesting that variation in transcriptional regulation in pathogenic cell types are a key driver of 

human disease. However, because of linkage disequilibrium and the complex context-specific 

regulation of gene expression by transcription factors (TFs) and the corresponding cis-regulatory 

elements 11,12, it remains difficult to pinpoint the causal genetic variants and to determine the 

mechanistic basis by which they influence gene expression and disease.  

 

Genetic analysis of chromatin organization 11-15 provides a powerful complementary approach 

for identifying genetic variants that affect transcriptional regulation in cis-regulatory regions 16. 

In lymphoblastoid cell lines, many genetic variants have been associated with variability in 

DNase I hypersensitivity (measured by DNase-seq) 17 or histone tail modifications (measured by 

ChIP-seq) 18-20. However, both DNase-seq and ChIP-seq are laborious and require large numbers 

of cells, thus limiting genetic studies using these techniques mostly to cell lines. The recent 

development of Assay for Transposase-Accessible Chromatin (ATAC-seq), a simple yet efficient 

two-step protocol 21, has opened the way to profiling of chromatin accessibility with small 
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numbers of disease-relevant primary cells isolated from a large human cohort. A very recent 

multi-center study associated variability in DNA methylation, histone tail modifications and 

expression changes with genetic variants in 3 different naïve primary immune cell types 

(Neutrophils, monocytes and CD4+ CD45RA+T cells)22.  Although this study provided useful 

resource on human immune cells, many disease states are associated with activated immune cells 

rather than the non-proliferative ‘quiet’ naïve immune cells, highlighting the importance of 

characterizing cells that are physiologically relevant to disease states. 

 

T cell homeostasis and activation have recently been associated with various disease states 

including autoimmune diseases 23,24, cancer 25,26 and infectious diseases 27, and genetic variants 

associated with distinct conditions have been mapped to regulatory regions controlling genes 

important in different T cell subsets 10. Here, we performed ATAC-seq on activated CD4+ T cells 

from 105 healthy individuals to characterize the extent of natural variability in chromatin 

organization, identify its genetic basis, and assess its influence on gene expression. Our analysis 

highlights the co-variability between chromatin features and leverages it to identify co-

accessibility relations between multiple cis-regulatory elements and to relate those to 3D genome 

organization. Our work lays the foundation for the critical tasks of mapping the complex gene 

regulatory relationships between cis-regulatory elements in primary human T cells and 

characterizing how genetic variation contribute to the gene regulatory variability between 

individual humans. 

 

Results 
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Changes in T cell chromatin organization in response to activation 

We used ATAC-seq 21 to assay CD4+ T cells in two different states: either unstimulated (Th), or 

stimulated in vitro using tetrameric antibodies against CD3 and CD28 for 48 hours (Thstim) (Fig. 

1a). Aligned reads from six samples (five donors, one pair of replicates) were pooled (Methods) 

for each state yielding a total of 209 million reads for Thstim and 58 million for Th cells. There 

was a global increase in chromatin accessibility in response to stimulation, with 52,154 

chromatin accessibility peaks (ATAC-peaks) in Thstim and 36,486 in Th cells. Downsampling 

each Thstim sample to the same number of reads as the matching Th sample yielded similar 

results (24,665 peaks Thstim vs. 17,313 Th) suggesting the increased accessibility is not due to 

differences in depth of sequencing. Of the 63,763 ATAC-peaks identified in at least one state, 

27,446 are equally accessible between cell types (shared peaks), 28,017 are more accessible in 

Thstim cells (FDR, q < 0.05), and only 8,298 ATAC-peaks are more accessible in Th cells (FDR, 

q < 0.05) (Fig. 1b and Supplementary Table 1). 

 

The detected ATAC-peaks were associated with distinctive genomic features and enriched for 

single nucleotide polymorphisms (SNPs) associated with autoimmune diseases. Specifically, 

compared to Th-specific ATAC-peaks, Thstim-specific peaks have a higher overlap with 

enhancers active in conventional T helper cells (Tconv, a class that includes Th1 and Th17 cells) 16 

and a lower overlap with enhancers active in regulatory (Treg) and naïve Th cells. They also have 

a higher overlap with enhancers active in Th0 cells (αCD3/αCD28 activated Th cells) and PMA-

stimulated T cells, consistent with the polarization-independent activation of our stimulation 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2017. ; https://doi.org/10.1101/090241doi: bioRxiv preprint 

https://doi.org/10.1101/090241
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

protocol (Fig. 1c). We identified 9,724 Thstim-specific peaks located in non-coding regions 

previously unannotated by H3k27Ac 16. Furthermore, Thstim-specific and shared peaks are more 

enriched for SNPs associated with autoimmune diseases, most notably inflammatory bowel 

disease (IBD) and rheumatoid arthritis, than Th-specific peaks (Fig. 1d). 

 

Analyzing ATAC-peaks in aggregate provide estimates of transcription factor (TF) binding 

profiles at single nucleotide resolution 21, highlighting key T cell regulators. Thstim-specific peaks 

are enriched for genomic locations bound by TFs important for Th cell activation or 

differentiation, including members of the AP-1 super family (e.g., BATF) and interferon 

response factors (IRFs) 28-30 (Fig. 1e). ATAC peaks overlapping both a BATF binding site and 

the interferon stimulation response element (ISRE) reveal distinct binding footprints in Thstim 

compared to Th cells (Fig. 1f). Conversely, shared peaks are enriched for TFs (e.g., CTCF) 

known to maintain chromatin state independent of cell type and state 28-30 (Fig. 1e), and the 

footprints estimated from ATAC-peaks overlapping CTCF binding sites do not exhibit condition 

specific accessibility profiles (Fig. 1f). ETS binding sites overlapping shared and condition-

specific ATAC-peaks are distinct: shared peaks overlapping ETS binding sites highlight the 

canonical ETS1 motif (5’-CACTTCCTGT-3’), whereas footprints and de-novo TFBS prediction 

recover a 3’ extended motif (5’-CACTTCCTGTCA-3’) in Th-specific peaks and a T/G � T (5’-

CACTTCCTGT-3’) at the eighth position in Thstim peaks (Fig 1g) 31.  Th-specific ETS1-peaks 

overlap ETS/RUNX binding sites more than shared or Thstim-specific peaks (OR = 2.7 and 3.9; 

Fisher’s exact test, P = 2.2x10-16 and P = 2.2x10-16, respectively) (Fig 1h), consistent with 

previous reports that ETS/RUNX binding is specific to Treg enhancers 32,33. These results 
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demonstrate the power of ATAC-seq to identify known and novel cis-regulatory elements and 

generate high-resolution TF footprints. 

