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Predators may attack isolated or grouped preys in a cooperative, collective way. Whether a
gregarious behavior is advantageous to each species depends on several conditions and game theory
is a useful tool to deal with such a problem. We here extend the Lett-Auger-Gaillard model [Theor.
Pop. Biol. 65, 263 (2004)] to spatially distributed groups and compare the resulting behavior with
their mean field predictions for the coevolving densities of predator and prey strategies. We show
that the coexistence phase in which both strategies for each group are present is stable because
of an effective, cyclic dominance behavior similar to a well studied generalizations of the Rock-
Paper-Scissors game with four species (without neutral pairs), a further example of how ubiquitous
this mechanism is. In addition, inside the coexistence phase (but interestingly, only for finite size
systems) there is a realization of the survival of the weakest effect that is triggered by a percolation

Crossover.
I. INTRODUCTION

There is a myriad of foraging strategies that predators
utilize to increase their rate of success. Among them,
preys may be attacked in a cooperative, coordinated way
by a group of predators, whose similar actions are cor-
related in space and time. When this involves different
and complementary behaviors, it is also called a collabo-
ration [1]. Examples of such coordinated or collaborative
hunting are lions [2—4] (including the pair of man-eaters
lions of Tsavo [5]), hawks [6], crocodiles [7], spiders [8, 9],
and several other species [1]. Interspecies collaborations
exist as well (for example, between fishermen and dol-
phins in the south of Brazil [10, 11] or between honey-
hunters men and honeyguide birds in Mozambique [12],
among others [13]). Hunting in group may bring several
benefits and has been widely discussed (for a review, see
Ref. [1] and references therein). For example, it increases
the probability of capturing a large prey [6, 14, 15],
helps prevent the carcass to be stolen by other preda-
tors [16, 17], allows for faster spotting [18] and more
complex distracting, tracking and chasing tactics, helps
related conspecific that may be unable to hunt or are in
the process of acquiring hunting skills [15, 19], etc. On
the other hand, there may be costs as it also increases the
competition between members of the group while feeding,
concentrates the search for food to a smaller territory
what may decrease the number of available preys, etc.
Grouping tactics may also benefit preys [20]. Surveil-
lance is more efficient when done in parallel by sev-
eral individuals while the others have more time to feed
themselves [21-23]. The probability of being caught is
smaller [24, 25] and the group may take advantage of
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group distracting [26], intimidating and escaping tech-
niques. On the other hand, a group of preys may be more
easily spotted than an isolated one and the resources
should be shared by all members [27, 28]. In addition
to those factors, for both preys and predators, collective
decision making can be improved in larger groups [29, 30]
(but information sharing may involve costs [31] and ben-
efits [32] as well).

Despite those mounting experimental results, much
less attention has been dedicated to model coordinate
hunting [33]. Recently, Lett et al [34] (hereafter referred
as the LAG model) introduced a game theory model in
which the abundances of preys and predators were as-
sumed constant and only the fractions of those popu-
lations using either an individual or collective strategy
coevolved (see, however, Ref. [35]). The LAG model
takes into account some of the advantages and disadvan-
tages for both preys and predators choosing a grouping
strategy. More specifically, it is assumed that grouping
lowers the risk of being preyed at the cost of increas-
ing the competition for resources, while predators have
a greater probability of success at the expense of having
to share the prey with others, sometimes referred to as
the “many-eyes, many mouths” trade off [27, 28]. Preys
and predators were modeled by assuming fully mixing
(no spatial structure), a mean field approach, and the
temporal evolution of both densities being described by
replicator equations [36].

