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Abstract

Understanding how the natural world will be impacted by environmental change over the coming

decades is one of the most pressing challenges facing humanity. Addressing this challenge is dif-

ficult because environmental change can generate both population level plastic and evolutionary

responses, with plastic responses being either adaptive or non-adaptive. We develop an approach

that links quantitative genetic theory with data-driven structured models to allow prediction of pop-

ulation responses to environmental change via plasticity and adaptive evolution. After introducing

general new theory, we construct a number of example models to demonstrate that evolutionary

responses to environmental change over the short-term will be considerably slower than plastic

responses, and that the rate of adaptive evolution to a new environment depends upon whether

plastic responses are adaptive or non-adaptive. Parameterization of the models we develop requires

information on genetic and phenotypic variation and demography that will not always be available,

meaning that simpler models will often be required to predict responses to environmental change.

We consequently develop a method to examine whether the full machinery of the evolutionarily

explicit models we develop will be needed to predict responses to environmental change, or whether

simpler non-evolutionary models that are now widely constructed may be sufficient.
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Introduction

Ecosystems from the deep ocean to the high arctic, from deserts to tropical forests are responding

to environmental change. Understanding and predicting these responses is one of the most pressing

issues currently facing humanity. For this reason, in the last quarter of a century, there has been

considerable interest in developing ways to understand how the natural world will be affected by

environmental change (Bossdorf et al., 2008; Dawson et al., 2011; Gilbert and Epel, 2009; Hoffmann

and Sgrò, 2011; Ives, 1995; Lavergne et al., 2010; Wiens et al., 2009). We introduce a new, general

approach combining insights from structured population modeling and evolutionary genetics that

allows us to examine how adaptive evolution and plasticity contribute to the way that populations,

and consequently the ecosystems in which they are embedded, respond to environmental change.

In order to understand how evolution and plasticity contribute to population responses to

environment change it is necessary to appreciate how different levels of biological organization –

alleles, genotypes, phenotypes, populations – are linked, as well as feedbacks between the different

levels. First, evolution is defined as a change in allele frequencies (Charlesworth, 1994). Allele

frequencies change as a direct consequence of changes in the frequencies of the genotypes the alleles

occur in, and genotype frequencies can change with a change in the distribution of the phenotypes

they code for (Fisher, 1930). The dynamics of phenotypic trait distributions are determined by

differential birth, death, development and inheritance rates across phenotypic trait values, where

inheritance is defined in the broad sense as the map between parental and offspring phenotypes

(Easterling et al., 2000; Rees et al., 2014). Given these links between different levels of biological

organization, there can be a cascading dynamic at the level of the phenotype, the genotype and

the allele caused by differences in the demography of individuals with different phenotypic trait

values (Lynch and Walsh, 1998). Another consequence of this variation is the ecology of the system:

population dynamics are an emergent property of who lives, who breeds and with whom, as are

the dynamics of the community and ecosystem the population is embedded within (?).

Although the cascading ecological and evolutionary consequences of variation in demographic
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rates is relatively straightforward to grasp, the devil is in the detail, and in particular how alleles

combine to make genotypes, how genotypes influence phenotypes, and how phenotypes influence

demographic rates (Coulson et al., 2011). The rate and direction of evolution depends upon how

these links influence the relative fitness of each allele within the population (Charlesworth, 1994).

The challenge is these links are often complicated, particularly for complex phenotypic traits like

body size that are routinely measured by field biologists. The complexity arises not only because

large gene networks and multiple cell types can contribute to the phenotype, but also because

the environment makes a contribution too via plasticity defined as change in a phenotypic trait

distribution that is not caused by genetic change (Gavrilets and Scheiner, 1993; Lande, 2009; ?).

The environment can be partitioned into biotic and abiotic components (?). The biotic compo-

nent captures the sizes and structures of the population of the focal species and of all other species

with which it interacts. The abiotic environment includes weather, mineral and water available.

The biotic and abiotic environments can influence one another, although the influence of the bi-

otic environment on the abiotic environment typically plays out over geological time scales (one

exception being manmade climate change).

The biotic and abiotic environment can influence both the map between genotype and phe-

notype (?), and between phenotype and demographic rates (?). Put another way, demographic

rates are a function of phenotype-by-environment interactions, and phenotypic traits are a func-

tion of genotype-by-environment interactions. For quantitative phenotypic traits, genotype-by-

environment interactions can often usefully be understood by treating the phenotype as consisting

of a genetic and an environmental component, with the environmental component determined by

aspects of the current and past biotic and abiotic environments (Falconer, 1960; Lande, 1982; ?).

The environmental component of the phenotype can capture phenotypic change caused by individ-

uals altering their physiology, metabolism, behavior or levels of gene expression. We use the term

epigenetic to refer to any process that does not involve genetic change that is captured by the dy-

namics of the environmental component of the phenotype. The biotic and abiotic environment can

also influence the generation of new alleles via, for example, retroviral insertions into the germline
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of their hosts, or via ultraviolet radiation (??). In Figure 1(a) we depict how different levels of

biological organization are linked and feedback to influence one another.

How can this view of biology be used to inform how populations respond to environmental

change? Environmental change occurs when the biotic or abiotic environment changes. Biotic

changes can result from the arrival of a new species or an extinction within the ecosystem, or from

evolution. In order to capture such change, and to model the links between alleles and demographic

rates described above and in Figure 1(a), it is necessary for models to incorporate (i) the genotype-

phenotype map at birth, (ii) how the phenotype develops, (iii) how the phenotype influences survival

at each developmental stage, (iv) the population’s mating system and (v) patterns of mate choice

based on the phenotype, as well as how these mate choice patterns influence (vi) reproductive

success, (vii) the distribution of genotypes among offspring and (viii) how all these processes result

in change in allele frequency and population size from one generation to the next. Processes (i) to

(vi) (and consequently also (viii)) can be influenced by the biotic or abiotic environment. Integral

Projection Models (IPMs) provide a very flexible structured modeling framework that allow each of

these processes to be simultaneously modeled (Coulson, 2012; Easterling et al., 2000; Merow et al.,

2014).

IPMs project the dynamics of phenotype distributions as a function of expected survival and re-

production, the way the phenotype develops and the distribution of offspring phenotypes (Easterling

et al., 2000). Numerous quantities of interest to ecologists and evolutionary biologists describing

life history, population dynamic and phenotypic traits can be calculated from IPMs (Childs et al.,

2003a; Coulson et al., 2011, 2010; Ellner and Rees, 2006; Rees et al., 2014; Steiner et al., 2014,

2012; Vindenes and Langangen, 2015). They consequently offer great potential to study ecological

and evolutionary responses to environmental change (Coulson et al., 2011). However, most IPMs to

date have been restricted to phenotypic variation in that they do not include genotype-phenotype

maps (Merow et al., 2014). A small number of evolutionarily explicit IPMs that do include these

maps have been developed. For example, Coulson et al. (2011) used IPMs to track the distri-

bution of body size and coat color in wolves, where coat color was determined by genotype at a
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single bi-allelic locus. Barfield et al. (2011) and Childs et al. (2016) developed IPMs of quantita-

tive characters determined by a large number of unlinked loci of small effect. However, none of

these models incorporates plasticity, nor different genetic influences on the phenotype at different

ages, and these omissions limit their utility in predicting how populations will be influenced by

environmental change (Chevin, 2015).

The aim of this paper is to introduce a general framework to allow prediction of how populations

respond to environmental change. We do this by developing IPMs of the bivariate distribution of a

phenotype split into its genetic and environmental components. The models incorporate different

development and inheritance rules for each component of the phenotype. We develop and illustrate

our framework using simple models. Our models reveal new insights into the way that plasticity

can influence evolution, while also allowing us to retrieve key findings from evolutionary genetics

that are already known.

Methods and Results

Modeling approach

We refer to functions as f(. . . ) where the dots inside parentheses define the variables the function

f operates on. Parameters of a function are referenced by the same letter as the function, with

subscripts defining the variable they influence. For example, a parameter fZ represents a parameter

of function f that operates on variable Z. We reserve I for the intercept of functions and a for

age. Age is only included in models for species with overlapping generations. Following standard

convention for IPMs (Coulson, 2012; Merow et al., 2014; Rees et al., 2014; ?), we use primes to

indicate the character value of an individual at the end of a time step. For example, this allows us

to show how an individual with phenotype Z can develop over a time step to a potentially different

phenotype Z ′, or how a parent with genotype G can produce an offspring with genotype G′. There

are, of course, other notational conventions that could achieve the same objective, and we recognize

that primes are used differently in evolutionary genetics; our notation is chosen to make clear how
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evolutionary processes can be included in the IPM framework. The definitions of all variables and

functions are summarized in Table 1.

Our starting point is a widely used phenotypic modeling approach that many readers will be

familiar with (Coulson, 2012; Merow et al., 2014; Rees et al., 2014). We then extend this approach

by developing dynamic models of the phenotype decomposed into its genetic and environmental

components. We start with a two-sex IPM that captures all demographic processes that can

contribute to the dynamics of phenotypes – survival, recruitment, development, inheritance, and

mating patterns (Coulson et al., 2011; Schindler et al., 2015; Traill et al., 2014a; ?) and which

iterates forwards the distribution of the phenotype at time t N(Z, t) (Figure 1(B)).

The model consists of two equations – one for females and one for males – with each equation

consisting of two additive components (?). The first component deals with survival and development

of individuals already within the population, the second component deals with reproduction and

the generation of phenotypes among newborns entering the population. We assume a pre-breeding

census such that survival occurs before development and recruitment before inheritance,

Nf (Z ′, t+ 1) =

∫

[Df (Z ′|Z, θ, t)Sf (Z, θ, t)Nf (Z, t)]dZ +

+ sCNfNm

∫∫

[Hf (Z ′|Zm,Zf , θ, t)M(Zm,Zf , t) . . .

. . . Nf (Zf , t)Nm(Zm, t)R(Zf ,Zm, θ, t)]dZmdZf

Nm(Z ′, t+ 1) =

∫

[Dm(Z ′|Z, θ, t)Sm(Z, θ, t)Nm(Z, t)]dZ +

+ (1− s)CNfNm

∫∫

[Hm(Z ′|Zm,Zf , θ, t)M(Zm,Zf , t) . . .

. . . Nf (Zf , t)Nm(Zm, t)R(Zf ,Zm, θ, t)]dZmdZf (1)

Nf (Z ′, t+1) and Nm(Z ′, t+1) are distributions of phenotypes Z ′ in respectively females and males

at time t + 1; Df (Z ′|Z, θ, t) and Dm(Z ′|Z, θ, t) are the probability of the phenotype developing

from Z to Z ′ in respectively females and males between t and t+1 as a function of environmental

drivers θ; Sf (Z, θ, t) and Sm(Z, θ, t) are survival functions for females and males from t to t + 1

including effects of phenotype and environmental drivers θ; s is the birth sex ratio measured as
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the proportion of female offspring produced; Hf(Z ′|Zm,Zf , θ, t) and Hm(Z ′|Zm,Zf , θ, t) describe

the probabilities of parents with phenotypes Zm and Zf respectively producing male and female

offspring with phenotype Z ′ as a function of environmental drivers θ at time t; M(Zm,Zf , t)

captures the rate of mating between a male with phenotype Zm and a female with phenotype

Zf ; R(Zf ,Zm, θ, t) is the expected litter size given a mating between a male and a female with

phenotypes Zm and Zf in environment θ at time t; CNfNm is a normalization constant that is used

to specify the mating system. In theory it could be combined with the mating function, but we

follow the notation of ?.