 

Interindividual variation reveals global and local co-accessibility patterns  

 

Because Thstim ATAC-peaks are more abundant, better overlap with autoimmune disease loci, 

and are enriched for binding sites for known TFs, we focused on characterizing the 

interindividual variability in chromatin accessibility in Thstim cells. Specifically, we used an 

optimized ATAC-seq protocol (Methods, Supplementary Fig. 1) to profile activated primary 

CD4+ T cells isolated from 105 healthy donors of European descent in the ImmVar Consortium10 

(Fig. 2a). Per sample, we obtained a median of 37 million (MAD +/-13 million) reads from 

highly complex libraries (on average 84% usable nuclear reads, as opposed to 40% prior to 

optimization) (Supplementary Fig. 2), with low mitochrondrial DNA (mtDNA) contamination 

(on average contamination < 3%, as opposed to 53% prior to optimization).  

 

Leveraging the variability across 105 individuals, we found strong patterns of co-accessibility at 

both a global and local level. Globally, we calculated co-accessibility between pairs of 1Mb 

chromatin accessibility bins (Fig. 2b) across the individuals. For every chromosome, we 

observed significant co-accessibility between regions spanning 42 Mbs on average (FDR < 0.1) 

(Chr1: Fig. 2c, Other chromosomes: Supplementary Fig. 3).  Locally, we calculated co-

accessibility between pairs of ATAC-peaks across the individuals. We found 5,404 pairs of co-

accessible ATAC-peaks within 1.5Mb of each other (linear regression, FDR < 0.05, 
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Supplementary Fig. 4 and 5, Supplementary Table 3 and 4), corresponding to 2,722/52,154 

(5.2%) of the distinct ATAC-peaks detected. On average, co-accessible peaks were located 313 

kb apart (Fig. 2d).  Co-accessible peaks are enriched for GWAS SNPs associated with 

autoimmune diseases (Fig. 2e) and more enriched for BATF, ETS1, and BATF/IRF motifs (1.2x, 

P < 1x10-5, hypergeometric test), TSS (P = 2.3x10-195, hypergeometric test) and 5’ genomic 

regions (P < 6.7x10-3, hypergeometric test) than all Thstim peaks (Fig. 2f). They are also enriched 

in Tnaïve , Thstim, and Th17 enhancer subtypes compared to all Thstim peaks (P < 1.98x10-14, 

hypergeometric test) (Fig. 2g). The large average distance between co-accessible peaks as well 

as the enrichment for automimmune associated GWAS SNPs, TFBSs, genomic regulatory 

regions, and T cell subtype enhancers suggest that co-accessible peaks are unlikely the result of 

local biases in sequencing and identify important correlated regulated regions.  

 

The observed pattern of co-accessibility is influenced by the 3D conformation of the chromatin, 

as determined by a loop-resolution in situ Hi-C34 in primary CD4+ T cells activated for 48 hours 

(Supplementary Table 2). Globally, at 1 Mb resolution, the correlation of interaction 

frequencies across the genome estimated from Hi-C are qualitatively similar and quantitatively 

correlated (R = 0.36) to co-accessibility patterns estimated from ATAC-seq (Fig. 2c and h), 

consistent with previous estimates across single cells21. There is also a relationship between 

locally correlated peaks and the high-resolution 3D structure of the genome. Pairwise correlation 

of ATAC-peaks is more significant when filtered for regions of Hi-C interaction at 250kb 

resolution and highly correlated with the Hi-C interaction frequencies (Spearman ρ= 0.19) 

(Supplementary Fig. 6).   
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Local ATAC-QTLs disrupt cis-regulatory functions in Th cell enhancers 

 

To define the genetic basis of inter-individual variability in chromatin accessibility and co-

accessibility, we compared our ATAC-seq data to genetic variation across the 105 individuals. 

We found 1,790 ATAC-peaks associated with at least one significant local (+/- 20kb) SNP 

(RASQUAL35, P < 3.02×10-4, permutation FDR < 0.1) (Fig. 3a, Supplementary Fig. 5b, and 

Supplementary Table 4 and 5). We term each such associated SNP an ATAC quantitative trait 

locus (ATAC-QTL) and the corresponding peak an ATAC-QTL-peak. Of the 1,790 ATAC-

QTL-peaks, 580 are significantly heritable (average heritability 60%, GCTA FDR < 0.1), with a 

large proportion of the heritability (average 36%) predicted by the best lead SNP (Fig. 3b, 

Methods, and Supplementary Table 6). There are also 6,154 ATAC-QTL-peaks (RASQUAL, 

P < 3.02×10-4, permutation FDR < 0.1) with distal associations to SNPs located between +/- 20 

kb and +/- 500 kb away, but only 2,634 ATAC-QTL-peaks (linear regression, P < 6.46×10-5, 

permutation FDR < 0.05) with distal associations to SNPs located over 500 kb away. This is 

consistent with previous observations of limited distal associations to chromatin accessibility 

traits estimated using DNase I hypersensitivity17,18.  

 

We found several lines of evidence supporting a model where local ATAC-QTLs (‘local’ in the 

genetic sense, where associated SNP is within +/- 20kb of the ATAC-peak) disrupt cis-regulatory 

functions in Th cell enhancers. First, of the 1,790 local ATAC-QTL-peaks, 33% (589) of the lead 

associated SNPs are located within 2 kb of the ATAC-peak and 18% (327) are located within the 
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ATAC-peak proper (Fig. 3c), suggesting that the direct disruption of cis-regulatory elements is 

an important determinant of the observed variation in accessibility in those cases. Second, local 

ATAC-QTLs-peaks are more enriched near transcription start sites (TSS) than transcription 

termination sites (TTS) of the closest gene, further supporting a transcriptional role in cis (Fig. 

3d). Third, 77% of local ATAC-QTL-peaks are in intronic or intergenic regions (P < 3.02x10-4, 

hypergeometic test) (Supplementary Fig. 7a); of these, 70% lie in regions that are previously 

identified as enhancers for different Th cell subtypes  (P < 3.12x10-50, hypergeometic test) 

(Supplementary Fig. 7b). Fourth, ATAC-QTL-peaks are more enriched for motifs bound by 

TFs involved in T cell development and activation (e.g. BATF, AP1 and IRF, Fig. 3e) than all 

ATAC-peaks detected in activated cells. In fact, 57% of ATAC-QTL-peaks contained either a 

BATF or an ETS1 motif (1.2x enrichment compared to all ATAC-peaks in activated cells, P < 

1.79×10-19, hypergeometric test; with all peaks as background) and 11% contained both (1.3x 

enrichment, P < 4.02×10-5, hypergeometric test), suggesting that the perturbation of binding sites 

for key TFs is a major driver for the observed variation in chromatin accessibility across 

individuals. Indeed, almost half (48%) of the ATAC-QTL lead SNPs strongly disrupt one of six 

predicted TF binding sites (TFBSs) (Fig. 3f), including known transcription factors that act in T 

cell activation, such as BATF, IRF, RUNX1 and ETS. Furthermore, ATAC-QTL-peaks 

overlapping BATF, ETS1 and CTCF binding sites show differential accessibility between 

genotypes at single nucleotide resolution, with the core motif exhibiting the most striking 

difference in accessibility (Fig. 3g and Supplementary Fig. S8). An extended 1 kb window 

exhibited weaker but still significant differences, reflecting long range cis effects on chromatin 

accessibility (Fig. 3g). Consistent with the footprinting analysis, the effect sizes of ATAC-QTLs 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2017. ; https://doi.org/10.1101/090241doi: bioRxiv preprint 

https://doi.org/10.1101/090241
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

are correlated (ρ=0.648) with SNP motif disruption scores obtained by deltaSVM36, an unbiased 

analysis to discover de novo cis-regulatory elements in ATAC-peaks (Fig. 3h, Methods).  