A complementary approach, based on a less coarse
grained description, explicitly considers the spatial distri-
bution of individuals and groups. The local interactions
between them introduce correlations that may translate
into spatial organization favoring either grouping or iso-
lated strategies, raising a number of questions. For in-
stance, do these strategies coexist within predators or
preys populations? If yes, is this coexistence asymptot-
ically stable? How does the existence of a local group
induce or prevent grouping behavior on neighboring in-
dividuals? Do gregarious individuals segregate, forming
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extended regions dominated by groups? In other words,
how spatially heterogeneous is the system? Does the
replicator equation provide a good description for both
the dynamics and the asymptotic state? If not, when
does it fail? If many strategies persist, which is the un-
derlying mechanism that sustains the coexistence? We
try to answer some of these questions with a version of
the LAG model in which space is explicitly taken into
account through a square lattice whose sites represent a
small sub-population patch. Each of the sites is large
enough to contain only a single group of predators and
preys at the same time. If any of these groups is ever dis-
rupted, their members will resort to a solitary strategy,
hunting or defending themselves alone.

The paper is organized as follows. We first review,
in Section IT A, the LAG model [34] and summarize the
main results obtained with the replicators equation, and
then describe, Section II B, the agent based implementa-
tion with local competition. The results obtained in this
different framework are presented in Sec. III. Finally, we
discuss our conclusions in Section IV.

II. THE MODEL
A. Replicator Equations

Lett et al [34] considered, within a game theoretical
framework, grouping strategies for preys and predators.
Both can choose between single and collective behavior
and each choice involves either gains or losses for the
individuals, as discussed in the introduction. The rel-
evant parameters of the model are defined in Table I.
The size of both populations is kept constant during the
evolution of the system, only the proportion of coopera-
tive predators, z(t), and the fraction of gregarious preys,
y(t), evolve in time (see, however, Ref. [35] for a ver-
sion that also considers population dynamics). Whether
they increase or decrease depends on how their payoff
compare with the average payoff of the respective whole
population. If collective behavior earns a larger payoff
than the average, the associated density increases, oth-
erwise it decreases. This dynamics is then described by
the replicator equations [36].

For the fraction x of predators hunting collectively, the
payoff is [34]

eapG

n
The first contribution comes from the interaction of these
predators with the fraction y of preys that organize into
groups for defense. By better defending themselves,
the preys reduce the hunting efficiency by a factor «,
nonetheless e preys are captured with probability p and
the gain G per prey is shared among the n members of
the group of predators. The second term is the gain when
the group attacks an isolated prey, whose density is 1—y,
and shares it among the n predators as well. When the

Symb. Definition and default value

p |probab. of a group capturing a lone prey (0.5)

gain per captured prey per unit of time (1)
predators in a group (3)
preys captured by a group of predators (2)

G

n

e

«a |preying efficiency loss due to grouped preys
B |preying efficiency loss when hunting alone
v

reduction of prey resources due to aggregation (1)

F  |gain for isolated preys per unit of time (1)

TABLE I: Model parameters [34] along with the default value
considered here.

remaining 1 —x predators solely hunt, they are limited to
a single prey and an efficiency that is further reduced by
a factor B, what is somehow compensated by not having
to share it with others. This information is summarized
in the payoff matrix:

e eapG/n pG/n (1)
afpG BpG )

As isolated preys consume the available resources, the
gain per unit of time, on average, is F. Once aggre-
gated, the resources are shared and the individual gain
reduced by a factor 7. The fraction of preys that aggre-
gates becomes less prone to be preyed by a factor a. If
the grouped preys are attacked by a group of predators,
e preys are captured and Lett et al [34] considered that
the payoff coefficient is 1 — eap (imposing eap < 1). On
the other hand, a lone predator has its efficiency reduced
by a factor 3, thus the surviving probability is 1 — Bp
or 1 — afp for an individual or a group of preys, respec-
tively. The payoff for the fraction y of preys that remain
grouped is then written as

P, =(1—-eap)yFz + (1 —afp)yF(1 —z).

