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Abstract 

Schizophrenia is a common, heritable and highly complex psychiatric disorder for which 

genome-wide association studies (GWASs) have discovered >100 loci. This, and the progress 

being made in other complex disorders, leads to the questions of how efficiently GWAS can be 

used to identify novel drug targets and druggable pathways. Taking a series of increasingly better 

powered GWASs for schizophrenia, we analyse genetic data using information about drug 

targets and drug therapeutical classes to assess the potential utility of GWAS for drug discovery. 

As sample size increases, schizophrenia GWAS results show increasing enrichment for known 

antipsychotic drugs, psycholeptics, and antiepileptics. Drugs targeting calcium channels or 

nicotinic acetylcholine receptors also show significant association. We conclude that current 

schizophrenia GWAS results may hold potential therapeutic leads given their power to detect 

existing treatments.  
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Introduction 

Genome-wide association studies (GWAS) have been performed on numerous human disorders 

and traits 1, uncovering thousands of associations between disorders or quantitative phenotypes 

and common genetic variants, usually single nucleotide polymorphisms (SNPs), that ‘tag’ or 

identify specific genetic loci. Summary statistics from hundreds of GWASs are freely available 

online, including those from the Psychiatric Genetics Consortium (PGC), which regularly 

releases GWAS summary statistics for major psychiatric disorders. These include schizophrenia, 

a complex disorder with a lifetime prevalence of ~1%, significant environmental risk factors, and 

a heritability of 65%-85%2 that has been suggested to be highly polygenic in nature 3. As with 

other complex genetic disorders, the application of GWAS to schizophrenia has identified 

multiple disease susceptibility loci. In 2014, over 100 robustly associated loci were identified in 

a GWAS meta-analysis by the PGC 4. Similar progress is underway in other psychiatric 

disorders, with new GWAS reports expected for attention deficit hyperactivity disorder, autism, 

major depressive disorder, anorexia nervosa, and bipolar disorder in the next year. A key 

question is how the emergence of new and well powered GWAS data will inform the 

development of new therapeutics.  

Most attention on the therapeutic utility of GWAS has focused on the identification of individual 

drug targets 5. Nelson et al. recently demonstrated an increase in the proportion of drug 

mechanisms with genetic support from 2.0% at the preclinical stage to 8.2% among approved 

drugs 6. Results from genetic studies can also be harnessed for repurposing, which aims to find 

new indications for known drugs 7–9.  Recent studies have also shown how pathway analysis on 

GWAS data could help discover new drugs for schizophrenia 10,11; however, these studies, as 

well as studies focused on single genes or targets, have generally lacked a validation step to 

show if a GWAS has sufficient power to reliably identify known drugs: a crucial indication that 

would lend confidence to the discovery of novel drug associations in GWAS data. 

Mining of data available on drug-gene interactions (Fig. 1) allows the combination of individual 

drug targets into “drug pathways” represented by sets of genes that encode all targets of a given 

drug or potential novel therapeutic. Any drug can be represented by such a gene-set derived from 

its drug activity profile, and assigned a p-value generated by pathway analysis assessing the 

association of a given drug gene-set with the phenotype. An enrichment curve can be drawn for 
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any particular group of drugs using the entire dataset of drugs ranked by p-value. The associated 

area under the enrichment curve (AUC) provides a simple way to assess the enrichment of any 

class of drug for a specific disorder.  

In this article, we use MAGMA 12 for pathway analysis, accounting for confounders like linkage 

disequilibrium, gene size, and gene density, to generate p-values for drugs using the latest 

schizophrenia GWAS from the PGC (SCZ-PGC2) 4. Drug-gene interactions from the Drug-Gene 

Interaction database (DGIdb) 13 and the Psychoactive Drug Screening Program Ki DB 14 were 

used to assess the enrichment of schizophrenia drug classes. We computed the AUCs using three 

successively larger schizophrenia studies from the PGC Schizophrenia working group: SCZ-

PGC1 15, SCZ-PGC1+SWE 16, and SCZ-PGC2 4. After testing this, we proceeded to analyse the 

SCZ-PGC2 GWAS for the associations of druggable genes, druggable gene families and known 

biological pathways with schizophrenia. 

 

 

 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 6, 2017. ; https://doi.org/10.1101/091264doi: bioRxiv preprint 

https://doi.org/10.1101/091264


 

RESULTS 

Drug classes enrichment: Comparing different drug classes 

The enrichment of several ATC (Anatomical Therapeutic Chemical) drug classes in the 

latest schizophrenia GWAS (SCZ-PGC2) is reported in Fig. 2a. The enrichment is assessed 

using the AUC, where AUC = 100% indicates optimal enrichment and AUC = 50% a random 

result. AUC p-values were computed using Wilcoxon-Mann-Whitney’s test and converted to 

false discovery rate (FDR) adjusted p-values or q-values to account for multiple testing. 