CNfNm can be used to capture a range of mating systems. For example, if we follow ? and

write,

CNfNm =

∫∞
Zf(min)

Nf (Zf , t)dZf
∫∞
0 M(Zm,Zf , t)Nm(Zm, t)Nf (Zf , t)dZmdZf

(2)

this adds a minimum size at which females can reproduce Zf(min). Depending on the mating be-

havior of the species, CNfNm can be modified in various ways. For example, it can easily be altered

such that the number of birth events is determined by the number of the rarer sex, as in monoga-

mous species. Mate choice can be influenced by specifying different functions for M(Zm,Zf , t). ?

demonstrate how it can be specified for random mating, assortative mating, disassortative mating

and size-selective mating.

In phenotypic IPMs, the phenotypic development functions are usually Gaussian probability

functions (Easterling et al., 2000), e.g.:

D(Z ′|Z, θ, t) =
1

V D(Z, θ, t)
√
2π

e
− (Z′

−µD(Z,θ,t))2

2V D(Z,θ,t)2 . (3)

The functions µD(Z, θ, t) and V D(Z, θ, t) respectively describe the expected value of Z ′ given Z

and θ at time t and the standard deviation around µD(Z, θ, t). The Gaussian form can also be

used for inheritance functions H(Z ′|Z, θ, t) with functions µH(. . . ) and V H(. . . ).

The two-sex IPM described above is not evolutionarily explicit as it does not include mechanistic

rules for genetic inheritance. We now take this phenotypic model and extend it to be evolutionarily

explicit. We do this by writing the phenotype as a function of genetic G and environmental E
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components Z = z(G, E). We assume that Z is a quantitative phenotype (i.e. measured in integer or

real values). The genotypic value G and environmental value E describe the numerical contributions

of the genetic and environmental components of the phenotype to an individual’s phenotypic trait

value. A simple map can consequently be written Z = G + E (Falconer, 1960).

G is determined by genotype, g. When the map between g and G is additive, the dynamics of

g and G are identical (Falconer, 1960). This means that the dynamics of alleles are identical to

the dynamics of genotypes in which they occur. In contrast, when alleles interact, either at a locus

(dominance) or across loci (epistasis) the map between g and G is not additive, and the dynamics

of G are not identical to the dynamics of g (Fisher, 1930). In classical quantitative genetics it is

assumed that the map between g and G is additive (Falconer, 1960). Under these assumptions,

it is not necessary to track the dynamics of g but evolution can be investigated by modeling the

dynamics of just G. When the map is additive we refer to the genetic component of the phenotype

as a breeding value and denote it A.

In classical population genetics, when the contribution of dominance and epistasis to evolution

are often a key focus, it is necessary to track the dynamics of g and calculate G from each g.

The map between G and the phenotype Z is often assumed to be one-to-one (?). In contrast, in

quantitative genetics, the environment can influence the map between A and Z by influencing the

value of the environmental component of the phenotype, E (Falconer, 1960). E can take different

values in different individuals and can vary within individuals throughout life. The dynamics of

the phenotype may not consequently represent the dynamics of the genotypic value A. Statis-

tical quantitative genetics is concerned with estimating moments of A from Z by correcting for

environmental and individual variables that determine E (Kruuk et al., 2008).

The genotype-phenotype map for phenotypic traits measured by biologists in free-living pop-

ulations is rarely known, and quantitative genetic assumptions are widely adopted (Kruuk et al.,

2008). In particular, the infinitesimal model is assumed in which A is determined by a large number

of unlinked loci of small, additive, effect (Fisher, 1930). Until we have a better understanding of the

genetic architecture of complex traits, this approach is the most powerful available to investigate
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evolution in the wild (Kruuk et al., 2008). We consequently adopt it here.

We track the joint distribution of the two components N(A, E , t). The utility of this is we

can write expressions to describe the dynamics of each of the components separately, if necessary,

before easily combining them to retrieve the dynamics of the phenotype. For Z = A + E we can

use a convolution (represented by the mathematical operator ∗) between the two components of

the phenotype to construct the phenotype (Barfield et al., 2011).

Phenotypic plasticity and epigenetic inheritance are captured in the dynamics of E . In previous

quantitative genetic IPMs E is a randomly distributed variable that captures developmental noise

(Barfield et al., 2011; Childs et al., 2016). A key contribution of this paper is to show how E can

be extended to also capture the biotic or abiotic environment as well as signatures of parental As

and Es. E is defined as function of these drivers, and we write E ′|E ,A, θ, t to capture the effects of

E , A and the environment θ at time t on E ′.

We now expand terms in our two-sex phenotypic IPM to include the genotype-phenotype map

Z = z(A, E). We start with the bivariate distribution of A and E at time t among females that

are already within the population at time t: Nf (A, E , t). Viability selection now operates on this

distribution. Viability selection is a simple multiplicative process describing the expected survival

from t to t+ 1 as a function of the phenotype. We can consequently write,

N s
f (A, E , t) = Sf (z(A, E), θ, t)Nf (A, E , t). (4)

When it comes to development, A remains fixed throughout life while E may vary,

N s
f (A, E ′, t+ 1) =

∫

Df (E ′|(E ,A, θ), t)N s
f (A, E , t)dE . (5)

Recruitment is dealt with in a similar way to survival in that it is a multiplicative process,

N r((Am, Em), (Af , Ef ), t) = M((Am, Em), (Af , Ef ), t)N(Am, Em, t) . . .

. . . N(Af , Ef , t)R(z(Am, Em), z(Af , Ef ), θ, t).

Note this is a recruitment related term of both male and female offspring that is not yet scaled by

the normalization factor CNfNm.
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As with development, inheritance of the genetic and environmental components of the phenotype

operates in different ways. For example, once mating pairs have formed and the number of offspring

from each mating has been determined, the distribution of offspring genotypes is predictable. We

can write the inheritance function for the genetic and environmental components of the phenotype

as,

N r
f (A

′, E ′, t+ 1) = sCNfNm

∫∫∫∫

Hf (A′|(Am,Af ), E ′|(Em, Ef , θ, t)) . . .

. . . N r((Am, Em), (Af , Ef ), t)dAmdEmdAfdEf (6)

then,

Nf (A′, E ′, t+ 1) = N r
f (A′, E ′, t+ 1) +N s

f (A, E ′, t+ 1). (7)

The same logic applies to the production of male offspring.

We can construct the phenotype from the two components A′ and E ′, e.g.

Nf (Z ′, t+ 1) =

∫

ΩZ′

N r
f (A′, E ′, t+ 1)dE ′dA′ +

∫

ΩZ′

N s
f (A, E ′, t+ 1)dE ′ (8)

where ΩZ′ is the set of (A′, E ′) values satisfying z(A′, E ′) = Z ′. For the second integral in equation

(8) we have z(A, E ′) = Z ′ as the A does not change within individuals and consequently has no

prime.

The additivity assumption means that models of clonal inheritance can generate very similar

predictions to models of two sexes, particularly if both males and females have similar demography.

However, clonal models are simpler than two sex models (Lande, 1982). We utilize this consequence

of the additivity assumption and initially work with clonal reproduction to examine how the dy-

namics of A and E influence population and phenotypic trait dynamics and adaptive evolution. We

can write a clonal model,

N(A, E ′, t+ 1) =

∫

[D(E ′|E ,A, θ, t)S(z(A, E), θ, t) +H(E ′|E ,A, θ, t) . . .

. . . R(z(A, E), θ, t)]N(A, E , t)dE (9)
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and

N(Z ′, t+ 1) =

∫

ω′
Z

N(A, E ′, t+ 1)dE ′. (10)

The above equations describe how the dynamics of a bivariate distribution of the genetic and

environmental components of the phenotype. Figures 1(B-G) provide graphical examples of how

these functions alter the bivariate distribution, and in particular how development and inheritance

rules differ between the environmental and additive genetic components. To demonstrate these

differences we now focus on developing univariate models of (i) A, and (ii) E . These models capture

limits where all phenotypic variation among individuals is determined by (i) genetic variation and

(ii) variation in the environmental component of the phenotype. We then combine insights from

these univariate model and construct models of the bivariate distribution of A and E .

We primarily work with linear functions for three reasons. First, they are easier to interpret and

analyze than non-linear or non-additive forms. Second, when the environment changes impacting

populations, responses, at least in the short term, can be well described with linear or linearized

additive models (Cooch et al., 2001). Third, selection, the underpinning of evolution, is often di-

rectional and well described with linear or linearized associations between phenotypic traits and

components of fitness (Kingsolver et al., 2001). Parameters used for all models are provided in

Appendix A (§1.1), as are expressions to calculate key statistics used to show ecological and evo-

lutionary change from model outputs (§1.2). Code to produce each figure is available on GitHub –

https://github.com/tncoulson/QG-meets-IPM-figure-code/tree/master and Dryad (?).

Adaptive Evolution

In this section we start with a simple clonal model of a univariate distribution of A. We go on to

show how genetic constraints can be imposed to slow, or stop, evolution. We then extend this clonal

model in two ways: first, to include a multivariate, age-structured, distribution of A, and second

we relax the clonality assumption and compare the dynamics of clonal and sexual models. Finally,

we introduce a new approximation to describe sexual reproduction and compare its performance

with our initial approach.
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Genotypes (and hence A) are determined at birth and remain fixed throughout life; neither

are influenced by the environment. A consequence of this is the development function simplifies

to a one-to-one map and can be removed from equation (5). We also start by considering clonal

reproduction, which means that the inheritance function can also be removed as offspring geno-

type is identical to parental genotype. The dynamics of A are consequently determined by the

survival and reproduction functions – selection. In these models, as long as there is genetic vari-

ation within a population, and fitness is a monotonic function of genotype, evolution, defined as

E(N(A, t+ 1)) = E(N r(A, t)) ̸= E(N(A, t)) (where E represents expectations) will occur.

In our first models we assume non-overlapping generations,

N(A, t+ 1) = N r(A, t) = R(A, t)N(A, t).

and a linear reproduction function R(A, t) = RI + RAA with expected fitness increasing with the

value of A. Over the course of a simulation of 30 generations (Appendix A§1.1 Model A), the

population never achieves an equilibrium structure or growth rate; it grows hyper-exponentially

(Figure 2(a), black line) and the shape of the breeding value distribution continually changes

location (Figure 3(b), black line) and shape (Figure 2(b,d, black lines)). Linear selection only

slowly erodes the genetic variance and skew (Figure 2(c,d)) and these changes lead to a slight

slowing of the rate of change in the mean breeding value (Figure 2(b)) and the population growth

rate (Figure 2(a)) each generation (the black lines are not linear).

In this model there are two ways to prevent the fitness function from generating change in the

location of the distribution. First, the fitness function can take unimodal non-linear forms such as

R(A, t) = RI +RAA+RA2A2 with RA2 < 0 and R(A, t) constrained to non-negative values. This

generates stabilizing selection, with the mean breeding value being maintained at the value that

maximizes fitness. Eventually, in this model, the breeding value distribution will achieve a trivial

equilibrium – a Dirac delta function at this value. Second, continual change in the location of the

distribution can be prevented by defining a maximum possible value for A that cannot be exceeded.