A similar consideration can be done for isolated preys
and the payoff matrix for preys is

B = (1 —eap)yF (1 —afp)yF ) (2)
(1-pF  (1-pp)F

It is the difference between the payoff P and its average,

P, that drives the evolution of both z and y. Indeed, the

replicator equations, & = (P, — P,) and y = y(P, — Py),

giving the rate at which these two densities evolve in

time, are [34]

_ ) Y
—(10)A<1_y>—(xl—x)A<1_y>
y=(10)B<1fx>—(yl—y)B<1fx>~
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These equations describe an asymmetric game and can
be rewritten as [36]:

& =xz(1—2)on2(1 —y) — a21y]

— (1 - y)[Bia(l - 2) — A, @

where

a2 = —p(B—1/n)G
a1 = ap(B —e/n)G
Bz = [y — 1+ Bp(1 —ay)]|F
Bor = [1 — v —p(1 — eay)]F.

()

Eqgs. (4) have five fixed points: the vertices of the unit
square and the coexistence state (z*,y*):

l'* _ /812
Bi2 + B2 (6)
* _ Q12
Q12 + Qo1

The asymptotic state is determined only by the signs of
12, Qo1, P12 and Paq [36] Indeed, if ajsas; < 0 or
B12821 < 0, the densities of grouped predators x and
grouped preys y will monotonously converge to an ab-
sorbent state in which at least one of the populations is
grouped, i.e, (0,1), (1,0) or (1,1). We use the notation
(Zoo, Yoo ) for the asymptotic state (e.g, oo = 2(t — 00))
of the whole system and z;y; for the site variable de-
scribing the combined state of site 5. On the other hand,
if apop; > 0 and B12821 > 0, there are two different
possibilities. From the linear stability analysis [34, 36],
(z*,y*) is a saddle point if a19812 > 0, and the system
ends up in one of the vertices of the unit square. On
the other hand, if 12612 < 0, the eigenvalues are imag-
inary and the system evolves along closed orbits around
the center (z*,y*). In other words, when this last condi-
tion is obeyed, both strategies, grouped or not, coexist at
all times with oscillating fractions of the population and
the time average of such behavior, once in the stationary
regime, corresponds to the point Eq. (6).

The above replicator equations predict that both z and
y approach the asymptotic state 1 or 0 exponentially fast
(except in the coexistence phase). For instance, as dis-
cussed below, inside phase (1,1), y attains the asymptotic
state much faster than z. Then, taking y = 1 and ex-
panding for small 1 — x, we get z(t) o 1 — exp(—aa1t).
The characteristic time is 7 = ay;' and as 8 — e/n, T
diverges as 7 ~ (Bn — e)~!. Different transitions may
depend on other coefficients, Eq. (5), but the exponent
at the transition is always 1.

Besides presenting general results, Lett et al [34] also
discussed the particular case when there is no reduction
in resource intake by the preys when they are grouped
(v =1). In this case, their behavior is a response to the
capture rate alone. By also considering F' = G = 1, we
see that while (15 is always positive, fB21, a2 and a9
change sign at e« = 1, fn = 1 and Sn = e, respectively.

These changes in sign lead to different asymptotic be-
haviors (phases) and locate the transition lines between
them. As expected, preys are grouped when « is small,
whatever the value of 5. Similarly, small values of 3 lead
to cooperating predators for all values of &. Remarkably,
for ea > 1 and intermediate values 1 < fn < e, the eigen-
values of the Jacobian associated with Eqs. (4) become
purely imaginary [34]. This corresponds to a coexistence
phase where the densities of grouped animals oscillate in
time along closed orbits around the center point (xz*,y*)
given by Eq. (6), as discussed above.

B. Spatially Distributed Population

The above description of the competition between col-
lective and individual strategies for both predators and
preys does not take into account possible spatial correla-
tions and geometrical effects. Space is usually introduced
by considering an agent based model in which individu-
als are placed on a lattice or distributed on a contin-
uous region. The unit cell corresponds to the smallest
viable group and on each site of the lattice there may
exist one or none of such groups. Since both predators
and preys coexist in each site, there are two variables
(xi,9:),i=1,...,N (where N = L? is the total number
of sites and L is the linear length of the square lattice)
that takes only the values 1 or 0, the former when agents
are grouped, the latter for independent individuals.