Psycholeptics (ATC code N05), which include antipsychotics, are significantly enriched (AUC = 

70%, q-value = 6.66×10-11) as well as antiepileptics (AUC = 71%, q-value = 0.002). There is also 

a weak enrichment of immunosuppressants (AUC = 62%) and anesthetics (63%); however, the 

corresponding q-values are not significant (q-value = 0.051 and 0.063).  

Effect of sample size on therapeutic drug class enrichment 

Antipsychotics enrichment curves were generated for SCZ-PGC1, SCZ-PGC1+SWE and 

SCZ-PGC2 (Fig. 2b), using only SNPs present in all three studies (whereas results in Fig. 2a use 

all SNPs present in SCZ-PGC2). In the ATC system, antipsychotics (code N05A) are a subset of 

the psycholeptics class (N05). The p-values associated to the AUC were not corrected for 

multiple testing, since only three planned comparisons were made. For SCZ-PGC1, the 

antipsychotics enrichment is equal to a random result (AUC = 50%, p = 0.516); the enrichment is 

moderate for SCZ-PGC1+SWE (64%, p = 2.27×10-4), and high (82%, p = 2.31×10-15) for SCZ-

PGC2. As the sample size used in schizophrenia GWAS increases (and consequently the 

statistical power), so does the enrichment for antipsychotics.  

Druggable genes, gene families and pathways 

An analysis of druggable genes, gene families, biological pathways and drugs was 

conducted using SCZ-PGC2. A druggable gene Manhattan plot is presented in Supplementary 

Fig. 1a. We define druggable genes as genes with known drug interactions and genetic 

variations. After applying a Bonferroni correction, 124 out of 3048 are significant for 

schizophrenia, and 403 have an FDR q-value < 5%. Among significant genes, several are related 

to the major histocompatibility complex (MHC), calcium voltage-gated channels, potassium 

channels and cholinergic receptors (Supplementary Fig. 1b). 
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The gene families of the main targets of antipsychotic drugs are shown in Fig. 3a - most 

antipsychotics target dopamine and G protein-coupled 5-hydroxytryptamine (5-HT) receptors. 

The top druggable gene families, drugs and biological pathways from SCZ-PGC2 pathway 

analysis are shown in Fig. 3b, 3c, and 3d, respectively (associated data in Supplementary 

Tables 3-5); entities with a q-value < 5% are considered significant. Most of the top ranked 

drugs (Fig. 3c) for SCZ-PGC2 are calcium channel blockers and fourteen drugs exceed the 

significance threshold. The top ranked biological pathways (Fig. 3d) are voltage-gated calcium 

channel complex (from Gene Ontology or “GO”), gated channel activity (Reactome) and 

neuronal system (GO); however, they are not significant. The top-ranked druggable gene 

families (Fig. 3b) are C1-set domain containing, calcium voltage-gated channel subunits 

(CACN) and cholinergic receptors nicotinic subunits (CHRN). The C1-set domain containing 

family includes many MHC genes; although MHC results can be inflated due to high gene 

density and LD, the method chosen for the analysis (MAGMA) directly corrects for these 

confounders.  

Detailed associations for the top gene families are given in Supplementary Fig. 2. 

Among CHRN genes, controlling for LD, the cluster of genes CHRNA3-CHRNA5-CHRNB4 as 

well as CHRNA4 are strongly associated with schizophrenia. All together seven CACN genes 

show a significant association with schizophrenia, with CACNA1I, CACNA1C and CACNB2 

most highly ranked. DRD2 and HTR5A are the antipsychotic target genes with the strongest 

association amongst the dopamine and 5-HT receptors families. The top drugs targeting CACN 

receptors (with at least five targets) are nitrendipine and felodipine; the top drugs targeting 

CHRN receptors are varenicline and galantamine (cf. Supplementary Table 6 for a complete 

list). Potassium voltage-gated channels and cholinergic receptors are also targets of 

antipsychotics and are enriched in our analysis; however, most cholinergic receptors targeted by 

antipsychotics are muscarinic. Complete output of gene-wise and gene-set wise analyses can be 

found in excel format in Supplementary Tables 7-17. 
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DISCUSSION 

We find that the targets of antipsychotics, the primary drug class used to treat schizophrenia, are 

enriched for association in current schizophrenia GWAS results. We also show that the 

enrichment for known antipsychotics increases with the number schizophrenia cases included in 

the GWAS, the largest being SCZ-PGC2 (PGC Schizophrenia working group phase 2). In 

addition, our results show significant enrichment for two broad drug classes: psycholeptics and 

antiepileptics. Some antiepileptics have been investigated for treatment-resistant schizophrenia 

and may have GABAergic and antiglutamatergic action 17. These results suggest that, in 

schizophrenia (and other complex disorders), current well-powered GWAS results hold potential 

new therapeutic leads given their power to detect existing treatments.  