 

Both ATAC-QTLs and ATAC-peaks exhibit a distinct pattern of accessibility with respect to 

chromatin 3D structure. ATAC-QTLs and ATAC-peaks overlapping BATF and ETS1 motifs are 

enriched within Hi-C contact domains, whereas those overlapping CTCF motifs are enriched at 

the contact domain boundaries (Fig. 3i). These results are consistent with previous reports of 

CTCF enrichment at loop anchors and at contact domain boundaries34,37-39. 

 

Local ATAC-QTLs are enriched for GWAS SNPs from autoimmune diseases (Fig. 3j), 

providing a functional context for interpreting disease associations. For example, rs17293632, an 

ATAC-QTL SNP, has also been associated with Crohn’s disease and IBD in GWAS studies. 

This SNP is located in the first intron of SMAD3, a transcription factor involved in the TGF-β 

signaling pathway that regulates T cell activation and metabolism40. This SNP disrupts a 

consensus BATF binding site at a conserved position (deltaSVM=-12.72), and results in 

decreased chromatin accessibility in individuals that possess the alternate allele (Fig. 3k). This 

suggests that rs17293632 may increase susceptibility to Crohn’s disease and IBD by disrupting 

BATF binding at the SMAD3 locus. 

 

Genetic determinants of chromatin co-accessibility 
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We next tested the hypothesis that the function of multiple cis-regulatory elements could be 

simultaneously modulated by a single SNP. Specifically, we found that both local and 

moderately distal ATAC-QTLs (< 1 Mb) are more strongly associated with co-accessible peaks 

than with single peaks (defined as any ATAC-peak that is not part of a co-accessible peak pair; 

Fig. 4a). Co-accessible peaks associated with ATAC-QTLs are more strongly correlated with 

each other than co-accessible peaks not associated with an ATAC-QTL (Fig. 4b and 

Supplementary Table 3). Moreover, co-accessible ATAC-peaks exhibited stronger genetic 

associations if the peaks and the associated variant reside in the same HiC contact domain than if 

they did not (Fig. 4c and Supplementary Fig. 9). For example, rs10815868 is a non-coding 

variant that resides in the 18th intron of PTPRD, a tumor suppressor gene, where it disrupts a 

consensus BATF binding site at a conserved position. This SNP is associated with decreased 

chromatin accessibility in a 4 kb region that contains four highly correlated ATAC-peaks (Fig. 

4d, yellow box). Notably, an adjacent peak located 5 kb upstream of this region was not affected 

by this variant (Fig. 4d, grey box), suggesting that the genetic control of multiple ATAC-peaks 

was limited to a defined regulatory region. These results suggest that ATAC-QTLs associated 

with multiple co-accessible cis-regulatory elements impart a stronger effect than those associated 

with a single peak, and are limited by 3D chromatin structure.  

 

Super-enhancers, also called stretch enhancers, are defined as large clusters of contiguous 

enhancers, and are often bound by master regulators and mediator complexes to drive the 

transcription of genes involved in cell type specificity41,42 (Fig. 4e). Interestingly, co-accessible 

peaks – irrespective of their association with an ATAC-QTL – were enriched in super-enhancer 
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regions previously identified in CD4+ Th cells41 (Fig. 4f, Supplementary Table 3, Methods). 

Co-accessible peaks with an associated ATAC-QTL were 1.2x more enriched in super-enhancers 

if they reside in the same contact domain (Fig. 4f). For example, rs2732588 is an ATAC-QTL 

associated with three correlated peaks. Individuals who are homozygous alternate at the variant 

[G�A] tend to exhibit decreased chromatin accessibility in a large 100 kb region containing 

multiple co-accessible ATAC-peaks (Fig. 4g). The affected region partially overlaps a 

previously identified super-enhancer in CD4+ T cells41. This super-enhancer overlaps with both 

coding and intronic regions of KANSL1, a chromatin regulator that is part of the nonspecific 

lethal (NSL) complex controlling expression of constitutively expressed genes43,44 (Fig. 4g). The 

region containing the super-enhancer and these co-accessible peaks was mostly contained within 

a Hi-C contact domain, although it also extends immediately outside of the Hi-C contact domain 

boundary (Fig. 4g). The high enrichment of super enhancers intersected with co-accessible peaks 

further supports the hypothesis that we are identifying important regulatory regions which are 

regulated by both the genetic variation and 3D chromatin structure. 

 

Linking chromatin accessibility to gene expression 

We next assessed how variability in chromatin accessibility, including the co-accessibility of 

multiple cis-regulatory elements, could influence gene expression. We measured RNA-seq 

profiles from Thstim cells from 96 donors (93 with matching ATAC-seq data), and identified 33 

genes significantly correlated to at least one ATAC-peak locally (FDR < 0.05). Because of 

sample size and noise of both ATAC-seq and RNA-seq assays, we further filtered ATAC-peaks 
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to those with QTLs and found enrichment of significant p-values suggesting that genetic variants 

impart stronger correlation between peaks and genes (Fig. 5a). 

 

In order to assess the sharing of genetic variants between chromatin and expression traits, we 

mapped genetic variants that affect gene expression (eQTLs). We identified 1,256 genes with at 

least one significant local eQTL (+/- 500 kb centered around the gene) (RASQUAL, P < 

4.04×10-5, permutation FDR < 0.05, Supplementary Fig. 10, Supplementary Table 4 and 7), 

termed eQTL-genes. Among these, 102 lead-eQTLs are also lead-ATAC-QTLs with correlated 

effect sizes. The majority of these genetic variants (71 out of 102) have effect sizes in the same 

direction (Spearman rho = 0.73) indicative of activator effects, while 31 have effect sizes in the 

opposite direction indicative of repressor effects (Spearman ρ = -0.73) (Fig. 5b and 

Supplementary Table 8). To overcome winner’s curse and reduce multiple testing burden, we 

further filtered genetic variants to 1,790 significant ATAC-QTLs (FDR < 0.05) and found 168 

locally-associated genes (+/- 500 kb of the corresponding ATAC-peak, FDR < 0.05, Fig. 5c,d, 

and Supplementary Table 9). There was an enrichment for significant associations between 

gene expression and co-accessibility ATAC-QTLs (Fisher exact test p-value = 2.15x10-8, Fig. 

5d), suggesting that genetic variants that impact accessibility across multiple cis-regulatory 

elements are more likely to impact gene expression. 