Differently from the mean-field description where pay-
off was gained from interactions with all individuals in
the system, alone or grouped, in the lattice version inter-
actions are local and occur only between nearest neigh-
bors sites (self-interaction is also considered since each
site has both predators and preys). At each step of the
simulation, one site (i) and one of its neighbors (j) are
randomly chosen. The predators (preys) on 4 interact
with the preys (predators) both on i and in all neigh-
boring sites, accumulating the payoff pY (P;z)). At the
same time, both groups in j also accumulate their payoffs.
The updating involves the site with the smallest payoff
adopting the strategy of the other with a probability pro-
portional to the difference of payoffs. For example, for
predators (and analogously for preys), if pY ) > ngz), the
probability that ¢ changes its state is

pi) _ pli)

Prob(z;  z;) = Prax

(7)

where P"®* is the maximum value of the accumulated
payoff of the predators for the chosen parameters. This
rule is known to recover the replicator equation when go-
ing from the microscopic, agent based scale to the macro-
scopie, coarse grained level [37].
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FIG. 1: Behavior of z(t) and y(t) as a function of time for
a = 0.2, L = 100 and several values of 5. From both mean-
field and simulations, the transition from collectively hunting
predators to single, individual hunt occurs at 8 =e/n = 2/3.
Notice that most of the preys are in the aggregated state at
all times, with y(¢) monotonously increasing from y(0) = 0.5
to y(co) = 1. Predators, on the other hand, have a richer
behavior (see text). As 8 = 2/3 is approached from both
sides, a plateau at x ~ 0.26 develops (the dashed, horizontal
line is only a guide to the eyes). Inset: Power-law behavior of
the characteristic time 7 such that | — 2| < 0.2 around the
transition at 8 = 2/3. The straight lines have exponent 1, as
predicted by the replicator equation, although the coefficients
differ by one order of magnitude. The top curve is for § —
2/3~ while the bottom one is for 3 — 2/3%.

III. RESULTS

Fig. 1 shows the temporal evolution of both z(¢) and
y(t) for @ = 0.2, several values of 0 < 8 < 1 and an
initial state with x(0) = y(0) = 1/2. In this case, for
all values of 3, preys remain mostly grouped at all times
since y(t) > 0.5 (bottom panel). As predicted by mean
field, there is a transition at 8 = 2/3 where predators
change strategy (top panel): for 8 > 2/3, hunting alone
becomes efficient and does not involve sharing the prey,
thus £, = 0. On the other hand, when the cost of shar-
ing the prey is compensated by a more efficient preying,
B < 2/3, we have xo, = 1. Interestingly, for the initial
state chosen here, the behavior of 2(t) is not monotonous
when (14 2a)/3(1 +a) < 8 < 2/3: z(t) initially de-
creases, £(0) < 0, until attaining a minimum value and
then resumes the increase towards o, = 1. The loca-
tion of this minimum corresponds to the time at which
y crosses the point y*, and the envelope of all minima
goes along with the plateau developed for § > 2/3 as
this value is approached from above. In this latter re-
gion, the behavior follows a two steps curve: there is a
first, fast approach to the plateau followed by the depar-
ture from it at a much longer timescale. In this model,
the fast relaxations occur as preys organize themselves

4

into groups (increasing y) while the later slow relaxation
is a property of the predators alone and is caused by the
orbit passing nearby an unstable fixed point, as can be
understood from Egs. (4). For values of « in the interval
(1+20)/3(1+a) < B < 2/3,if y < y*, x decreases until y
crosses the line at y*, whose value depends on both a and
(. At this point, the coefficient of & is zero and there is a
minimum. Once y > y*,  resumes the increase and ap-
proaches the asymptotic state zo, = 1 exponentially fast.
As 8 — 2/37, y* — 1 and the minimum crosses over to
an inflection point. Indeed, for 8 > 2/3, x(t) decreases
towards O after it crosses the plateau. This behavior is
seen both in the simulations and in mean field.