We also demonstrated that both calcium channel drugs and nicotinic acetylcholine receptor drugs 

show significant association in PGC2-SCZ. The top drugs are verapamil and cinnarizine, two 

calcium channel blockers. Verapamil has been reported to be as efficient as lithium for the 

treatment of mania 18. Cinnarizine, which has atypical antipsychotic properties in animal models 
19, is prescribed for vertigo because of its antihistamine properties and is also an antagonist of 

dopamine D2 receptors. Varenicline and galantamine are the two top ranked drugs in our 

analysis that target nicotinic acetylcholine receptors. Varenicline is a nicotinic agonist used for 

smoking cessation 20 while galantamine is an allosteric modulator of nicotinic receptors and an 

acetylcholinesterase inhibitor, and has been investigated for the treatment of cognitive 

impairment in schizophrenia 21. 

We also tested the association of known biological pathways and known druggable gene 

families. The top biological pathways in PGC2-SCZ are consistent with previous knowledge of 

schizophrenia and mirror our drug pathway results. Voltage-gated channels have been widely 

studied in psychiatric disorders 22, and L-type calcium channels have been associated with 

schizophrenia in numerous studies 23. For druggable gene families, our results show the strongest 

association signal for calcium voltage-gated channels, and a weaker signal for nicotinic 

acetylcholine receptors. However, individually, the nicotinic receptor CHRNA4 as well as the 

CHRNA3-CHRNA5-CHRNB4 cluster are strongly associated with schizophrenia. CHRNA4 

encodes the α4 subunit found in the α4β2 receptors, which are widely expressed in the brain, 

including the thalamus, brainstem, and cerebellum, and are particularly sensitive to nicotine 24. 
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The CHRNA3-CHRNA5-CHRNB4 cluster consists of genes in high LD with each other and has 

been linked to nicotine dependence 25. Some studies indicate that nicotine could have a positive 

effect on psychotic symptoms and cognitive function in schizophrenic patients 26; the expression 

of both the α4β2 and α7 nicotinic receptor subunits has been reported to be altered in the brains 

of patients in post-mortem binding studies 27. Our results are consistent with a recent study by 

Won et al. that also highlights the enrichment of acetylcholine receptor activity in schizophrenia 
28.  

Our analyses primarily focused on drugs with multiple targets (>5). To assess drugs with fewer 

targets, we specifically tested the association of individual genes within the druggable genome. 

Overall, 403 druggable genes have an FDR q-value < 5%. Many of these are clustered in the 

high LD region of the major histocompatibility complex (MHC) and are thus difficult to 

interpret. However, we also see significance with individual gene loci encoding calcium voltage-

gated channels, potassium channels and cholinergic receptors (Supplementary Fig. 1b) and 

multiple novel genes. The top druggable genes outside the MHC region and with 10 to 100 

associated ligands are DPYD, CACNA1I, CACNA1C, CACNB2, CHRNA3, AKT3, NOS1, 

MCHR1, CYP2D6, and DPP4. The associations with metabolic enzymes such as CYP2D6, in 

which variability may influence antipsychotic plasma levels, is difficult to interpret as the large 

number of treatment resistant cases included in the PGC2-SCZ GWAS may influence the results; 

however, recent studies suggest that CYP2D6 is not associated with treatment resistant cases 29. 

Compounds targeting proteins encoded by MCHR1 and DPP4 are of particular interest. MCHR1 

antagonists include high affinity ligands such as ATC0175 or ATC0065, which exhibit 

antidepressive and anxiolytic effects in mouse and rat behavioral models 30. DPP4 inhibitors 

include gliptins (dutogliptin, alogliptin, etc.) that are used to treat type 2 diabetes, and 

atorvastatin, which is prescribed for its cholesterol-lowering properties 31. Current antipsychotics 

can induce insulin resistance 32, and drugs which do not or would reverse these effects would be 

a welcome addition to the pharmacopoeia.  