 

We next assessed the causal relationship between genetic variants, chromatin accessibility and 

expression variability. The observed p-values of association between gene expression and 

genetic variants in cis are similarly distributed independent of conditioning on each most 
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correlated ATAC-peak (Fig. 5e and Supplementary Table 10). On the other hand, the observed 

p-values of correlation between gene expression and chromatin accessibility are less significant 

after conditioning on each best-associated eQTL (Fig. 5e). For example, before conditioning on 

rs174556, FADS2 expression and chromatin accessibility at chr11:61595257-61595730 are 

correlated (P-value = 9.9x10-11) and after conditioning the correlation is far less significant (P-

value = 0.094) (Fig. 5f). These results suggest that the effect of genetic variants on gene 

expression are mediated by ATAC-peaks. Notably, rs174556 is an ATAC-QTL associated with a 

pair of co-accessible peaks, resides in a 25 kb region between two Hi-C contact domains, where 

the alternative allele disrupts a CTCF binding site (Fig. 5g). Rs174556 is linked (D’=1, R2=0.79) 

with rs102275, a variant previously associated with Crohn’s disease45. The associated correlated 

peaks span the promoters of FADS1 and FADS2, and rs174556 is also identified as an eQTL for 

both FADS1 and FADS2 in our T cell dataset (Fig. 5g). FADS1 and FADS2, two fatty acid 

desaturases (FADS), regulate inflammation, promote cancer development, and FADS2 knockout 

mice develop dermal and intestinal ulcerations46-49. Given the well-known role of CTCF in 

maintaining the integrity of chromatin domain boundaries and insulation of transcriptional 

activities, abolishing CTCF binding may abolish the insulation, opening chromatin and causing 

increased expression of both target genes. These results suggest that variability in chromatin 

accessibility may underlie variability in gene expression and thereby increase disease risk.  

 

Discussion 
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Here, we integrated genetic variation and ATAC-seq data from primary activated CD4+ T cells 

from 105 healthy donors to identify multiple cis-regulatory elements, which we characterized 

through variability in chromatin accessibility (co-accessible peaks), genetic variation, and 

genomic structure. We found that ATAC-seq profiles identify important regulatory regions and 

are reflective of the 3D structure of the genome. ATAC-peaks and correlated peaks are enriched 

for TF binding motifs, which allowed for the identification of context specific differential ETS1 

motifs. ATAC-QTLs are heritable, fall close to their peak proper, and impact TF binding. We 

found widespread genetic control of co-accessible peaks, in a manner consistent with the 3D 

organization of the genome. Thus, there are regions of the chromatin that are co-accessible, 

which means that accessibility at one enhancer element is affected by genetic variation at 

another. From a molecular standpoint, one might hypothesize cooperative synergy between 

interacting enhancers, positive feedback reinforcing the activity of an enhancer’s partners. 

Alternatively, genetic variant could potentially affect the composition of different subpopulations 

of CD4+ T cells such as effector Th cells, regulatory Treg cells and natural killer T cells, which 

is also a biologically interesting phenomenon. With the recent advancement of single cell 

resolution epigenomic50 and transcriptomic51,52 analysis, it will enable us to detect ATAC-QTLs 

and eQTLs in each subpoulation of cells from a heterogeneous ‘cell cloud’. Integrating 

genotyping, ATAC-seq and RNA-seq data provided causal anchors for predicting and explaining 

the variability in molecular traits in a manner consistent with known modes of transcriptional 

regulation. We did not find significant distal effects, consistent with reports that measured 

chromatin state by DNAse-I-seq17, but unlike studies that measured chromatin state using ChIP-

seq18-20. Predicting variability in gene expression between individuals based on chromatin state is 
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significantly impacted by technical and biological variability in the assays, but is helped by 

leveraging genetic variation as causal anchors. It is possible that our ability to detect weaker 

interactions and predict gene expression could significantly improve with increased sample sizes 

and deeper sequencing.  

 

Our findings, derived from large scale mapping of epigenetic quantitative traits in primary 

human cells implicated in many diseases, provide a molecular framework for dynamic, 

cooperative multiple cis-regulatory elements and the interpretation of disease-causing variants, 

focused on modeling how genetic variants could alter local chromatin structure to modulate gene 

expression. Future studies that use other disease-relevant primary cells and tissues will help 

pinpoint causal disease variants and understand the regulatory mechanism underlying common 

disease. 
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Materials and Methods 

 

Study subjects and genotyping 

Healthy subjects between the ages of 18 to 56 (avg. 29.9) enrolled in the PhenoGenetic study 8 

were recruited from the Greater Boston Area and gave written informed consent for the studies. 

Individuals were excluded if they had a history of inflammatory disease, autoimmune disease, 

chronic metabolic disorders or chronic infectious disorders. Genotyping demographics of the 

donors are listed in Supplementary Table 4. Genotyping using the Illumina Infinium Human 

OmniExpress Exome BeadChips (704,808 SNPs are common variants [MAF > 0.01] and 

246,229 are part of the exomes, respectively; Illumina Inc., San Diego, CA) has been previously 

described 16. The genotype success rate was at least 97%. We applied rigorous subject and SNP 

quality control (QC) that includes: (1) gender misidentification; (2) subject relatedness; (3) 

Hardy-Weinberg Equilibrium testing; (4) use concordance to infer SNP quality; (5) genotype call 

rate; (6) heterozygosity outlier; and (7) subject mismatches. We excluded 1,987 SNPs with a call 

rate < 95%, 459 SNPs with Hardy-Weinberg equilibrium p-value < 10-6, and 63,781 SNPs with 

MAF < 1% from the 704,808 common SNPs (a total of 66,461 SNPs excluded). 

 

We used the IMPUTE2 software (version: 2.3.2) to impute the post-QC genotyped markers from 

the entire Immvar cohort (N = 688) using reference haplotype panels from the 1000 Genomes 

Project (The 1000 Genomes Project Consortium Phase III) that contain a total of 37.9 Million 

SNPs in 2,504 individuals with ancestry from West Africa, East Asia, and Europe. After 

genotype imputation, we extracted the genotypes for 108 individuals assayed for chromatin 
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accessibility and gene expression. Additional filtering for SNPs with MAF < 0.1 in our cohort, 

resulted in 4,558,693 and 4,421,936 common variants tested for chromatin accessibility and gene 

expression assays, respectively. 

 

Preparation and activation of primary human CD4+ T cells 

CD4+ T cells were isolated and stimulated as previously described 10. Briefly, CD4+ T cells were 

isolated from whole blood by negative selection using RosetteSep human CD4+ T cell 

enrichment cocktail (STEMCELL Technologies Inc., Vancouver, BC) and RosetteSep density 

medium gradient centrifugation. Isolated CD4+ T cells were placed in freezing container at -

80�C for overnight, and then moved into a liquid nitrogen tank for long-term storage. On the 

day of activation, CD4+ T cells were thawed in a 37�C water bath, counted and resuspended in 

RPMI-1640 supplemented with 10% FCS, and plated at 50,000 cells per well in a 96 well round-

bottom plate. Cells were either left untreated or stimulated for 48 hours with beads conjugated 

with anti-CD3 and anti-CD28 antibodies (Dynabeads, Invitrogen #11131D, Life Technologies) 

at a cell:bead ratio of 1:1. At each time point, cells were further purified by a second step 

positive selection with CD4+ Dynabeads (Invitrogen #11145D, Life Technologies). 