Associated with the late exponential regime there is
a characteristic time that diverges as a phase transition
is approached. For example, in mean field, 7 ~ a;ll ~
(Bn —e)~! for the (1,1)-(0,1) transition. In the simula-
tions, as x approaches the limiting value zo,, 7 is esti-
mated as the time beyond which |z — zo| < €, where
0 < € < 1 is chosen, for convenience, to be ¢ = 0.2.
The exponent measured in the simulations is in agree-
ment with the mean field prediction, as can be seen in
the inset of Fig. 1.
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FIG. 2: The same as in Fig. 1 but for « = 0.8. Two transi-
tions are present at § = 1/n = 1/3 and e/n = 2/3, with a
coexistence phase in between.

For a = 0.8 there is, in agreement with the replicator
equation, a third phase for 1/3 < 8 < 2/3 (see Fig. 2).
Differently from the previous case, in this intermediate
region, both strategies may persistently coexist. There
is an initial, transient regime in which both x and y os-
cillate and, depending on « and (3, the orbit may get
very close to one or both absorbing states (0 and 1), i.e.
heteroclinic. Because of the stochastic nature of the fi-
nite system, sometimes it ends in one of those absorbing
states during the oscillating regime, otherwise the ampli-
tude of the oscillations decreases and a mixed fixed point
is eventually attained. A natural question is how close
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this fixed point is from the mean field prediction, Eq. (3).
Since it is the coexistence phase that presents new, non
trivial behavior, we discuss it in detail now.
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FIG. 3: Asymptotic value of z(t) (top) and y(t) (bottom), for
B = 0.4, as a function of a. The solid lines correspond to the
fixed points, Egs. (6), predicted in mean field and discussed
in Sect. ITA. Strong finite size effects occur for large values
of @ where the system is absorbed onto the (0,1) state. Both
transitions are continuous and occur at a smaller a. than
predicted in mean field.

The mean field behavior can be observed in the solid
lines of Fig. 3 as the system enters the coexistence re-
gion at a fixed 8 = 0.4 from the (1,1) phase. This sce-
nario completely changes when predator and preys are
spatially distributed. While mean field predicts that x.,
and Yo, present a continuous and discontinuous transi-
tion, respectively, at o)™ = 0.5, the simulation shows
continuous transitions for both quantities at a smaller
value, a, ~ 0.45. This is not a finite size effect since
the curves, for the system sizes considered here, collapse
onto a single curve in this region up to o ~ 0.6 (and the
larger the system is, the wider the collapsed region be-
comes). Both solid curves monotonically decrease with «
in the coexistence phase: while z, smoothly goes from
1 down to 0, yo, barely changes and the curve is almost
flat (e.g., for B = 0.4, 1/5 < yoo < 1/3). Not only there
is little correspondence between this predicted behavior
for (o0, Yso), but even the overall, qualitative behavior
is different. In the spatial model, y., does not present a
monotonous, having instead a minimum at o ~ 0.6, even
in the limit of very large systems. The existence of this
minimum is remarkable because one would expect that as
predators become more efficient against grouped preys,
the fraction of such preys would decrease, exactly what
mean field predicts. Both x, and y., present strong fi-
nite size effects in this phase. During the time evolution
whose asymptotic state is shown in Fig. 3, above a size
dependent value of «, = is absorbed onto the group dis-
rupted state (zo = 0) and, immediately after, y, evolves
toward 1. The interval in which these effects occur (i.e.

where the (0,1) phase for 8 > 2/3 is reentrant inside the
coexistence phase) decreases with NV and seems to vanish
in the thermodynamical limit (we will get back to this
point below). Assuming that the trend shown in Fig. 3
continues as the system approaches the thermodynamic
(deterministic) limit, one can build a phase diagram as
shown in Fig. 4. For example, the (0,1) phase that, for
finite systems, extends below the line § = 2/3, seems
to be suppressed in the thermodynamic limit. The only
transition line that seems to disagree with the mean field
is the reentrant coexistence phase around o = 1/2 and
1/3 < B8 < 1/2, that is not, as mentioned above, a finite
size effect. No (0, 0) phase exists neither in the simulation
nor in mean field.