This captures a genetic constraint in the maximum possible character value – i.e. evolution has
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not evolved a genetic solution to creating a larger breeding value. In our models, this process can

be captured by setting the abundance of N(A > x, 1) = 0 where x is the maximum possible trait

value that evolution can achieve. Selection now pushes the breeding value distribution up to x,

again eventually achieving a trivial equilibrium captured by a Dirac delta function where all mass

of the distribution is at A = x.

Genetic constraints can also impact the transient dynamics of the breeding value distribution

(Figure 2(a-d, red lines)). When we impose a genetic constraint (Appendix A§1.1 model A with

x = 11.5), the genetic variance and skew evolve faster than when no genetic constraint is in place

(Figure 2(c) and (d)). These more rapid changes result in a slowing in the evolution of the mean

breeding value (Figure 2(b)), and of the population growth rate (Figure 2(a)).

Genetic covariances between traits can also capture genetic constraints and can also influence

the outcome of evolution. We demonstrate this by developing an age-structured model. A now

becomes age-structured but is still inherited at birth. We construct a multivariate character A de-

scribing the breeding values that influence a character at each age (e.g. A1,A2, . . . ,An for breeding

values at ages a = 1, 2, . . . , n). If some of the same loci contribute to the genetic components of

the character at different ages there is a genetic covariation across ages. The genetic variances

within each age, and the covariances between ages, can be used to construct a G matrix (Lande,

1979). Such age-structured G matrices underpin the character-state approach of quantitative ge-

netics (Lynch and Walsh, 1998). In the age-structured model that follows, we define a bivariate

normal distribution with a known variance-covariance structure as our starting point and iterate

this forwards (Appendix A§1.1 models B-D). We consider a simple case: a monocarpic biennial life

cycle where individuals in their first year of life do not reproduce and all age 2 individuals die after

reproduction. As with our model for a species with non-overlapping generations we assume clonal

inheritance,

N(A1, 1, t+ 1) = R(A2, 2, t)N(A2, 2, t)

N(A2, 2, t + 1) = S(A1, 1, t)N(A1, 1, t), (11)
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where survival from age 1 to age 2 is specified as

S(A1, 1, t) =
1

1 + e−(SI,1+SA1,1A1)
(12)

with expected survival to age 2 being highest for larger values of A1. Although A2 is not under

direct selection, its distribution is modified by its covariance with A1.

A2, the genotype at age 2, determines expected reproduction,

R(A2, 2, t) = e(RI,2+RA2A2). (13)

Although A1 does not directly influence reproduction, there is an association between it and repro-

duction via its covariance with A2. All age 2 individuals die following reproduction in this model,

although it is possible to extend our approach to any arbitrary number of ages.

The evolutionary dynamics that particular parameterizations of the fitness functions S(A1, 1, t)

andR(A2, 2, t) generate are dependent upon (i) the initial covariance between the characters and (ii)

the fitness functions (Appendix A§1.1 models B-D). Many parameterizations and initial covariances

are likely to generate evolutionary dynamics that may be biologically unrealistic. We demonstrate

this with three contrasting parameterizations, considering size as our trait (Figure 2(e)-(g)). In

the first example, (Figure 2(e) Appendix A §1.1 model B), the two characters positively covary

and experience selection in the same direction. Over the course of the simulation the average

developmental trajectory has evolved with A1 evolving to be 1.76 times larger and A2 evolving

to be 1.52 times larger. For a trait like body size, such a proportional change at different ages

may be appropriate. In examples (Figure 2(f and g), Appendix A§1.1 models C and D) the

bivariate character evolves in contrasting ways. In (F), A2 evolves much faster than A1 while

in (G) A1 evolves to be larger, while A2 evolves to be smaller. These simulations demonstrate that

only a constrained set of fitness functions and genetic covariances will give biologically realistic

evolutionary trajectories for the size-related traits that biologists often study.

We now return to a univariate model and examine the clonality assumption. How can the

clonality assumption be relaxed, and what are the consequences? In sexually reproducing species,

offspring inherit a mix of their parent’s genomes. However, genetic segregation means that full
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siblings do not have the same genotype. When additivity is assumed, the breeding value of offspring

is expected to be midway between parental breeding values. However, to obtain the distribution

of offspring genotypes, the contribution of genetic segregation to variation among offspring needs

to be taken into account. In two sex models, three steps are required to generate the distribution

of offspring genotypes or breeding values given parental values. First, a distribution of mating

pairs needs to be constructed. Second, the distribution of midpoint parental genotypes or breeding

values given the distribution of mating pairs needs to be constructed. Third, segregation variance

needs to be added to the distribution (Feldman and Cavalli-Sforza, 1979; Felsenstein, 1981; Turelli

and Barton, 1994). The mating system and the segregation variance are related: when mating is

assortative with respect to genotype, the segregation variance is small and siblings closely resemble

one another and their parents. In contrast, when mating is disassortative with respect to genotype,

siblings can differ markedly from one another, and the segregation variance is large.

Expressions have been derived for the segregation variance for the infinitesimal model where

it is assumed that traits are determined by a very large number of unlinked loci of small additive

effects and mating is random (Fisher, 1930). The infinitesimal model is assumed in most empirical

quantitative genetic analyses (Kruuk et al., 2008) and in our initial model. For random mating

where both sexes have identical demographies, the distribution of offspring breeding values given

parental breeding values is (Barfield et al., 2011):

N(A, t+ 1) =

(

N r(·, t)
2

∗
N r(·, t)

2
∗ φ
(

·,
σ2
r (A, t)

2

))

(A) , (14)

where ∗ represents convolution and φ(A,σ2) = 1√
2πσ2

exp
[

−A2

σ2

]

is a Gaussian function with mean

zero and variance σ2 representing the segregation variance.

If males and females have different demographies then they will have different distributions of

genetic values after selection; we represent these as N r
M (A, t) and N r

F (A, t), respectively. In this

case, eq. (14) is replaced by

N(A, t+ 1) =

(

N r
M (·, t)
2

∗
N r

F (·, t)
2

∗ φ

(

·,
σ2
r(M)(A, t) + σ2

r(F )(A, t)

2

))

(A) , (15)

where σ2
r(M)(A, t) and σ2

r(F )(A, t) are variances of the post-recruitment-selection genetic value of
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males and females. respectively. We do not superscript the rs with σ2 to avoid a notation making

it appear σ is raised to some quantity 2r.

The first two terms on the right hand side of equation (15) generates the distribution of ex-

pected parental midpoint values; it ensures that the mean breeding value among offspring is midway

between the two parental breeding values. However, because the parental distributions are halved,

the variance of this distribution is half that of the parental distributions. The third term on the

right hand side of equation (15) adds the segregation variance. For random mating, the variance

is assumed to be normally distributed with a mean of 0 and a variance of half the additive genetic

variance among the entire population when the population is at linkage equilibrium (Felsenstein,

1981). We approximate this variance as half the additive genetic variance in the parental distribu-

tion (Feldman and Cavalli-Sforza, 1979). This approach has already been incorporated into IPMs

(Barfield et al., 2011; Childs et al., 2016).

We now run two simulations (Figure 3(a)-(d)) to examine differences in the predictions of clonal

and sexual models. The first model assumes clonal inheritance and the second the convolution in

Equation (15), with both models assuming a linear function R(Z, t) (Appendix A§1.1 model E).

The two models predict slightly divergent dynamics. The reason for this is that equation (15) results

in the skew and kurtosis in NR(A, t) is reduced at each time step in the sexual model compared

to in the clonal model. If selection is exponential (and the starting distribution proportional to a

Gaussian distribution) then there will be no difference between the two approaches. This is because

a normal distribution multiplied by an exponential fitness function results in a normal distribution

with an unchanged variance (Diaconis et al., 1979). These results suggest that insights from clonal

models will approximate those from sexual models reasonably well, at least when males and females

have similar demography.

Some authors have queried the use of Equation (3) as an approximation in IPMs to the inheri-

tance convolution in Equation (15) used in models of sexually reproducing species (Chevin et al.,

2010; Janeiro et al., in press). However, being able to construct inheritance functions for A that

are of the form of equation (3) would be useful as it would permit methods developed for two sex
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phenotypic IPMs to be applied to evolutionarily explicit IPMs (e.g. Schindler et al., 2015). Given

Gaussian approximations frequently perform well in models of evolution (Turelli and Barton, 1994)

we hypothesize that Gaussian inheritance functions may perform well in evolutionarily explicit

IPMs. We consequently constructed a Gaussian inheritance function and compared results with

those obtained from the convolution.

Equation (15) results in the mean and variance of the parental and offspring breeding value

being the same. We can approximate this by ensuring that the function µH(A, t) passes through

the coordinate x = E(NR(A, t)), y = E(NR(A, t)) and that the variance V H(A, t) = σ2(NR(A, t)).

When both sexes have the same demography, we can write,

µH(A, t) = (1− η)ER(NR(A, t)) + ηA

V H(A, t) = (1− η)2σ2(NR(A, t)) (16)

where E and σ2 represent expectations and variances respectively and η represents the degree of

assortative mating. When η = 1 mating is entirely assortative, when θ = 0.5 mating is random and

when η = 0 mating is completely disassortative. An equation for the case when males and females

have different demographies is provided in the Appendix A§1.3. The approximation in Equation

(16) will increase in accuracy as the distribution of mid-point parental breeding values becomes

more Gaussian.

When we compared predictions from equations (15) and (16) with η = 0.5 using the same model

used to compare clonal and sexual life histories, results were indistinguishable (Figure 3(a)-(d). This

reveals that, for linear selection, Gaussian inheritance functions for A perform remarkably well.

None of our models to date include any form of mutation. We have not incorporated mutation

into our models as we are simulating responses to environmental change over a few tens to hundreds

of generations (Figures 1-3), and over that time period mutation is unlikely to play a major role in

adaptation. However, for simulations over longer time periods, we can incorporate mutation into

our models by slightly increasing the size of the segregation variance (e.g Lynch and Walsh, 1998).

This will have the effect of increasing the additive genetic variance, partly countering any loss of
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genetic variance due to selection.

Our approximation can be used to examine the dynamical contributions of non-additive genetic

processes to population responses to environmental change in a phenomenological manner. Fisher

(1930) demonstrated that dominance variance can be treated as an offset, and in our models this

would lower the intercept of the function µH(G, t) in equation (16). A consequence of this is that

the mean of the offspring genotype is no longer equal to the mean of parental genotype and the

dynamics of genotypes no longer exactly match the dynamics of alleles. We demonstrate this

with a single locus-two allele model. When the effects of alleles are additive, the dynamics of the

genotype captures the dynamics of alleles (Figure 3(e)). In contrast, when the heterozygote has

higher fitness, allele frequencies do not change once the equilibrium is achieved. However, selection

and inheritance alter genotype frequencies (Figure 3(f)). This effect of dominance variance can be

phenomenologically capturing within an IPM by setting the intercept of the inheritance function

for the genetic component of the phenotype to be less than ER(NRA,t)
2 – this imposes an offset that

can reverse gains made by selection (Figure 3(g)). Because this offset is negative when dominance

variance is operating, dominance variance will slow, or prevent, rates of evolutionary change. We

could easily phenomenologically explore how a particular value of this offset impacts predicted

dynamics, however, further work is required to relate different levels of dominance variance to

specific values of the offset in our models.