 

ATAC-seq profiling 

ATAC-seq profiles were collected for 139 individuals (Supplementary Table 4). We performed 

ATAC-seq as previously described 21, with a modification in the lysis buffer to reduce 

mitochondrial DNA contamination, while maintaining high complexity of nuclear reads. 200,000 

purified CD4+ T cells were lysed with cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 
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3 mM MgCl2 and 0.03% tween20). Immediately after lysis, nuclei were spun at 500g for 8 

minutes at 4�C. After pelleting the nuclei, we carefully removed the supernatant and 

resuspended the nuclei with Tn5 transposase reaction mix (25 ul 2X TD buffer, 2.5 ul Tn5 

transposase, and 22.5 ul nuclease-free water) (Illumina Inc). The transposition reaction was 

performed at 37�C for 30 minutes. Immediately after the transposition reaction, DNA was 

purified using a Qiagen MinElute kit. Libraries were sequenced on an Illumina HiSeq 2500 

sequencer to an average read depth of 42 million (+/- 38 million) per sample (fig. S2), with low 

mtDNA contamination (0.30%-5.39%, 1.96% on average), low rates of multiply mapped reads 

(6.7%-56%, 19% on average) and a relatively high proportion of usable nuclear reads (60%-

92%, 79% on average).  

 

RNA-seq profiling 

RNA-seq profiles were collected for 95 individuals, of which 93 have matching ATAC-seq 

profiles (Supplementary Table 4). RNA was isolated using Qiagen RNeasy Plus Mini Kit and 

RNA integrity was quantified by Agilent RNA 6000 Nano Kit using the Agilent Bioanalyzer. 

Purified RNA were converted to RNA-seq libraries using a previously published protocol 53, 

where reverse transcription was carried out based on the SMART template switching method and 

the resulting cDNA was further tagmented and PCR amplified using Nextera XT DNA Sample 

kit (Illumina) to add the Illumina sequencing adaptors. Samples were sequenced on Illumina 

HiSeq 2500 to an average depth of 16.9 million reads per sample (+/- 8.7 million).  

 

In situ-Hi-C 
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CD4+ T cells were isolated from commercially available fresh blood of healthy individuals 

(Research Blood Components). CD4+ T cells were stimulated for 48 hours with beads conjugated 

with anti-CD3 and anti-CD28 antibodies and then crosslinked with 1% formaldehyde for 10 min 

at room temperature. In situ-Hi-C was performed as previously described 34. Libraries were 

sequenced using Illumina HiSeq and NextSeq, to produce ~1 billion 100bp paired-end reads.  

 

Alignment of ATAC-seq reads 

25bp ATAC-seq reads were aligned to the human genome assembly (hg19) with the Burrows 

Wheeler Aligner-MEM (version: 0.7.12) 54. For each sample, mitochondrial reads and multiply-

mapped reads were filtered out using BEDtools (function intersectBed) 55. After filtering, we had 

an median of 37 million (MAD +/- 13 million) reads per sample.  

 

ATAC-seq peak identification 

Filtered ATAC-seq reads from matched unstimulated and activated CD4+ T cell ATAC-seq reads 

from 6 individuals were merged (separately for unstimulated and for activated cells) using the 

Samtools function “merge”. Peaks were called on the unstimulated CD4+ T cell merged bam file 

and the activated CD4+ T cell merged bam file using MACS2 –callpeak (with parameters --

nomodel, --extsize 200, and --shift 100), such that there were 36,486 unstimulated peaks with an 

average width of 520 bp (+/- 319 bp) and 52,154 activated CD4+ T cell peaks with an average 

width of 483 bp (+/- 344 bp) (Benjamini-Hochberg FDR < 0.05). The activated and unstimulated 

CD4+ T cell peaks were further merged (using the BEDtools “merge” function), to a total of 

63,763 jointly called peaks. A matrix of the coverage for each of the 63,763 peaks in each of the 
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12 samples was used as input for calling differential peaks. Differential peaks between activated 

and unstimulated conditions were identified using the DESeq2 R package (version 3.2) 56, with 

8,298 regions more accessible in unstimulated CD4+ T cells, and 28,017 regions more accessible 

in activated CD4+ T cells (FDR < 0.05). 

 

Enrichment of transcription factor binding motifs 

We used the Homer suite (52), which uses ChIP-seq data from the ENCODE 57 and Epigenomics 

Roadmap 12 projects, to determine transcription factor enrichment within our ATAC-peaks, using 

the findMotifsGenome.pl (with parameters hg19 and –size given). For the analysis in Fig. 3e, we 

used an additional parameter –bg, using the activated CD4+ T cell peaks as background, instead 

of the local background generated by HOMER. This allowed us to determine which transcription 

factors were more enriched in our ATAC-QTLs than all background ATAC-peaks.  

 

Transcription factor footprinting 

Using the Homer suite tool annotatePeaks –m and –mbed options, we found all instances of 

BATF. ISRE, BATF/IRF, ETS1, and CTCF motifs in shared, differentially accessible stimulated 

and unstimlated ATAC-peaks. Next, we determined the per-basepair coverage +/- 1 kb around 

the center of the motif, only using cut-site reads and splitting the reads into those that are on the 

motif strand or on the opposite strand. Final TF footprints were derived from median normalized 

reads57. 

 

Outlier analysis and sample mix-up analysis 
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We kept samples there were highly correlated for downstream analyses (Pearson r > 0.68, SOM), 

where we developed an optimized ATAC-seq protocol (SOM) that achieved high technical and 

biological reproducibility (fig. S1), highly complex libraries (on average 84% usable nuclear 

reads, as opposed to 40% prior to optimization) (fig. S2), and low mitochrondrial DNA 

(mtDNA) contamination (on average contamination < 3%, as opposed to 53% prior to 

optimization). Quality of all ATAC-seq samples were assessed again, only keeping samples that 

contain a minimum of 8 million QC-passed reads (median of 37 million, MAD +/-13 million) 

and high inter-sample correlation (Pearson r > 0.68, SOM). ATAC-Seq profiles from the 105 

individuals were further filtered for samples who had that were also predicted with < 0.93 

identity by descent to identify multiple cis-regulatory elements 58. To identify sample mix-ups, 

we used the software VerifyBamID 58, where we matched each ATAC-seq and RNA-seq sample 

with each genotyping array. Samples were identified as those with the highest fIBD, and those 

with designated labels not matching the VerifyBamID predicted labels were flagged as sample 

mix-ups. We switched the designated label to the predicted label for cases where the fIBD > 