1

0.8
0.6
Sal COEXISTENCE
0.4
0.2
0
0 0.2 0.4 0.6 0.8 1
Q

FIG. 4: Phase diagram showing the different phases for the
spatial version after extrapolating the boundaries to the de-
terministic limit. The reentrant coexistence phase is at odds
with the replicator equations that predicts a vertical line at
a=1/2for 0 < B < 2/3. The horizontal lines, on the other
hand, do agree with mean-field. Notice that only the (0,0)
fixed point does not appear and is replaced by the coexistence
phase.

00 01 10 11

(a) (b) (c)

FIG. 5: Snapshots using a color code for the combined z;y;
strategy for 8 = 0.4 and o = 0.6 (left), 0.7 (middle) and 0.8
(right), inside the coexistence phase. Notice that the strate-
gies 10-01-11 organize into large intertwined domains, whose
characteristic size increases with «, against a 00 background.

In the coexistence phase, any of the four combinations
of lone and collective strategies for both predators and
preys may be present at each site (z;y;): 00, 01, 10 and
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11. Fig. 5 shows, for § = 0.4 and different values of
«, how these four strategies form domains whose sizes
become larger with «. While the coexistence persists,
the 00 strategy forms the percolating background against
which the other three struggle to survive by spatially or-
ganizing themselves in compact, nested domains whose
borders move, invading other domains in a cyclic way.
In Fig. 6a we show the direction of these invasions by
placing, in the initial state (¢ = 0, top row), one strategy
inside, and other outside a circular patch. The bottom
row shows the corresponding state after 40 Monte Carlo
steps. By switching positions, the invasion direction is re-
versed, indicating that it is not a simple curvature driven
dynamics but, instead, involves a domination relation.
Taking into account the six combinations of Fig. 6a, the
interaction (or flow) graph shown in Fig. 6b summarizes
how the different strategies interact (this particular ori-
entation of the arrows may change for other points in the
coexistence phase [38]). Similar cyclic dominance behav-
ior has been extensively studied in predator-prey models
with interaction graphs with three (Rock-Paper-Scissors)
or more species [37, 39] with intransitive (sub-)loops. In-
deed, the topology of the interaction (or flow) graph in
Fig. 6b is closely related to the one in Ref. [40]. The inva-
sion is either direct as in the first four columns (or, equiv-
alently, along the perimeter of the interaction graph) or,
as seen in the last two columns, involves the creation of
an intermediate domain. For example, a patch of 00s,
does invade 11 (fifth column in Fig. 6a) by first disrupt-
ing the preys organization, thus, the strategy 10 appears,
invades 11 and, in turn, is invaded by 00. In those cases
that the invasion proceeds through an intermediate do-
main (that is different from the diagonal strategies being
neutral), we use a dashed arrow in the interaction graph.
This cyclic dominance among the combined strategies of
preys and predators is the underlying mechanism that
explains the persistence of the coexistence state in this
region of the phase diagram.

Another characteristic of the coexistence phase is the
presence of strong finite size effects, as shown in Fig. 3
and discussed above. Again, this behavior can be ex-
plained observing the patterns in Fig. 5. Upon the
background of lonely strategies (00) there are combined
clusters of the 01+10+11 strategies whose characteris-
tic size increases with a (from left to right in the fig-
ure). Fig. 5¢ was prepared for a = 0.8, just below the
percolation threshold where, for L = 400, the 00 clus-
ter no longer percolates (while the combination of the
other three strategies does). Interestingly, for the system
sizes considered in Fig. 3, the size dependent percolation
threshold coincides [38] with the value of o where x4
drops to 0 and y., attains 1. That is, once the com-
bined cluster of 014+10+11 strategies percolates, disrupt-
ing the background 00 cluster, 01 is the only surviving
strategy. This is a percolation triggered, finite size re-
alization of the survival of the weakest effect [41]. The
sudden decrease of the 00 population effectively reduces
the 01 invasion rate what, as the name says, turns it into