Having shown how IPMs can be formulated to project forwards the dynamics of the genetic

component of the phenotype under a wide range of circumstances, we now turn our attention to

the dynamics of the environmental component of the phenotype.

Plasticity

Plasticity is determined by the dynamics of E and in particular in how E is influenced by the

ecological environment θ. For this, we require a probability density function. We show in this

section how different forms of plasticity can be incorporated into evolutionarily explicit IPMs, and

explore the dynamics of some simple cases.
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To capture plasticity in IPMs we need to model the probability of transition from E at time

t to E ′ at time t + 1 as a function of the environment θ. For most plastic traits we have a poor

mechanistic understanding of development and inheritance patterns, and for that reason we use

the Gaussian probability density function in Equation (3).

In quantitative genetics it is often assumed that the mean of E(E , t) = 0 and any individual

departures are purely random (Falconer, 1960). In equation 3 this requires the intercepts and slopes

of the functions µD(. . . ) and µH(. . . ) to take the following values: µH
I = 0, µD

I = 0, µH
E = 1 and

µD
E = 1. We relax this assumption and allow the mean (and variance) of E to vary with time as θ

varies by specifying particular forms for development and inheritance functions of E .

Gaussian transition functions (equation 3) can be formulated to predictably modify moments of

the distribution of E from time t to time t+1. For example, careful choice of intercepts and slopes

of µDE , t, µHE , t, V DE , t and V HE , t can be used to predictable grow, or shrink, the variance of E

via either development or inheritance (Appendix A§1.4). In addition, specific biological processes

can be easily incorporated into the dynamics of E : if the slopes µD
E ̸= 0 or µH

E ̸= 0 then there will

be temporal autocorrelation in the value of E among individuals, and between parents and their

offspring. For example, if µD
E > 0 then individuals with a relatively large value of E at time t

will be expected to have a relatively large value of E ′ at time t+ 1. This property of development

functions is useful as it allows some memory of E across ages: if an individual has benefited from a

particularly good set of circumstances at one age, any phenotypic consequences can persist to older

ages. In a similar vein, if µH
E > 0 then a parent with a relatively large E at time t will produce

offspring with relatively large E ′s at time t + 1, a form of parental environmental effect (Nussey

et al., 2007).

Different formulations of µH(. . . ) and µD(. . . ) can be used to capture a variety of different

forms of plasticity (Table 2). When θ is incorporated as an additive effect, it acts to shift the

intercept of these functions as t changes. This means that the environment influences all values

of A in the same manner. If Z = A + E then Z changes as a function of how θ influences E if A

remains constant. A remains constant when it does not vary within individuals as they age, or if
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A′ in offspring is the same as A in parents.

Interactions between E , A and θ are listed in Table 2. Each form describes a different type of

reaction norm (Gavrilets and Scheiner, 1993). These forms allow E to develop among individuals

(phenotypic plasticity) or be inherited (epigenetic inheritance) as a function of an individual’s

breeding value A and the environment θ as well as the value of E at time t.

Plasticity can be either adaptive or non-adaptive (Ghalambor et al., 2015), and both forms

can be captured into our models. Adaptive plasticity enables populations to rapidly respond to an

environmental change. For example, if environmental change reduces population size, then adaptive

plasticity would result in a change to the mean of the phenotype via either phenotypic plasticity

(the development function) or epigenetic inheritance (the inheritance function) that leads to an

increase in survival or recruitment rates. In contrast, non-adaptive plasticity does the opposite,

potentially exacerbating the detrimental effects of environmental change.

We demonstrate this with an example of a simple IPM of a species with non-overlapping gen-

erations: N(E ′, t + 1) =
∫

H(E ′|E , θ, t)R(E , t)N(E , t)dE . The model contains no genetic variation

and the phenotype is determined by the density at the time the offspring is born. This means we

can remove A from the model. We assume a linear fitness function and a Gaussian inheritance

function,

R(E , t) = RI +REE +Rθθ

µH(E , t) = µH
I + µH

E E + µH
θ θ

V H(E , t) = V H
I

Next, we assume that the phenotypic trait is positively associated with expected recruitment such

that RE > 0. We also assume that the environmental driver is positively associated with expected

recruitment such that as θ increases in value, fitness increases (Rθ > 0). This means that the

population growth rate (in a density-independent model) or population size (in a density-dependent

model) also increases with θ. Now assume that a negative environmental perturbation decreases

θ such that fitness decreases. For adaptive plasticity to counter this, the effect of the decrease in
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θ on epigenetic inheritance must increase the expected value of E . In our simple model, this can

only occur if µH
θ < 0. Then, as θ declines, µH

θ θ becomes less, and the value of µH
I + µH

θ θ becomes

larger, increasing the mean of E and fitness. In general, in additive linear models like this, if RE

and µH
θ take opposing signs then plasticity will be adaptive.

We develop three density-dependent models of a phenotype in a species with non-overlapping

generations. In all models we define the fitness function to be R(E , t) = RI+REE+Rn(t)n(t) where

n(t) =
∫

N(E , t)dE and where Rn(t) < 0. In each model we define µH(E , t) = µH
I +µH

E E+µH
n(t)n(t).

We set in model (F) µH
n(t) = 0; in model (G) µH

n(t) < 0; and in model (H) µH
n(t) > 0 (Appendix

A§1.1).

The first model (F) does not include plasticity (µH
n(t) = 0), the second (G) captures adaptive

plasticity (µH
n(t) < 0 and RE > 0), and the third (H) captures non-adaptive plasticity (µH

n(t) > 0

and RE > 0). All three models include temporal autocorrelation in the environmental component

of the phenotype (sometimes referred to as phenotypic carryover) when µH
E > 0 (Table 2). Be-

cause the models are not age-structured and do not include development, plasticity operates via

epigenetic inheritance (e.g. maternal environmental effects). The same logic can be extended to

the development function in age-structured populations. In our examples, parameterizations are

chosen so all models converge to the same value of carrying capacity, K. Once all three models

have converged, we initially impose a one off perturbation. Model (G) regains the equilibrium

first, followed by model (F), and then model (H) (Figure 4(a)) showing that adaptive plasticity

allows the population to recover from a one off environmental perturbation much faster than when

there is no plasticity, or plasticity is non-adaptive. Non-adaptivity plasticity significantly slows

the rate at which the population can recover from a perturbation, with the initial population size

pre-perturbation only re-attained after 80 generations.

Adaptive and non-adaptive plasticity also impact the way populations respond to permanent

environmental change. We demonstrate this by running the same models (F), (G) and (H), except

now we impose a constant change in fitness by permanently changing the intercept of the fitness

function RI . When we do this, the three models attain different equilibria population sizes (Figure
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4(b)) and different mean phenotypes (Figure 4(c)). Model (G) achieves a larger population size

than the two other models. This buffering of the population against environmental change happens

because adaptive phenotypic plasticity results in a change in the mean phenotype (Figure 2(c)) that

increases the expected recruitment rate and asymptotic population size (Figure 2(b)). In contrast,

non-adaptive plasticity exacerbates the consequences via a change in the mean phenotype that

decreases fitness.

In contrast to our example models in the §Adaptive Evolution, the IPMs we have developed

in this section, and indeed all non-genetic IPMs so far published, achieve an asymptotic population

growth rate or equilibrium population size and a stable population structure. These IPMs have

monotonically increasing or decreasing fitness functions: an increase in the character results in

an increase in expected fitness. A consequence of this is that in these models the recruitment

function acts to alter the location of the character distribution, and often also alter its shape

(Wallace et al., 2013). This is reflected in the means (and often other moments) differ between the

distributions of the phenotype pre- and post-selection. In models at equilibrium with monotonic

fitness functions, the inheritance function must reverse the locational and shape changes caused by

the fitness function. This is because at equilibrium the moments of the phenotype distribution at

times t and t+ 1 must be equal.

In models of species with non-overlapping generations at equilibrium like those above, the

inheritance function for E must exactly reverse the changes to the character distribution generated

by the fitness function. This requires moments of parental and offspring characters to differ from

one another if NR(E , t)−N(E , t) ̸= 0. When there is a correlation between parental and offspring

traits in the inheritance function for E as in our models, the intercept of the inheritance function

must take a value such that offspring characters are smaller than their parent’s were at the same

age (Coulson and Tuljapurkar, 2008).

IPMs for species with overlapping generations include development functions D(E ′|E , a, t).

These functions can alter the size (population size) and shape of the distribution of E as indi-

viduals age. When generations are overlapping, and at equilibrium, changes to the location of the
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character distribution via survival, recruitment and development are all exactly countered by the

inheritance functions H(X ′|X , a, t).

Coulson and Tuljapurkar (2008) showed that in red deer age-specific effects meant that young

and old parents were incapable of producing offspring that had the same body weight as they did

at birth. This process reversed the effects of viability selection removing small individuals from the

population early in life. The same process was observed in marmots (Ozgul et al., 2010) and Soay

sheep (Ozgul et al., 2009) and may be general for body size in mammals.

The models we have developed do not incorporate the evolution of phenotypic plasticity. How-

ever, if genotype-by-environment interactions were included in models, such that different breeding

values had different responses to environmental variation, then plasticity could evolve. If this was

coupled with a segregation variance that introduced novel genetic variance, this could capture the

evolution of novel phenotypic plasticity. However, over the time periods over which our simulations

are conducted, the evolution of novel forms of phenotypic plasticity, is unlikely to play a major role

in population responses to environmental change.

We have now developed IPMs for (i) A where we assumed all individuals had the same, constant,

E and (ii) E where we assumed all individuals had the same, constant, A. We have shown how IPMs

can capture a wide range of biological processes including adaptive and non-adaptive plasticity and

correlated characters, and the circumstances when equilibria are achieved. We now link together

these advances into models of the joint dynamics of the bivariate distribution N(A, E , t).

Models for the phenotype consisting of genetic and environmental components

In the section we construct models where the character can be determined by a mixture of the

genetic and environmental components. These models allow us to explore how adaptive evolution

is influenced by plasticity.

We first develop a dynamic univariate version of the Breeders equation (Falconer, 1960) for a

species with non-overlapping generations in a constant environment. In this case, the environmental

component of the phenotype is assumed to be a consequence of developmental noise: individuals
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achieve their genetic potential, plus or minus a departure. At each generation within each breeding

value, the distribution of the environmental component of the phenotype is assumed to be Gaussian

with a mean of 0 and a constant variance (Appendix A§1.1 Model I).

Our initial conditions are a bivariate Gaussian distribution of A and E which we iterate forwards

for 300 time steps. Over time, the mean of the genetic component of the phenotype increases. In

contrast, the mean of the environmental component is constant. The population grows hyper-

exponentially (Figure 5(a)), the mean of the phenotype increases in value due to evolution (Figure

5(a,d)) and the additive genetic variance is slowly eroded (Figure A2). Because the additive genetic

variance is eroded, while the phenotypic variance remains constant, the heritability declines over

time (Figure A2).