90%. 15 out of the 139 total ATAC-seq samples were re-labeled and 4 out of the 110 total RNA-

seq samples were re-labeled. For the ATAC-seq samples: 18 do not have genotypes, 3 are 

outliers, 1 did not match anyone. For the 110 RNA-seq samples: 8 samples do not have 

genotypes, 5 are outliers, 1 did not match anyone. 111 ATAC-seq samples and 96 RNA-seq 

samples were used in the final analysis after filtering for outliers (average mean correlation to 

others samples < 0.7). In the pilot study, there were 5 people total, 1 person was repeated for a 

total of 6 samples, none were genotyped.  
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Mapping of ATAC-QTLs 

We mapped local ATAC-QTLs by running RASQUAL 35 on the 52,154 peaks identified in 

activated CD4+ T cells and 4,558,693 imputed genetic variants, testing variants within a 40-kb 

window of each ATAC-peak, and filtering for a minor allele frequency of 10% to remove rare 

variants. The input to RASQUAL is the number of reads in each peak quantified using BEDtools 

“coverage” with using uniquely mapped nuclear reads for each individual. Duplicated fragments 

were kept for quantification. Date and time of visit, sex, age, race, ethnicity, height, weight, 

BMI, blood pressure, sequencing batch, and preparation batch were included as covariates, along 

with four principal components to minimize confounding factors. Using the RASQUAL “-r” 

option, 10 random permutations for each feature were generated. Then, the empirical null 

distributions and P-values were compared using the R qvalue 59 package, for a total of 1,790 

local ATAC-QTLs at a FDR of 0.1. Distal ATAC-QTLs were similarly mapped at a window of 

> 40-kb but < 1 Mb to attain a total of 7,301 distal ATAC-QTLs. 

 

Hi-C data analysis 

Data were processed using a custom pipeline that uses BWA 54 to map each read separately and 

Hi-C contact domains and chromatin loops were identified as previously described 34. 

 

Determination of distance from ATAC-seq peak to contact domains 

We determined the distance from each feature of interest to the middle of the closest contact 

domain. We analyzed the following features: (1) ATAC-peaks; (2) ATAC-peaks containing a 

significant genetic association (“ATAC-QTL-peaks”); ATAC-peaks containing (3) BATF, (4) 
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ETS1, or (5) CTCF motifs; and ATAC-QTL-peaks containing (6) BATF, (7) ETS1, or (8) 

CTCF motifs. We normalized the distances from each feature to the closest domain by the 

length of the domain. In order to determine that the distribution of the distance between a given 

feature and a contact domain is different than the null distribution, we kept the length of each 

contact domain constant and shuffled the positions of the contact domain. The distances from 

the feature to the contact domain were binned into 30 bins and divided by the binned distances 

between a given feature and the shuffled contact domains to determine enrichment at each 

position.  

 

Co-accessible peak analysis 

To identify co-accessible peaks, we tested for correlation between every pair of the 52,154 

ATAC-peaks within 1.5 Mb of each other using a linear regression in Matrix eQTL60. To 

correlate peaks, we first normalized the ATAC-peaks by (1) removing sequencing depth bias 

using a median normalization, (2) standardizing the matrix by subtracting out the mean and 

dividing by the standard deviation; and (3) quantile normalizion of the matrix (Bolstad BM 

(2016). preprocessCore: A collection of pre-processing functions. R package version 1.34.0, 

https://github.com/bmbolstad/preprocessCore). Next, we adjusted for covariates as described 

above and three principal components. Then, we identified 851/1,762 co-accessible peaks (387 

unique ATAC-peaks) with ATAC-QTLs (FDR < 0.05), of which 159 co-accessible peaks (93 

unique ATAC-peaks) with ATAC-QTLs reside in contact domains. To ensure that the co-

accessible peaks were enriched in contact domains, we permuted the position of the contact 
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domains while keeping the length of the contact domains constant and performed the same 

analysis (Supplementary Fig. 11).  

 

RNA-seq analysis 

25bp paired end RNA-seq reads were aligned to the hg19 using UCSC transcriptome 

annotations. Expression levels (expected counts) were determined using RSEM61. We applied 

TMM normalization to the expected counts using the edgeR package and filtered for genes that 

had TMM count > 1 in at least 75% of the samples. For the mapping of eQTLs, we inputted 

expected counts for filtered genes into RASQUAL35, which performs internal normalization. For 

the repeatability, heritability and predictability analyses, we used log-transformed TMM counts 

of filtered genes in order to fit generalized linear models. 

 

eQTL fine-mapping 

RASQUAL35 was used to map eQTLs within a 1 Mb window of a gene, using gene expression 

levels (TPM) from RSEM and genotypes filtered as above for a minor allele frequency of 0.1. To 

minimize confounding factors, 16 principal components, date and time of visit, sex, age, race, 

ethnicity, height, weight, BMI, blood pressure, sequencing batch, and preparation batch were 

included as covariates. The RASQUAL “-r” option was used for permutations to determine the 

empirical null distribution and compute a FDR, ultimately retaining a total of 816 eQTLs at 

FDR<0.05.  

 

GWAS enrichment 
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The GREGOR suite 62 was used for calculating the enrichment of loci from GWAS in features of 

interest (56): (1) peaks differentially accessible in activated CD4+ T cells; (2) peaks 

differentially accessible in unstimulated CD4+ T cell peaks, and (3) peaks shared in both 

conditions. The 95% confidence interval was calculated from the log10(odds ratio), where the 

odds ratio was the number of GWAS overlaps / expected overlaps.  

 

Overlap of traits in genomic regions 

The Homer suite tool 63 annotatePeaks.pl was used to determine the number of quantitative traits 

intersecting each genomic feature of interest. For enhancers, we specified the –ann parameter for 

the T cell H3K27ac enhancer annotation16.  

 

Enrichment in super-enhancer regions 

Using the BEDtools intersect function, we calculated how many of the correlated peaks, 

genetically-associated correlated peaks, and genetically-associated correlated peaks that fall in 

contact domains are also in stimulated T helper super-enhancers (as reported in Hinsz et al.41). 

To calculate an enrichment score, for each pair of correlated peaks, we fixed one peak and 

mirrored the second peak by the peak distance to preserve the genomic properties of the 

correlated peak, while breaking any correlation to annotated enhancers. To calculate a 

confidence interval for the enrichment score, we shuffled the position of super-enhancers, while 

maintaining the length of the super-enhancer 10 times and calculated the enrichment score of 

intersected features to the mirrored features with the shuffled super-enhancers. 
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Gkm-SVM and deltaSVM 

We ran gkm-SVM64,65 on 24,745 300bp ATAC-peaks centered on MACS summits using default 

parameters and an equal size GC matched negative set, excluding from training any region 

containing a SNP to be scored by deltaSVM, and repeated with 5 independent negative sets, and 

averaged the deltaSVM predictions, as previously described36. We then calculated deltaSVM for 

each SNP within 200bp of the peak signal of an ATAC-QTL with peak p-value < 10-5, scoring 

663 SNPs in 500 loci. We find a Pearson correlation of C=0.611 between ATAC-QTL beta and 

the largest deltaSVM SNP. 442 of the peak p-value SNPs had the largest deltaSVM, but 58 

flanking SNPs scored more highly than the peak p-value SNP and disrupt immune associated TF 

binding sites. While the gkm-SVM weights fully specify the deltaSVM score, for interpretation 

we associated the large gkm-SVM weights with the most similar TF PWM from a catalog of 

JASPAR, Transfac, Uniprobe, and Homer motifs.  