the only surviving strategy. Differently from the model
in Ref. [40], here the crossed interactions are not direct,
as discussed above. Thus, even if 01 has two predators
and a single prey (00), this prey also helps by eliminat-
ing 11, that also happens to prey on 01. Thus, these
favorable conditions for 01 contribute for its persistence.
When the characteristic linear size of the combined clus-
ter 01+10+411, that increases with o, becomes larger than
L, it percolates and the system evolves until it is absorbed
onto the state 01. By further increasing L, it takes a
larger a to achieve the percolation threshold, explaining
the strong finite size effects observed. It is important to
emphasize that the invasion graph in Fig. 6 was obtained
for the particular values § = 0.4 and a = 0.7. Other
points inside the coexistence phase may show similar be-
havior albeit with some arrows reversed and strategies
switching roles while keeping some of the sub-loops in-
transitive and the coexistence stable [38].

IV. CONCLUSIONS AND DISCUSSION

The foraging behavior of predators and the correspond-
ing defensive response from preys is fundamental to un-
derstand how small animal communities spatially dis-
tribute, organize and eventually allow for more complex
forms of sociability [42—44]. It thus becomes important,
when studying simple models for such behavior, to go
beyond mean field where a fully mixed, infinite size sys-
tem is considered and the spatial structure, with the local
correlations it implies, is missing. We considered here a
finite dimensional stochastic version of the model intro-
duced by Lett et al [34] in which short range interactions
between predators and preys are taken into account. In
this way, spatial correlations that change, to some ex-
tent, the foraging behavior predicted by the replicator
(mean field) equation, and the accompanying new dy-
namical behavior are introduced. The game theoretical
framework for this model considers two strategies, col-
lective or individual, for both hunting predators and de-
fensive preys. The advantages and disadvantages of each
option are modeled by a set of independent parameters
from which we considered only two: how group preying
efficiency is reduced against grouped preys («) and the
reduction factor of lone predators (8). We then study
in detail this particular case, also discussed within mean
field in Ref. [34], in the limit of high population viscos-
ity in which strategy dispersion is a slow process, solely
occurring due to the newborn limited dispersal driven
by the pairwise updating rule between nearest neighbors
patches.

The extensive simulation results presented here con-
firm that the overall phase diagram is essentially the same
both in mean field and in finite dimension (but infinite
size). The combined strategies of both predators and
preys present four possible states in our binary version.
There are three phases in which either preys or preda-
tors (or both) behave collectively, (1,0), (0,1) and (1,1),
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FIG. 6: a) Dominance of strategies for 8 = 0.4 and a = 0.7 (inside the coexistence phase) starting from an initial, circular
patch (top row) we show the state after 40 MCS. In some cases, denoted by the solid arrow in the invasion graph at the right,
the initial patch increases in size. For the interactions along the diagonal (dashed arrows), the invasion occurs in two steps.
For example (fifth column), 00 first disrupts the aggregated preys, forming an intermediate 10 cluster, and then grows into it.
Notice that for the 10 invading 01 (last column), besides the strategy 11 that intermediates the invasion, there are some sources
of 00 growing inside the 10 patch (at the interface 01-10, all combinations may be created and, sometimes, migrate toward the
interior of the circle). b) Interaction (flow) graph showing the direction of the invasion front for each of the four strategies.

while the (0,0), albeit also absorbing, is not prevalent in
any region of the phase diagram. Instead, a coexistence
phase appears with 00 sites forming a percolating back-
ground upon which compact clusters of the other strate-
gies distribute and compete (for the particular o and
B used here). More importantly, our results unveil the
underlying mechanism not only for the strategies coexis-
tence in this phase, but also for the occurring strong finite
size effects. Specifically, this model is an example of an
asymmetric game presenting cyclic dominance, between
the above four combined strategies, in the coexistence
phase. Starting, say, with a 10 population of collective
predators preying on lone individuals, free riders have
the advantage of not having to share their preys with the
other members of the group and the 00 strategy invades
10. At this point, if preys organize into groups they may
better defend themselves, with 01 thus replacing 00. The
lone predators feel the urge to prey collectively and 11
dominates over 01. Finally, 10 invades 11 because it is
better for predators to go after grouped preys, since the
number of captured preys (e) compensates for the loss
of efficiency («). Thus, is better for aggregated preys to
stay alone. For = 0.7 and 8 = 0.4, the strategies 11,
01, 11 form spatially extended domains whose borders
are not static and move accordingly with the flow graph
of Fig. 6b. This metacluster is embedded in a sea of 00
strategies (that are essential for coexistence because the
01-10-11 loop is transitive) up to a size dependent value
of a where it percolates and the subsequent evolution
leads to the extinction of three strategies, the surviving
one being the 01 state. Interestingly, since this effect is
triggered by the initial reduction of the 00 strategy, the
only prey of 01, when the metacluster percolates, this
effective reduction of the preying rate of 01 is the re-
sponsible for its survival, a well known effect in cyclic
games, the survival of the weakest [41].