Our second model (Appendix A§1.1 model J) has a negative density-dependent term in the

fitness function. The phenotype evolves faster in this model than in our density-independent model

(Figure 5(b)). Population size grows nearly linearly in this model (Figure 5(d)), although the rate

of increase does slow slightly each generation as genetic variation is eroded. The difference between

the hyper-exponential (density-independent model) and nearly linear increases (density-dependent

model) in population size explain the difference in the rates of evolution. This is because the

selection differential that determines the rate of evolution (an emergent property from our model

(Wallace et al., 2013)) has the population growth rate in its denominator. The population growth

rate is smaller in the density-dependent model (just above unity) than in our density-independent

one (it increases with time), and this leads to an increase in the strength of selection and the

rate of evolution (see also Pelletier and Coulson, 2012). A consequence of this is that the additive

genetic variation and heritability tend towards zero faster the in density-dependent model than in

the density-independent one (Figure A2).

In our third model (Appendix A§1.1 model K), negative density-dependence is included in the

inheritance function for the environmental component of the phenotype as well as in the fitness

function. This captures adaptive phenotypic plasticity. This results in a negative change in the

mean of the environmental component of the phenotype with time (Figure 5(c)). This decrease is
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reflected in a change in the mean of the phenotype itself. Adaptive phenotypic plasticity leads to

a decline in the population growth rate which results in a slight increase in the rate of evolution

compared to the density-dependent model with no plasticity. However, the effect is not large and

is only just distinguishable when comparing Figures 5(b) and (c).

In our final models (Appendix A§1.1 models L to N) we examine how a one off perturbation

influences the mean of the phenotype, its components and the population growth rate (Figure

5(g)-(l)) when there is no plasticity, adaptive plasticity and non-adaptive plasticity. We set the

variance in the genetic and environmental component of the phenotype to be equal, giving an initial

heritability of h2 = 0.5. In each model we allow the population to achieve the same equilibrium

population size in the absence of selection (RZ = 0). We then impose a one off mortality event

when 99% of individuals above the mean of the phenotype are killed off. At this point we also

impose selection (RZ = 0.1). In all three models the mortality event results in a small change in

the mean value of the phenotype (Appendix A§1.5 for an explanation) (Figure 5(g)-(i), red lines)

but a halving of population size (Figure 5(j)-(l)). Adaptive plasticity results in the environmental

component of the phenotype returning to its pre-perturbation value very quickly (Figure 5(g)-(i)

blue lines). In contrast, although the perturbation causes a modest change in the mean of the

genetic component of the phenotype, it takes > 10 generations for evolution to reverse the change

(Figure 5(g)-(i), black lines). This demonstrates that a strong selective effect can leave a large

population dynamic impact, but leave only a small initial signature in the phenotype even when

the trait is highly heritable.

Over the longer term, the dynamics of the all components of the phenotype, the phenotype

itself and the population dynamics all depend upon whether plasticity is adaptive or non-adaptive.

Adaptive plasticity allows the population size to initially recover from the perturbation more quickly

than when plasticity is absent or non-adaptive (Figure 5(j)-(l)). However, over a longer time

period, non-adaptive plasticity results in the population achieving a larger size than when plasticity

is absent or adaptive. These differences in population growth rate impact rates of evolution:

immediately following the perturbation, the rate of evolution is greatest when plasticity is non-
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adaptive. However, the rate of evolution then increases when plasticity is adaptive (Figures S2 and

S3). As with our previous models, the effects of adaptive and non-adaptive plasticity on rates of

evolution are relatively small, but our results demonstrate how the two processes can interact.

Signatures of evolution in models that are not evolutionarily explicit

The models in the previous section are quite complex. Do we always need to construct such

evolutionarily explicit IPMs to predict population responses to environmental change, or can we

rely on simpler, phenotypic IPMs? There are two reasons why it may be preferable to not construct

evolutionarily explicit models. First, evolutionarily explicit IPMs are more complicated to construct

than those that do not include genotypes or breeding values. Second, when data are unavailable

to explicitly include breeding values into models (Traill et al., 2014b), the effects of evolution on

predicted dynamics can still be explored by examining the consequences of perturbing parameter

values (Traill et al., 2014a).

When evolution occurs within a system we would expect parameters in phenomenological in-

heritance and development functions that are fitted to data to change with time. We can see this

in Figure 2(e)-(g)). In these age-structured evolutionarily explicit models, the bivariate breeding

value distribution (black contours) changes location as evolution occurs. We have fitted Gaussian

development functions to these bivariate distributions at the beginning of each simulation and

at the end (coloured image plots). The parameters that determine these developments functions

have clearly changed as the location of the functions have changed. A similar process occurs for

inheritance functions (not shown).

Numerous authors have previously noted this phenomenon in models of evolution. For exam-

ple, in population genetic (Charlesworth, 1994) and eco-evolutionary models (Coulson et al., 2011;

Yoshida et al., 2003) when genotype frequencies change with time, macroscopic, population level

quantities like mean survival and recruitment also change; in adaptive dynamic models, as one

strategy invades another, population level parameters inevitably change with strategy frequency

over time (Metz et al., 1996); in quantitative genetic predator-prey models population level param-
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eters of both predators and prey vary over time leading to persistence of the interaction (Doebeli,

1997); and in evolutionarily explicit IPMs parameters in inheritance functions have been shown

to change with time as evolution progresses (Rees and Ellner, 2016). These insights are useful

because if evolution is occurring within a system, then temporal trends in statistical estimates of

model parameters would be expected – in other words, the effect of time, either additively or in

an interaction with other parameters, would be expected in µH(Z, t), µH(Z, a, t) or µD(Z, t). If

marked temporal trends are observed in parameters in development and inheritance functions that

cannot be attributed to a changing environmental driver, then evolutionarily explicit IPMs may be

required.

What about parameters in fitness functions S(Z, t) and R(Z, t)? Can any inferences from

temporal trends in these parameters be made? In our approach, evolution of a focal trait would

not be expected to alter statistical estimates of the fitness functions. In our models, evolution

simply moves the location and shape of the phenotype distribution, but not its association with

survival or recruitment.

We have identified one circumstance where evolution will leave a signature in the dynamics of

fitness function parameters. Parameters in these functions can evolve in the presence of a genetically

unmeasured correlated character that is also evolving. To demonstrate this we construct a model

of a bivariate character, examine the dynamics it predicts, before exploring the consequences of

failing to measure one of the characters.

We assume clonal inheritance such that dynamics of the characters are solely determined by a

bivariate fitness function,

R(A, t) = RI −RA1A1 +RA2A2 (17)

The dynamics this model predicts depend upon the initial covariance between the two characters

in a similar way to our age-structured model (equation 11). In our first example the two characters

negatively covary, while in the second they positively covary (Appendix A§1.1 for model parameter-

izations). The initial negative covariation allows rapid evolution, with population growth (Figure

6(a)), the mean of the characters (Figure 6(b)), their variances (Figure 6(c))) and the covariance
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between them (Figure 6(d)) evolving relatively quickly. In contrast, when the two characters posi-

tively covary, evolution is much slower, with the character means, variances and covariance changing

much more slowly, even though the fitness functions are identical in each model (Figure 6(e)-(h)).

We now construct a fitness function for A1 when A2 is not measured. We start by defining

mean fitness, an observable, as E(R.t) = E(R(A, t)). The slope R̂A1,t is given by,

R̂A1,t = RA1 +
σ(A1,A2, t)

σ2(A1, t)
RA2. (18)

The intercept can be calculated in the usual manner by estimating the means of fitness and A1

R̂I,t = E(R, t)− R̂A1,tE(A1, t), (19)

giving,

R(A, t) = R̂I,t + R̂A1,tA1. (20)

Equation (20) is what would be estimated from data if A2 were not measured and included in

analyses (Kendall, 2015; ?). It will correctly describe the consequences of selection on A1 even

though A2 could be correlated with it. This is because the unmeasured correlated character impacts

fitness whether it is measured or not, and consequently impacts the association between the focal

character and fitness in its absence (?). However, the fitness function cannot provide accurate

predictions over multiple generations when it is assumed that the fitness function is constant.

Over multiple generations the existence of unmeasured correlated characters will alter parame-

ters in the fitness function in Equation (20) if selection alters genetic variances and covariances of

measured and unmeasured correlated characters (Figure 6(i)-(j)). This is because R̂I,t and R̂A1,t

are both functions of the covariance between the two characters (equations 18-20). If selection

alters this covariance, parameters R̂I,t and R̂A1,t will evolve with time. It is also why we use the

subscript t for R̂I,t and R̂A1,t. Evidence of correlated characters under selection can consequently

be inferred if parameters in fitness functions are observed to change with time in a system in the

absence of a changing environmental driver. Note that a non-stationary unmeasured environmen-

tal driver could also generate trends in parameter values in fitness functions in phenomenological

IPMs.
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Discussion

In this paper we develop an approach that allows prediction of how populations respond to envi-

ronmental change via adaptive evolution and plasticity. We do this by incorporating insights from

evolutionary genetics into data-driven structured population models. Our approach is to split the

phenotype into its genetic and environmental components and to model the dynamics of the genetic

component with functions based on understanding of the mechanisms of inheritance. In contrast,

the dynamics of the environmental component of the phenotype are modeled with phenomenolog-

ical functions that can be identified from the analysis of data. Our approach is appropriate for

sexually reproducing or clonal species with either overlapping or non-overlapping generations.

Evolutionarily explicit structured models

IPMs are now a widely used tool in ecology and evolution because of their versatility and the ease

with which they can be parameterized (Merow et al., 2014). All key statistics routinely estimated

in population ecology, quantitative genetics, population genetics and life history describe some

aspect of a character distribution or its dynamics (Coulson et al., 2010). IPMs are so versatile

because they describe the dynamics of these distributions. Characterization of the determinants

of these statistics gained via sensitivity or elasticity analysis of models have provided insight into

how ecological and evolutionary quantities that interest biologists are linked (Coulson et al., 2011).

Although this logic was developed several years ago, there has recently been criticism that IPMs

cannot be used to track the dynamics of multivariate breeding values expressed at different ages

(Chevin, 2015; Janeiro et al., in press). Our paper addresses this criticism head-on—we show how

IPMs can be formulated to capture a mechanistic understanding of inheritance and development.

In demonstrating this we develop a general modeling approach to capture population responses to

environmental change. Having done this, we are now in a position to construct IPMs of quantitative

characters and examine how perturbing the environment will influence not only the dynamics of

the phenotype and its genetic and environmental components, but also the life history (Steiner
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et al., 2014, 2012) and population dynamics (Easterling et al., 2000).

The work we present here adds to a growing literature that explicitly incorporates evolution into

structured models, and IPMs in particular. Within the population genetics paradigm, Charlesworth

(1994) developed structured models with a one-to-one map between genotype and phenotype in

age-structured populations. Building on this work, Coulson et al. (2011) showed how simple genetic

architectures can be incorporated into IPMs, developing a model to explore how evolution at a single

locus would occur simultaneously with phenotypic change of discrete and continuous characters,

life history and population dynamics.

Working in the quantitative genetic paradigm, Lande (1982) derived age-structured models

that tracked the dynamics of the mean of the additive genetic component of the phenotype (E(A)

in our notation) and the mean of the phenotype itself (E(Z)). He assumed a constant genetic-

variance covariance matrix and consequently weak selection and normally distributed character

values—assumptions we relax. Barfield et al. (2011) extended Lande (1982)’s approach to track

the dynamics of the entire character distribution and to stage-structured populations. In doing so,

they developed a general, flexible approach to track the entire distributions of A and Z. Childs et al.