 

Heritability and prediction of gene expression and ATAC-peaks 

Data for predictability and heritability analysis of gene expression and ATAC-peaks was 

prepared in following way. Each ATAC-peak was residualized against its 4 principal 

components and patient data covariates (date and time of visit, sex, age, height, weight, systolic 

and diastolic blood pressure) for cross-validated prediction studies, or were included as fixed 

effects for the heritability analysis. Analogously, we used 16 principal components in the 

analyses of heritability and predictability of gene expression. 
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Repeatability was calculated by leveraging repeated measures of gene expression in 25 

individuals whose cells were sampled on two different dates two years apart. Elastic net model 

prediction analysis was performed using glmnet R package with the L1 ratio set to 0.5 with 5-

fold cross-validation. For joint prediction of gene expression, we chose distinct weights for 

ATAC-peak and genotype features using a grid search approach (parameter grid 2^-3 to 2^3) to 

maximize the mean cross-validation R2. Reported R2 estimates are calculated as in Gamazon et 

al. 66. Restricted maximum likelihood heritability (h2) estimates were calculated using GCTA 

software 67 with algorithm 0 and no constraints on heritability (i.e. h2 can be less than 0). For the 

gene expression predictability analysis, we used genotype and ATAC-peak features +/- 500 kb 

from the transcription start site of the gene. For the heritability and predictability analysis of 

ATAC-peaks, we used genotypes +/- 500 kb and +/- 20 kb from the center of each ATAC-peak 

respectively. 

 

Association of gene expression to genetically imputed ATAC-peaks 

In order to assess the ability to predict gene expression from genotypes mediated by ATAC-

peaks, we associated gene expression to imputed intensities of ATAC-peaks, similar to the 

approach proposed by Gamazon et al66. First, we split the available dataset into a training set and 

a test set of equal size (2 x 46). We used the training set to estimate the effect of genetic variants 

on ATAC-peaks using ordinary linear regression. Next, we applied the estimated effects to the 

test set to predict the intensity of ATAC-peaks. We correlated the imputed ATAC-peaks with 

gene expression and report the mean R2 statistic for each gene from the analysis of three random 

partitions of training and test sets. We derived empirical p-value and FDR estimates on the R2 
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statistic by shuffling the gene expression matrix 10 times. These results are compared to those 

obtained from associating genotype data with gene expression in the full cohort of 92. 

 

Relating gene expression and chromatin accessibility 

To analyze the relationship between gene expression, chromatin accessibility, and genetic 

variation, we performed conditioning analysis in a following way. Gene expression residualized 

for its 16 first principal components (PCs) and biometric data was correlated to local genetic 

variations (SNPs within 500 kb from TSS); statistics of the highest association and its residual 

were recorded, and the residual was further correlated to the local peaks residualized for their 

first four PCs and biometric data to account for population structure and other factors (if not 

indicated otherwise); highest association of the residual to the peak intensities was reported. 

Similarly, gene expression residualized for its first 16 PCs and biometric data was correlated to 

local peak intensities and the statistics of highest association and its residuals were recorded; the 

residual was further correlated to local genotypes and the highest association was reported in the 

Q-Q plot.  
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Figure legends 

Figure 1. Chromatin dynamics in human T cell activation. (a) ATAC-seq experimental 

overview. (b) Differential ATAC-peaks. Shown are ATAC-peaks (columns) in six individuals 

(rows) before (top, Th specific) and 48hr after (bottom, Thstim specific) activation of primary T 

cells with anti-CD3/CD28 antibodies. (c) ATAC-peaks in Th cell enhancers. Bar chart shows the 

number of ATAC-peaks that overlap previously identified enhancers (blue and green) and other 

genomic features (red and orange) in different Th cell subtypes12 in CD4+ T cells pooled samples 

from either Th specific cells, Thstim specific cells or shared. (d) GWAS variant enrichment in 

ATAC-peaks. Shown are the enrichments (X axis) and significance (Y axis) for loci associated 

with the indicated disease or phenotype in ATAC-peaks that are present in only Th specific (left), 

only Thstim specific cells (middle), or are shared (right). (e) Transcription factor motif enriched in 

ATAC-peaks. Shown are the enrichments (X axis) and significance (Y axis) for transcription 

factor motifs in ATAC-peaks that are present in only Th specific cells (left), only Thstim specific 

cells (middle), or are shared (right). (f-h) TF footprinting. Shown are for each TF motif (as 

identified in ENCODE62, indicated on top), aggregated plots of mean chromatin accessibility (y 

axis) in Th specific (purple) or Thstim specific (red) along TF binding site (x axis; log(bp from 

center of the TF motif). (f) BATF, ISRE, and BATF/IRF motifs in stimulated-specific peaks 

(three left panels) and CTCF in shared peaks (right panel). (g) ETS1 binding sites in Th specific 

(left) and Thstim specific ATAC-peaks (right). (h) ETS1/RUNX combination TF binding sites in 

Th specific peaks. (i) Fraction of the number of Th specific, Thstim specific, and shared peaks with 

an ETS1 binding sites also containing a BATF TF binding sites (blue) or an ETS1/RUNX 

binding site (green).   
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Figure 2. Interindividual chromatin co-accessibility is constrained by chromosome 

architecture.  (a) Overview. (b) Schematic of co-accessible regions across individuals. (c) Inter-

individual co-variation of chromatin accessibility. Heat map shows the pair-wise Pearson 

correlation coeffcient (colorbar) in chromatin accessibility across 105 ATAC-seq profiles in 

Thstim specific peaks binned into 1 Mb windows for Chr 1 (rows, columns). (d) Correlation of 

Hi-C interactions at 1 Mb resolution for Chr 1. (e) Histogram shows the distribution (density, Y 

axis) of the distances (X axis) between co-accessible peaks (black) compared to co-accessible 

computed on permuted ATAC-peaks (grey). (f) Co-accessible peaks are enriched for GWAS 

variants. Shown are the enrichments (X axis) in co-accessible peaks and their associated 

significance (Y axis) for loci associated with the indicated disease or phenotype. (g) Enrichment 

(Y axis) of genomic annotations (X axis) overlapping co-accessible peaks compared to all Thstim 

peaks. (h) Enrichment (Y axis) of T cell enhancer annotations (Y axis) overlapping correlated 

peaks compared to all Thstim peaks. 
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Figure 3. Genetic variants that affect chromatin states in human T cell activation.  