Besides studying simple models for this less explored
foraging variability, our results emphasize how important
it is to study both the asymptotic states and the dynam-
ics towards them in a finite size population. It is not
possible to disentangle the strong finite size effects ob-
served in the asymptotic state of the stochastic model
from the dynamical evolution since it is the very exis-
tence of heteroclinic orbits that make the system prone
to be captured by an absorbing state because of fluctua-
tions. Since actual populations are far from the thermo-
dynamical limit, the results obtained in the mesoscopic
limit become relevant. Although preys rapidly converge
to the asymptotic strategy, predators timescales may be
very large and the transient coexistence may extend to
times much larger than those that are relevant in prac-
tice. Moreover, the very existence of differences between
the mean field and the spatial version shows the impor-
tance of trying several complementary approaches even
in the study of quite simplified models. Because of the
importance of the geometry of domains, it is interesting
to examine their properties in more detail [38].

Preys and predators usually engage in somewhat coor-
dinated chase and escape interactions [45-47] that also al-
low them to explore and profit from neighboring patches.
It is thus interesting to check whether, and to what ex-
tent, the properties of the model, in particular in the
coexistence region, do change in the presence of mo-
bile individuals. Chasing and escaping behaviors may
be quite complex depending on the physical and cogni-
tive attributes of each individual and involve space and
time correlations between the displacements and change
in velocity of each agent [48]. Simple movement rules, if
not completely random, are likely to generate repeatable
(and, because of that, exploitable) patterns of behavior,
while those involving higher levels of variability and com-
plexity somehow involve more advanced cognitive skills.
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By studying such mobility patterns, one could get a bet-
ter understanding of how important the cognitive abili-
ties are in defining hunting strategies [1]. Moreover, these
patterns are also important for the demographic distri-
bution of both predators and preys since the shuffling of
strategies, depending on how random [49] the mobility
is, may decrease the spatial correlation and destroy lo-
cal structures, changing the spatial organization of preys
and predators [43].

Several other extensions of this model are possible. For
simplicity, we assumed that the size of a group is constant
and homogeneous throughout the population. However,
it can also be considered as a dynamical parameter coe-
volving along the collectivist trait. Also, it would be in-
teresting to further explore the possibilities offered by the
spatial setup, for example, having heterogeneous param-
eters depending on the landscape (resources may not be
evenly distributed) or due to the variability of the species.
Another important question is how the size of the hunters
group respond to an increase or stochastic fluctuations in
the size of a swarm of preys (and vice-versa). Although
we focus here on the binary situation, it is also possible
to have larger patches with enough individuals to form
more than one group, such that the variables describing
the local populations may now become continuous. In

addition, the present model does not consider noise, a
simple, effective way of taking into account some of the
missing characteristics that may influence the outcome.
It would thus be interesting to see how robust the results
are in the presence of noise. The short-range interac-
tions present in the model are not able to synchronize
distinct regions in the coexistence phase. By introduc-
ing a fraction of long-range connections we expect global
oscillations to be restored, similarly to those found in
mean-field [50, 51]. What is the threshold fraction of
such interactions for having global oscillations and how
it depends on the parameters of the model, along with
the other points above, are still open questions.
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