(2016) extended this approach to two sexes. Because A is inherited with mechanistic rules that are

not impacted by the environment, while inheritance and development of E are plastic and can be

impacted by the ecological environment (Falconer, 1960), it is difficult to incorporate the effects of

the environment on the dynamics of the phenotype by focusing onA and Z as Lande (1982), Barfield

et al. (2011) and Childs et al. (2016) have done. In contrast, our approach (which otherwise has a

similar logic to Barfield et al. (2011) and Childs et al. (2016)) tracks the dynamics of E and A (or

G—the full genotypic value, including non-additive components—if desired), making incorporation

of environmental drivers that influence inheritance and development of [E ] more straightforward.

We show that it is possible to have selection operating on the phenotype while incorporating modern

understanding of genetic inheritance into the dynamics of the genetic component of the phenotype

and phenomenological insight into the role of the ecological environment on the dynamics of the

environmental component of the phenotype. By doing this, we show how population responses to
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environmental change via adaptive evolution, phenotypic plasticity and epigenetic inheritance can

be simultaneously explored. This opens up the way to provide novel insights into the circumstances

when each process is expected to contribute to population responses to environmental change.

Population responses to environmental change

Unlike previous evolutionarily explicit IPMs (Barfield et al., 2011; Childs et al., 2016; Rees and

Ellner, 2016), our approach requires explicit consideration of the inheritance and development of

E , the environmental component of the phenotype. This allows our models to capture a range of

plastic responses to environmental change along with adaptive ones. What do our findings say

about the contributions of plasticity, evolution, and their interaction to population responses to

environmental change?

Detrimental environmental change often causes a decline in population size. When there is an

association between a phenotypic trait and survival and recruitment rates, phenotypic change can

lead to increased survival and recruitment rates (Ozgul et al., 2010) and consequently an increase

in population growth rate and size. Two processes can lead to phenotypic change – plasticity

and adaptive evolution. There has been considerable discussion about the relative roles of each in

allowing populations to respond to change (e.g. Bonduriansky et al., 2012; Chevin et al., 2010).

Genotypes and breeding values remain fixed within individuals throughout life which means

that differential survival and recruitment rates are the processes that alter these distributions and

underpin evolution. The strength of differential survival and recruitment can be impacted by envi-

ronmental variation generating fluctuating selection (?). Environmental variation does not influence

genetic inheritance: once mating pairs are formed, inheritance of breeding values, A, does not alter

the mean or variance of breeding value distributions (Fisher, 1930). In contrast, distributions of the

environmental component of the phenotype can be altered via survival, recruitment, development

and inheritance with each process potentially impacted by environmental variation (Reed et al.,

2010). Given these differences between the dynamics of A and E plasticity can lead to more rapid

change than evolution in our models (e.g. Figure 5). This is because more biological processes can
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directly alter the distribution of plastic characters than can impact distributions of breeding values.

These results are consistent with those of other authors, including Lande (2009) and Chevin et al.

(2010), who also concluded that plastic change should be faster than evolutionary change. But how

quickly will evolution alter phenotypic trait distributions?

Our results on the speed of evolution suggest that claims of detectable rapid evolution in

quantitative phenotypes is likely to take a few tens of generations. For example, environmental

change increases mortality leading to a decline in population size, but for mortality selection to lead

to evolutionary change over the course of a generation, a large proportion of the population needs

to be selectively removed and the phenotype needs to be highly heritable. This is seen in our model

results (Figure 5(g)-(i)) and with a simple numerical example: when all individuals above the mean

of a normally distributed character are removed from the population and the trait has a heritable

of h2 = 0.5, population size halves in a single time step but the mean of the character will only shift

from the 50th percentile to the 37.5th percentile. For a standard normal distribution with a mean

of 0 and a standard deviation of unity, this means the mean would only shift by 0.319 – i.e. less

than 1
3
rd of a standard deviation – i.e. a long way from statistical significance. In reality, mortality

selection resulting from environmental change will likely result in a change to the mean of the

distribution that is only a fraction of a standard deviation compared to our example. Given this,

reports of rapid evolution due to environmental change increasing mortality selection over a small

number of generations (e.g. Coltman et al., 2003) should be treated with extreme caution. It is

much more likely that change is a consequence of phenotypic plasticity. Over multiple generations,

recruitment selection can also contribute to evolutionary change and our approach allows the role

of this to be investigated. However, unless reproduction is restricted to individuals with extreme

phenotypic trait values in both sexes, it seems unlikely that evolution can generate statistically

demonstrable evolutionary change over a small number of generations (?). This is not to say that

evolution is not important over longer time scales. Over tens of generations evolution can shift

phenotypic trait means to a greater extent than phenotypic plasticity (Figure 5(g)-(i) blue versus

black lines).
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In order for plasticity to allow populations to rapidly respond to environmental change, a large

proportion of individuals within the population must exhibit the same plastic response. A good

example of such a dynamic is for size-related traits that are determined by resource availability,

particularly when scramble competition is operating. When resources becoming limiting, all indi-

viduals will be unable to develop as rapidly as when resources are more common. A consequence

of this is that individuals that developed in cohorts when resource were sparse will exhibit smaller

body sizes compared to individuals in those cohorts that developed when resources were more

abundant. We can capture this form of plasticity in our framework with an additive effect of den-

sity in the inheritance or development function for E (e.g. Figure 4). In contrast, when contest

competition operates, larger individuals would acquire more resources than those that are smaller,

and would develop faster. We can capture this in our models with interactions between density, E

and A in either the inheritance or development functions for E .

The above discussion demonstrates how our approach can be used to capture different forms of

plasticity. However, for plasticity to help populations respond to environmental change it must be

adaptive: plasticity must change the mean trait value in a way that increases fitness (Ghalambor

et al., 2007). We demonstrate that for additive, linear models, adaptive and non-adaptive plasticity

can be specified by altering the sign for the effect of the environment in the function specifying

the mean dynamics of the inheritance or development functions (Figure 4). When interactions are

included in these functions specifying general rules for whether plasticity is adaptive or non-adaptive

will likely be more challenging. However, our approach provides a way in which to investigate when

plasticity is adaptive or non-adaptive, and how different types of plasticity will influence population

responses to environmental change.

Our results also show how plasticity can influence evolutionary rates. Plasticity, operating via

development and inheritance functions for the environmental component of the phenotype, alters

the distribution of the phenotype, and this can alter the strength of selection, which can then

influence the dynamics of the genetic component of the phenotype (evolution). The effects of plas-

ticity on selection and evolution can be surprisingly complex. We only examined the evolutionary
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consequences of plasticity following an environmental shock that influenced all individuals in the

same way, but even in this simple case we found that adaptive plasticity initially slowed the rate of

evolution compared to non-adaptive plasticity, before increasing it (Figure 5 and Appendix A). In

general in order to understand how plasticity will influence selection, it is necessary to understand

how it influences both the numerator and denominator of the selection differential that underpins

evolution (Pelletier and Coulson, 2012). The numerator is the covariance between the phenotype

and absolute fitness (Falconer, 1960) and the denominator is mean fitness. In our models of species

with non-overlapping generations this is mean recruitment – the population growth rate (Fisher,

1930). Selection is linear in our models where plasticity influences all individuals in the same way

via an additive effect of density on inheritance of the environmental component of the phenotype

(figure 5), and this means that plasticity influences the population growth rate rather than the nu-

merator of the selection differential. A consequence of this is that it is differences in the population

growth rate that generates the differences in evolutionary rates between models when plasticity

is adaptive and non-adaptive. In more complex cases when plasticity influences the covariance

between the phenotype and fitness via genotype-phenotype interactions within a generation, to

understand how selection influences evolution it is necessary to understand how plasticity not only

influences mean fitness, but also how it generates differences between the covariance between the

genetic component of the phenotype and fitness and the covariance between the phenotype itself

and fitness. Because the components of the selection differential can be calculated from IPMs

(Coulson et al., 2010; Wallace et al., 2013) the approach we develop here provides a flexible way to

examine how different types of plasticity can influence evolution following environmental change.

We have not considered bet-hedging in this paper. Bet-hedging is another form of plasticity that

can influence the way populations respond to environmental change and it can be incorporated into

IPMs (?). Deterministic IPMs incorporate probabilistic transitions when V H(E ′|E ,A, t) > 0 and

V D(E ′|E ,A, t) > 0. These probabilities do not vary from one time step to the next. In stochastic

models these functions can include terms for an environmental driver θ, such that the variation

in trajectories changes with the environment. In evolutionarily explicit models, the variance in
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transition rates among different values of E can be made to depend upon θ, A and their interaction

(if desired). This means that individuals with specific values of A can produce offspring with

more variable values of E (and consequently Z) in particular environments than individuals with

other values of A. In this paper we focused on the incorporation of θ into µH(E ′|E ,A, θ, t) and

µD(E ′|E ,A, θ, t) but responses to environmental change could also be incorporated into functions

for the standard deviation that we use to construct our kernels.

In order to explore how the various forms of plasticity influence rates of evolution for real

systems it will be necessary to parameterize our models with data.

Parameterizing and analyzing evolutionarily explicit IPMs

A large literature exists on how to statistically parameterize IPMs (Easterling et al., 2000; Merow

et al., 2014; Rees et al., 2014). The vast majority of IPMs have been constructed phenomenolog-

ically, using statistical descriptions of observational data. Several authors have shown how fixed

and random effects incorporated into these statistical functions can be formulated within IPMs

(Childs et al., 2003a; Coulson, 2012; Rees and Ellner, 2009), but additional statistical estimation

is required to parameterize the evolutionarily explicit IPMs we have developed.

Fitness functions in evolutionarily explicit IPMs can be parameterized using standard general,

generalized and additive regression methods that are routinely used to parameterize phenomeno-

logical IPMs (Rees and Ellner, 2009). If relatedness information is available and the infinitesimal

model is assumed, genetic and phenotypic variances and covariances can be estimated using the

animal model (Lynch and Walsh, 1998). These quantities can be used to construct the initial dis-

tributions of the genetic and environmental components of the phenotype. Parameter estimates of

ecological drivers fitted as fixed or random effects in the animal model can be used to parameterize

inheritance and development functions for the environmental component of the phenotype. It is

consequently possible to parameterize models using our approach with existing methods.

There is also a large literature on how to analyze IPMs (Ellner and Rees, 2006; Steiner et al.,

2014, 2012). The majority of these tools, including sensitivity and elasticity analysis of model
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predictions to transition rates and function parameters (Coulson et al., 2011, 2010; Ellner and Rees,

2006; Steiner et al., 2014, 2012), are likely sufficiently general to be applicable to evolutionarily

explicit IPMs. In future work we plan to parameterize models for bird, mammal and fish species

with overlapping generations and to analyze them with existing methods. Once evolutionarily

explicit IPMs have been parameterized and analyzed we will be able to explore how populations,

phenotypic characters and life histories are predicted to respond to a range of environmental changes

via plasticity and adaptation.

When should evolutionarily explicit IPMs be used to predict population re-

sponses to environmental change?

Chevin (2015) and Janeiro et al. (in press) speculated that published IPMs that did not include

explicit evolutionary processes could provide spurious insight. Three strands of evidence suggest

this speculation may often be unwarranted.