(a) ATAC-QTLs. Q-Q plot for all tests of association between activated ATAC-peaks and 

variants within 40 kb regions centered on the target ATAC-seq peak (red dashed line – 

expected). (b) Heritability of chromatin state. Shown are out-of-sample R2 predictability of 

ATAC-peaks based on genotypes +/- 20 kb of each peak (y-axis) as a function of heritability h2 

estimated based on genotypes within +/- 500 kb of each peak (x-axis). Solid triangles: 

significantly heritable peaks (q-value < 0.1). (c) ATAC-QTLs are close to associated ATAC-

peaks. Shown is a distribution of the distances of ATAC-QTLs and their associated ATAC-peaks 

(X axis, bp). Red: SNP contained in associated ATAC-peak. Green: SNP within 2 kb of 

associated ATAC-peak. (d) ATAC-QTL-peaks are closer to TSS than to TTS. Shown are the 

distributions of the distances of ATAC-QTL-peaks to the closest TSS (left) or TTS (right). (e) 

Transcription factor motifs that are enriched in ATAC-QTLs. Shown are the enrichments (X 

axis) and significance (Y axis) for transcription factor binding sites in ATAC-QTL-peaks. (f) 

Unsupervised analysis associates ATAC-QTLs with key TF binding sites show key motifs. 

Shown are the motifs for 6 TFs associated with most of the large gkmSVM weights, and the 

proportion of the overall disruption (%, bottom) explained by ATAC-QTLs.  (g) ATAC-QTLs 

affect binding motifs in an allele specific manner. Shown are for each of three indicated TF 

binding site (as identified in ENCODE62), aggregated plots of mean chromatin accessibility of 

ATAC-QTL-peaks overlapping each TFBS (Y axis, mean ATAC-seq signal) along the TF 

binding site (X axis, log2 distance) for heterozygote (light blue), homozygous with high ATAC-

seq signal (red) and homozygous with low ATAC-seq signal (black) genotypes.  (h) The effect 

sizes of lead ATAC-QTL SNPs (X axis) are well correlated with deltaSVM scores (Y axis) for 
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these variants. (i) Relation between contact domains, and stimulated ATAC-peaks, and ATAC-

QTLs associated with TF binding motifs. Shown are the distributions (Y axis, density) of 

position (X axis) of ATAC-peaks (density histogram, grey) and ATAC-QTLs (blue) that overlap 

either an ETS1, CTCF, or BATF binding sites. Positions (X axis) are relative to Hi-C chromatin 

contact domain boundaries (dotted red lines). (j) GWAS variants enrichment for ATAC-QTL-

peaks. Shown are the enrichments (X axis) and significance (Y axis) for ATAC-QTL-peaks 

overlapping variants associated with indicated disease or phenotype. (k) ATAC-QTL and GWAS 

variant disrupting TF binding site. Shown is ATAC-QTL rs17293632 on chromosome 15 and the 

overlapping binding site for BATF. ATAC-seq profiles were combined between individuals with 

homozygous reference genotype (black), heterozygous genotype (light blue) and homozygous 

alternative genotype (red).  
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Figure 4. Genetic determinants of co-accessible peaks. (a) ATAC-QTLs. Q-Q plots of the P 

value for the association of ATAC-QTLs for correlated ATAC-QTL-peaks (blue) and single 

ATAC-QTL-peaks (red). (b) Co-accessible peak correlations. Q-Q plots of the P value for the 

correlation of genetically controlled correlated peaks (blue) and all correlated peaks (red). (c)  

Contact domains impact genetically controlled co-accessible peaks. Q-Q plots of the P value for 

the association of SNPs to either peak, when the co-accessible peaks are both inside a contact 

domain (blue) or are outside a Hi-C contact domain (red). (d) Example of genetically controlled 

co-accessible peaks. Shown is ATAC-QTL rs10815868 on chromosome 9 associated with four 

ATAC-peaks, overlapping a BATF binding site, where the alternative allele (A�G) is predicted 

to disrupt the site. ATAC-seq profiles were combined between individuals with homozygous 

reference genotype (black), heterozygous genotype (light blue) and homozygous alternative 

genotype (red). The correlated peaks are within a Hi-C contact domain (grey bar). (e) Schematic 

of co-accessible peaks in super enhancers. (f) ATAC-QTLs in super-enhancers. Shown are the 

enrichment of proportion of features overlapping super-enhancers (Y axis) for each of correlated 

peaks, genetically controlled correlated peaks, and genetically controlled correlated peaks in a 

domain compared to randomly shuffled domains (X axis). (g) An example of an ATAC-QTL 

associated with a correlated peak (rs2732588) residing in a CD4+ T cell super-enhancer. The 

super-enhancer and a HiC contact domain are marked by purple and grey bars, respectively. 

ATAC-seq profiles were combined between individuals with homozygous reference genotype 

(black), heterozygous genotype (light blue) and homozygous alternative genotype (red).   
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Figure 5. Association of chromatin accessibility and gene expression. (a) QQ-plot of RNA-

seq and ATAC-peak associations distinguishing cases where the ATAC-peak is an ATAC-QTL-

peak (red) or not (blue). (b) Correlation of effect sizes between ATAC-QTLs (X axis) and 

eQTLs (Y axis). (c) Manhattan plot of shared eQTL and ATAC-QTLs; negative log10-pvalue of 

eQTL association to SNPs that are ATAC-QTLs (FDR<0.05) is shown on y-axis; significant 

associations of gene expression with single ATAC-QTLs are highlighted in red and to multipeak 

ATAC-QTLs are highlighted in blue. (d) QQ-plot of gene expression associations to the SNPs 

that are lead associations to ATAC-peaks; multipeak ATAC-QTLs at FDR < 0.05 (blue), single 

ATAC-QTL-peaks at FDR < 0.05 (red), and insignificant lead associations at FDR > 0.05 (grey). 

(e) Conditioning analysis of association between gene expression, chromatin state and genotypic 

variation. QQ-plot representing p-values of the best per-gene association of gene expression to 

genotypes (i.e. eQTLs, RNA ~ GT, yellow) and the p-values of the best associations of their 

residuals to the ATAC peaks (RNA~CA�GT, green). Similarly, p-values of the best per-gene 

associations of gene expression to the ATAC peaks (RNA~CA, red) and p-values of association 

of their residual to genotypes (RNA ~ GT�CA, blue).  (f) Scatterplot of FADS1 expression (Y 

axis) and chromatin accessibility at chr11:61,595,257-61,595,730 colored by genotype before 

(left) and after (right) conditioning on rs174556. (g) An example ATAC-QTL (rs174556) on 

chromosome 11 that is also an eQTL for FADS1 and FADS2. The alternative allele (C�T) 

impacts the binding site for CTCF. ATAC-seq (top) and RNA-seq (bottom) profiles were 

combined between individuals with homozygous reference genotype (black), heterozygous 

genotype (light blue) and homozygous alternative genotype (red).    
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Figure 1. Chromatin dynamics in human T cell activation.
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Figure 2. Interindividual chromatin co-accessibility is constrained by chromosome 
architecture.   
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Figure 3. Genetic variants that affect chromatin states in human T cell activation. 
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Figure 4. Genetic determinants of co-accessible peaks. 
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Figure 5. Association of chromatin accessibility and gene expression.  
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