First, the signature of evolutionary change in model predictions is a function of the heritability

of the trait: when the phenotypic variance is dominated by the environmental component of the

phenotype then the dynamics of that component will dominate model predictions. Most IPMs to

date have been constructed for body weight (Merow et al., 2014), a trait that often has a heritability

of less than 0.2 in vertebrates (e.g., blue tits; Garnett, 1981) and often around 0.1 (e.g., bighorn

sheep; Wilson et al., 2005). This means that model predictions will be dominated by the dynamics

of the environmental component of the phenotype and that a phenomenological statistical approach

to parameterising these models has the potential to capture observed dynamics well.

Second, even when phenotypic traits are heritable, they rarely evolve in the wild as predicted:

evolutionary stasis of heritable phenotypic traits in the presence of directional selection is frequently

observed in nature (Merilä et al., 2001). When fitness functions are monotonic in the phenotypic

value and selection is directional (which is typical for body size (Kingsolver et al., 2001)), then

in order to maintain an equilibrium trait distribution the inheritance function must reverse the

phenotypic changes caused by selection. Coulson and Tuljapurkar (2008) showed this for the mean
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phenotypic trait. However, when the genotype-phenotype map is additive and there is additive

genetic variance for the trait, directional selection is expected to result in evolutionary change and

the inheritance function for the genetic component of the phenotype can not reverse genetic changes

attributable to selection. Unmeasured genetically correlated characters can prevent evolutionary

change in these circumstances, although the cases when this is likely to prevent evolution are restric-

tive, and evidence for such characters playing a major role in limiting evolution in the wild is lacking

(Agrawal and Stinchcombe, 2009). Assuming selection on the phenotype has been measured ap-

propriately and is directional, this suggests that the assumption of an additive genotype-phenotype

map may be violated, and the mean of the parental and offspring breeding value distributions may

not be equal. A mechanism such as over-dominance can achieve this (Fisher, 1930). Our approach

allows the effects of relaxing assumptions of quantitative genetics on evolutionary change to be ap-

proximated through the use of phenomenological inheritance functions for the genetic component

of the phenotype.

Third, because evolutionary change is rarely observed in the wild when it is predicted, observed

phenotype change in natural populations is usually attributable to plasticity (e.g. Ozgul et al.,

2010, 2009). In these cases, standard, non-evolutionarily explicit, IPMs have accurately captured

observed dynamics (Childs et al., 2003a; Merow et al., 2014; Ozgul et al., 2010).

These three strands of evidence suggest that evolutionarily explicit IPMs may frequently not

be required to gain useful insight into population responses to environmental change. If there is no

statistical evidence of temporal trends in inheritance, development or fitness function parameters

once variation in the ecological environment has been corrected for, then the use of evolutionarily

explicit IPMs may result in the construction of unnecessarily complex models. There is often a

temptation to include ever more complexity into models, but this comes at the cost of analyt-

ical tractability: as more mechanisms or processes are incorporated into models, understanding

why a model produces the predictions it does becomes increasingly challenging. However, when

evolutionary change is convincingly documented (e.g. Reznick et al., 1997) or is proposed to be a

possible mechanism generating rapid phenotypic change (Coltman et al., 2003), the construction of
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evolutionarily explicit IPMs is advised as the models allow separation of the roles of adaptive and

plastic responses to environmental change.

We have shown how evolutionarily explicit IPMs can be constructed, invalidating the criticisms

of Chevin (2015) and Janeiro et al. (in press) that IPMs have not been developed to incorporate the

character-state approach of quantitative genetics. IPMs that are not evolutionarily explicit have

been used to address many questions in ecology and their application has proven insightful (Merow

et al., 2014). They are likely to remain widely used and we expect this use to result in important

new insights. However, we have extended their utility to cases where evolutionary processes are

known, or proposed, to be drivers of phenotypic change.

Conclusions

In this paper we have developed a theoretical modeling approach that links demography and quan-

titative genetics to explore how populations will respond to environmental change. The approach

is general, providing formal links between ecology and evolution. Our work builds upon a growing

literature of developing evolutionarily explicit structured population models. This body of litera-

ture shows how flexible IPMs are. They provide a powerful tool with the potential to unify ecology

and evolution.
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Appendix A: Model parameters and predicted dynamics

Model Parameterization

Model A:

N(A, t = 1) = φ(8, 1)

R(A, t) = 0.1 + 0.2A

µH(A, t) = A

V (A, t) = 0

x = ∞ or x = 11.5

Models B and C:

S(A1, 1, t) =
1

1 + e−(0.1+0.03A)

S(A2, 2, t) = 0

R(A1, 1, t) = 0

R(A2, 2, t) = e0.01−0.075A.

Starting conditions at time t = 1 are multivariate normal with the following parameters, Model

B:

E(A1) = 7

E(A2) = 10

σ2(A1) = 1

σ2(A2) = 0.8

σ(A1,A2) = −0.2
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Model C:

E(A1) = 7

E(A2) = 10

σ2(A1) = 1

σ2(A2) = 0.8

σ(A1,A2) = 0.2

Model D:

S(A, 1, t) =
1

1 + e−(0.1+0.06A)

S(A, 2, t) = 0

R(A, 1, t) = 0

R(A, 2, t) = e0.01+0.05A.

Starting conditions at time t = 1 for model D:

E(A1) = 7.5

E(A2) = 16

σ2(A1) = 1

σ2(A2) = 0.8

σ(A1,A2) = −0.1

Model E:

R(A, t) = 0.2 + 0.1A.

Model F: no plasticity:

R(E , t) = 0.2 + 0.1E − 0.002n(t)

µH(E , t) = 4.64 + 0.5E

VH(E , t) = 1
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Model G: Adaptive phenotypic plasticity:

R(E , t) = 0.2 + 0.1E − 0.002n(t)

µH(E , t) = 5 + 0.5E − 0.005n(t)

VH(E , t) = 1

Model H: Non-adaptive plasticity:

R(E , t) = 0.2 + 0.1E − 0.002n(t)

µH(E , t) = 4.29 + 0.5E + 0.005n(t)

VH(E , t) = 1

Model I

w(Z, t) = 0.3 + 0.1Z

µH(E , t) = 0

vH(E , t) = 1

Model J

w(Z, t) = 0.3 + 0.1Z − 0.01n(t)

µH(E , t) = 0

vH(E , t) = 1

Model K

w(Z, t) = 0.3 + 0.1Z − 0.01n(t)

µH(E , t) = 19− 0.065n(t)

vH(E , t) = 1
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Initial starting conditions for Z = A+ E for models I to K:

E(A) = 7

E(E) = 12

σ2(A) = 1

σ2(E) = 1

σ(A, E) = 0

Model L

w(Z, t) = 0.3 + 0.1Z − 0.01n(t)

µH(E , t) = 12

vH(E , t) = 1

Model M

w(Z, t) = 0.3 + 0.1Z − 0.01n(t)

µH(E , t) = 15.48 − 0.03n(t)

vH(E , t) = 1

Model N

w(Z, t) = 0.3 + 0.1Z − 0.01n(t)

µH(E , t) = 8.52 + 0.03n(t)

vH(E , t) = 1
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Initial starting conditions for Z = A+ E for models L to N:

E(A) = 7

E(E) = 12

σ2(A) = 1

σ2(E) = 1

σ(A, E) = 0

Models P and Q:

w(A, t) = 2− 0.13A1 + 0.15A2

N(A′, t+ 1) = w(A, t)N(A, t)

Starting conditions at time t+ 1 for model P:

E(A1) = 7

E(A2) = 15

σ2(A1) = 1

σ2(A2) = 1

σ(A1,A2) = −0.7

Starting conditions at time t+ 1 for model Q:

E(A1) = 7

E(A2) = 15

σ2(A1) = 1

σ2(A2) = 1

σ(A1,A2) = 0.7
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Calculating quantities from model outputs

The expectation of a distribution of X = (G,A, E ,Z) can be calculated as

E(X , t) =

∫

XN(X , t)dX
∫

N(X , t)dX
,

The variance of a distribution can be calculated as

σ2(X , t) =

∫

XXN(X , t)dX
∫

N(X , t)dX
− E(X , t)2.

For a bivariate distribution X consisting of traits X1 and X2 then the covariance between these

two traits will be,

σ(X1,X2, t) =

∫

X1X2N(X , t)dX
∫

N(X , t)dX
− E(X1, t)E(X2, t).

The skew can be calculated as,

s3(X ) =

∫

X 3N(X , t)dX
∫

N(X , t)dX
− 3E(X , t)σ2(X , t)−

E(X , t)3
√

σ2(X , t)3

The kurtosis can be calculated in the following way. First, we define the nth non-central moment

of a distribution at time t as mn(X , t) =
∫
XnN(X ,t)dX∫
N(X ,t)dX , then,

k4(X ) =

∫
X 4N(X ,t)dX∫
N(X ,t)dX − 4E(X , t)m3(X , t) + 6E(X , t)2m2(X )− 3E(X , t)4

σ2(X , t)
− 3

Gaussian inheritance function when demography differs between males and fe-

males

The distribution of mothers and fathers at time t is respectively defined as Nf
R(A, t) and Nm

R (A, t).

These distributions are the same size.

We can write

N(A, t+ 1) =

∫

H(A′|Am,Af , t)N
m
R (A, t)dA

where the component functions of H(A′|Am,Af , t) are

µH(A, t) = (1− η)E(Nf
R(A, t)) + ηA

V H(A, t) = (1− η)2σ2(NR(A, t))
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and σ2(NR(A, t)) is the variance in A across all parents.

Alternatively,

N(A, t+ 1) =

∫

H(A′|Am,Af , t)N
f
R(A, t)dA

where the component functions of H(A′|Am,Af , t) are

µH(A, t) = (1− η)E(Nm
R (A, t)) + ηA

V H(A, t) = (1− η)2σ2(NR(A, t)).

As the distributions Nf
R(A, t) and Nm

R (A, t) depart from normality, the approximations will

predict dynamics that diverge from those predicted by the convolution.

How do different functions alter character distributions?

Assume N(X , t) is proportional to a Gaussian distribution. The following parameterizations of a

transition functions H(X|X ′, t) in a model N(X ′, t+ 1) =
∫

H(X ′|X , t)N(X , t) will have no effect

on the location or shape of the distribution such that N(X , t) = N(X ′, t+ 1),

µH(X , t) = (1− β)E(X , t) + βX

V H(X , t) = (1− β2)σ2(X , t).

Note that in this model there is no fitness function and no selection.

When the intercept of µH(X , t) is less than (1−β)E(X , t) then E(X ′, t+1) < E(X ′, t) and vice

versa. A function µH(X , t) can consequently be parameterized to reduce the mean of a distribution

across generations or time steps if desired.

The slope β will reduce σ2(X ′, t + 1) by β2 compared to σ2(X , t). The intercept of V H(X , t)

injects additional variation. If the intercept is larger than (1 − β2)σ2(X , t) then σ2(X ′, t + 1) >

σ2(X , t). Functions µH(X , t) and V H(X , t) can consequently be selected to alter the variance from

one time step or age to the next.

The further the distribution N(X , t) departs from normality, the more approximate these equal-

ities will become. However, large departures from these equalities can be used to increase the mean

or variance of any distribution in a desired direction.
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In Figure A1 we show how µH(X , t) and V H(X , t) can be parameterized to modify the mean

and variance of N(X , t) when it is proportional to a normal distribution.

Mortality selection and changes in the mean phenotype

When a trait is normally distribution, selection needs to be strong in order to substantially shift the

mean of a phenotype distribution. Such strong selection inevitably leads to a decrease in population

size. In Figure A3 we show how killing 25% of the heaviest individuals has only a small effect on

the mean for a distribution with a mean of 0 and a standard deviation of unity. The evolutionary

response is even less if E and G are uncorrelated. For example, in the example in Figure A3, the

evolutionary response would be half the phenotypic response for h=0.5. In order to substantially

shift the mean of the a normal distribution via mortality selection it is necessary for the majority

of the population to die.
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Table 1: Notation used in the paper.

Notation Definition

Z An individual’s phenotypic trait value. Z can be anything that can be measured on

an organism when it is captured or observed. Z cannot be a life history quantity

(like life expectancy) which are emergent properties of the dynamics of Z.

G The genetic component of the phenotype defined as the total genotypic contribution

of an individual’s genotype to Z. G can be calculated across multiple loci and can

be decomposed into contributions from epistasis, dominance, and additive genetic

effects.

A The additive genetic component (breeding value) of G. Change in the distribution

of A reflects change in allele frequencies and consequently evolution.

E The environmental component of the phenotype defined as phenotypic variation not

attributable to genetic contributions. Nutrient or energy availability may influence

E meaning it may be correlated with environmental drivers θ.

θ An environmental driver. Can be either biotic or abiotic

X X ∈ {Z,G,A, E}

N(X , t) The distribution of X at time t. Note that this is an abundance distribution (not a

probability distribution):
∫ b
a N(X )dX is the number of individuals with characters

in the interval [a, b], and the integral of N(X , t) over the full range of X gives the

total population size at time t.

N(A, E , t) The bivariate distribution of the additive genetic and environmental components of

the phenotype at time t

Z = z(G, E) A function describing the phenotype as a function of its genetic and environmental

components

S(Z, t) Survival function: describes the expected association between Z and survival be-

tween t and t+1. Only used in age-structured models.
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R(Z, t) Recruitment function: describes the expected association between Z and the number

of offspring produced between t and t+1 that survive to recruit into the population

at time t+ 1.

H(X ′|X , t) Inheritance function: describes the expected probability of a reproducing individual

with character value X at t producing an offspring with character value X ′ at t+ 1

when it recruits to the population.

D(E ′|E , t) Development function: describes expected probability of a surviving individual with

E at t expressing E ′ at t+ 1. Only used in age-structured models.
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Table 2: Different forms of plasticity and their incorporation into IPMs. Each term in the table

below can be included in the functions µH(E , t), µH(E , a, t) or µD(E , a, t). Similar terms could be

included in V H(E , t), V H(E , a, t) or V D(E , a, t) if the variance in inheritance or development varied

for specific values of E in predictable ways. This would capture different forms of bet-hedging.

Term Biological interpretation Type of plasticity

µH
I No plasticity.

+µH
E ′E ′ Temporal autocorrelation in E No plasticity.

+µH
θ θ Ecological environment influences all values of E in the

same way.

Additive plasticity generated

by temporal variation in the

ecological environment.

+µH
θ,EθE Temporal autocorrelation in E depends upon the eco-

logical environment.

Non-additive plasticity gener-

ated by temporal and spatial

variation in the ecological en-

vironment.

+µH
AA Value of E depends upon E . No plasticity unless E also de-

pends upon θ.

+µH
θ,AθA Value of the E depends upon an interaction between

A and the ecological environment.

Genotype by environment in-

teraction.

+µH
A,E ′AE ′ Temporal autocorrelation in E depends upon the A. Genotype by environment in-

teraction.
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Figure legends

Figure 1. (A) linkages and feedbacks in biology. Evolution is defined as change in allele frequencies

but is often inferred from the dynamics of genotypes and phenotypes. Research into links between

alleles and genotypes, and particularly between genotypes and phenotypes often focuses on mech-

anism (red arrows). Differential survival and reproduction and patterns of mating determine (i)

the dynamics of phenotypes, genotypes and alleles and (ii) population, community and ecosystem

dynamics (purple arrows). Ecological dynamics determine the biotic environment that, along with

the abiotic environment, can influence the generation of new alleles as well as the maps between

genotype and phenotype and between phenotype and demographic rates. (B) IPMs track the dy-

namics of the phenotype distribution from t (black line) to t+ 1 (blue line). (C) In our approach,

we treat the phenotype as a bivariate distribution of an additive genetic (breeding value) and en-

vironmental component and iterate this distribution forwards. Dashed gray lines are clines, where

each point on a cline denotes the same phenotypic trait value. There are two steps to iterate the

phenotype forwards within a cohort. First (D) viability selection. In this example, all individuals

with a trait value below a threshold have lower survival than those above the threshold, and second

(E) development among survivors. Breeding values do not change within individuals as they age,

meaning (F) only selection can generate change in the breeding value distribution within a cohort.

In contrast, (G) selection and development can alter the distribution of the environmental compo-

nent of the phenotype. The dynamics of the two components combine to generate the dynamics

of the phenotype. (H) Mechanistic inheritance rules generate the distribution of offspring breed-

ing value given parental breeding values in two steps. First, a distribution of mid-point parental

breeding values is generated, before segregation variance is added to create a distribution of off-

spring breeding values. The inheritance rules for the map between the parental and environmental

component of the phenotype are less constrained than genetic inheritance and are not shown.

Figure 2. The role of selection on the dynamics of A. Dynamics of univariate A subject to

linear selection and clonal inheritance (a)-(d) (Appendix A§1.1 Model A). The population does not

59

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/090894doi: bioRxiv preprint 

https://doi.org/10.1101/090894
http://creativecommons.org/licenses/by/4.0/


reach an equilibrium, with (a) population growth, and the (b) mean, (c) variance and (d) skew

of the character continually evolving. Imposing a maximum possible character value constrains

change (red lines versus black lines (a)-(d)). In the age-structured case we track the dynamics of

a bivariate character distribution (e)-(g) (Appendix A§1.1 models B, C and D). The models in

(e) and (f) (Appendix AModels B and C) are identical except the starting distribution at time

t = 1 has a covariance of -0.2 in (f) compared to 0.7 in (e). The parameterisation in (g) is chosen

to demonstrate a case where the two traits evolve in different directions. The coloured image

plots in figures (e)-(g) represent Gaussian development functions D(Z ′|Z, t) fitted to the bivariate

distributions of A at the beginning and end of the simulation. Evolution of the bivariate character

has resulted in different parameterisations of these phenomenological functions. The lighter the

shading, the greater the probability of a transition from character value Z at age 1 and to Z ′ age

2.

Figure 3. The dynamics of inheritance (Appendix AModel E). The dynamics of (a) population

growth rate (R0), the (b) mean and (c) variance of A vary between models with clonal inheritance

(black line), the convolution in equation (15) (red line) and the Gaussian inheritance function in

equation (16) (blue line). Dynamics predicted from the convolution and the Gaussian inheritance

function are indistinguishable in this model. (d) the temporal dynamics of the clonal model versus

the other models. The initial distribution at t = 1 is Gaussian. After 100 generations the character

distributions predicted by the clonal and sexual models have only diverged slightly. The infinites-

imal model of quantitative genetics assumes that the dynamics of alleles can be inferred from the

dynamics of genotypes. Under this assumption (e) selection alters genotype and allele frequencies,

while inheritance does not. In contrast, (f) when dominance variance operates, both selection and

inheritance alter genotype frequency while neither alter allele frequencies. For a Gaussian dis-

tributed character, (g) dominance variance acts as an offset, reducing the intercept of a Gaussian

inheritance function.

Figure 4. Dynamics of E and plasticity. (a) Return times to equilibrium for three inheritance

functions (Appendix A§1.1 models F-H) following a one off perturbation (see main text). There
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is no plasticity incorporated into model F (black line). Model G (red line) and model H (blue

line) respectively incorporate adaptive and non-adaptive phenotypic plasticity. In (b) and (c) we

imposed a permanent environmental change by reducing the intercept of the fitness function. (c)

Represents the mean phenotype.

Figure 5. A dynamic version of the Breeders Equation. The dynamics of the phenotype (red

lines) and its genetic (black lines) and environmental (blue lines) components (a)-(c) and (g)-(i),

and the dynamics of the population (d)-(f) and (j)-(l). In the first model (a) and (d), both fitness

and inheritance of the environmental component of the phenotype are independent of density

(Appendix A§1.1 model I). In the second model (b) and (e) fitness is negatively density-dependent

and inheritance of the environmental component of the phenotype is density-independent (Appendix

A§1.1 model J). In the third model, both fitness and inheritance of the environmental component

of the phenotype are negative density-dependent (Appendix A§1.1 Model K). The treatment of

plasticity can dramatically influence the dynamics of the phenotype and population size (Appendix

A§1.1 models L-N). Adaptive phenotypic plasticity (h) and (k) leads to the population size and

phenotype recovering from a perturbation much faster than non-adaptive plasticity (i)-(l). The

absence of a plastic response (g) and (j) results in the population recovering from a perturbation

at an intermediate rate between cases where adaptive and non-adaptive plasticity are operating.

Figure 6. Dynamics of bivariate characters and evolution of fitness functions in the presence of

an unmeasured, genetically correlated character (Appendix A§1.1 model P and Q). We construct

a simple model with clonal inheritance of two correlated characters that both influence fitness. We

explore two initial starting conditions that only differ in their genetic covariance (Appendix A§1.1

models P and Q). In (a)-(d) the covariance accelerates the rate of evolution compared to (e)-(h).

The dynamics of the fitness function for each character when the other character is not measured

(i) and (j). Regardless of the covariance between characters, the fitness functions evolve during the

course of 120 time step simulation.

Figure A1. How parameterizations of transition functions for the environmental component of the

phenotype H(E|E ′, t) can be used to grow, maintain or shrink the mean and variance of N(E , t+1).
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We start with a normal distribution. The initial distribution is represented with a black line in

the main figures. The inset figures in (a) to (c) shows the transition functions, with the black line

representing the function that has no effect on the location or shape of N(E , t). (a) increasing or

decreasing the intercept of µH(E , t) influences the location, but not the shape of N(E , t). (b) How

altering the slope of µH(E , t) influences the shape of N(E , t). In this example the mean is unaffected

as the function passes through the x, y co-ordinate (E(E , t),E(E , t)). (c) how altering the intercept

of V H(E , t) influences the variance. The transition functions in the insets of (b) and (c) generate

distributions with the same means and variances (compare blue, red and black distributions in (b)

and (c)). A change in variance between N(E , t) and N(E ′, t + 1) achieved by altering the slope

of µH(E , t) or the intercept of V H(E , t) generates different amounts of mixing. In (d) upper and

lower H(E ′|E , t) functions impact the variance to the same extend (left hand figures) except the red

function simply spreads out the distribution without altering the relative rank of each individual.

In contrast, the blue function changes relative ranks (right hand figures).

Figure A2. Dynamics of the additive genetic variance (a)-(c) and the heritability (d)-(f) in models

I to K. Models of the additive genetic (back line) and environmental (red line) variance (g)-(i) and

the heritability (j)-(l) in models L to N. See Figure 5 main paper for dynamics of means and

population growth.

Figure A3. A normal distribution with mean 0 and standard deviation 1 prior to mortality

selection (black line). Mortality occurs, killing off the top 25% of individuals (red distribution).

The mean changes from 0 (vertical dashed line) to -0.0324. In other words, even a large highly

selective mortality event has a relatively small effect on the mean of a normal distribution.
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