 

In summary, our approach may be used to validate the power of a given GWAS and to identify 

new drug targets. This approach is primarily a way to generate new therapeutic hypotheses from 

(hypothesis-neutral) polygenic genetic data. It is suitable for use as a filtering process in the first 
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stages of drug discovery, with detailed target qualification analyses and validation experiments 

necessary for individual genes and molecules. We conclude that sufficiently powerful GWASs 

can be examined with increased confidence for drug target identification and repurposing 

opportunities across complex disorders, by investigating the ranking of biological pathways, 

drug gene-sets and druggable genes. In disorders that have few known drug treatments, such as 

eating disorders and obesity, our validation step may be impossible, but once well-powered 

GWASs with multiple significant signals are available this approach could still be effective to 

generate much needed therapeutic hypotheses.   
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ONLINE METHODS 

Methods: Pathway analysis in MAGMA 

The pathway analysis software MAGMA v. 1.03 12 was used to generate p-values for 

genes and gene-sets representing drugs, gene families and biological pathways. GWAS summary 

statistics are available as SNP p-values, which MAGMA combines to produce gene and gene-set 

p-values. Brown’s method, implemented in MAGMA, is an extension of Fisher’s method that 

combines dependent SNP p-values into a single gene p-value 33 using information on SNP 

correlations. These gene p-values are converted to Z-values, which are used as the response 

variable in a regression model, solved using a generalized least squares approach accounting for 

LD. Two types of regression analyses can be conducted: self-contained or competitive. The self-

contained approach tests whether the pathway is associated to a trait of interest, whereas the 

competitive approach tests whether genes in the pathway are more strongly associated than genes 

outside the pathway. The self-contained approach is more powerful, but it is sensitive to the 

polygenic nature of observed GWAS statistics inflation and may lead to a higher Type I error 
12,34. Therefore, we used competitive p-values. In MAGMA, the competitive analysis corrects for 

gene size and density and takes into account gene-gene correlations such as those observed in 

gene clusters. The SNP positions and frequencies were extracted from the European subset of 

1000 genomes phase III v.5a 35 with genome assembly hg19. We used Ensembl release 75 36 for 

the gene positions. The gene window was set to 35 kb upstream and 10 kb downstream in 

MAGMA to include gene regulatory regions. We generated FDR-adjusted p-values or q-values 

for genes and gene-sets, using Benjamini and Hochberg’s method to account for multiple testing 
37. 

Methods: Enrichment measure for groups of gene-sets 

Pathway analysis approaches generate gene-set p-values for a trait of interest taking into 

account LD and other confounders. Instead of investigating individual gene-sets, we focused on 

groups of gene-sets. For example, a class of drugs can be represented by a group G of drugs 

(gene-sets). To determine whether G is significantly enriched, we can draw enrichment curves, 

widely used in virtual screening 38. The curves display the percentage of hits found when 

decreasing the value of a scoring function. Here, the scoring function is the gene-set association 

with the trait of interest in –log10(p-value) units, and the hits are the gene-sets in G. The area 
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under this enrichment curve (AUC) provides a quantitative assessment of the enrichment of G in 

a GWAS and is computed using the trapezoidal approximation of an integral. The expected 

random result is    � 50% and the maximum value is    � 100%. 

The AUC significance was assessed using Wilcoxon-Mann-Whitney test (WMW), which tests 

whether the data distribution is the same within two different groups (e.g., gene-sets in G and not 

in G) 39 - also, the AUC could be directly calculated from the Wilcoxon-Mann-Whitney U 

statistic 40.  

Materials: Schizophrenia GWAS summary statistics 

In this paper, we used three GWASs conducted in 2011 15, 2013 16 and 2014 4 with 

increasing sample sizes (cf. Fig. 2b and Supplementary Table 1). The three studies were coined 

SCZ-PGC1, SCZ-PGC1+SWE and SCZ-PGC2, respectively. The three studies mainly contain 

individuals of European ancestry 4,15,16; SCZ-PGC2 is the only study including the X 

chromosome and individuals with East Asian ancestry. Only SNPs present in the European 

subset of 1000 genomes phase 3 v.5a 35 with minor allele frequency (MAF) ≥ 1% were kept. The 

genomic inflation factor as well as the LD score intercept were computed for each set using the 

LDSC software v. 1.0.0 41. All p-values were subsequently corrected using the LD score 

intercept - a score based on linkage disequilibrium that should provide a better way to control for 

inflation than the genomic inflation factor 42. Only the 1,123,234 SNPs shared among SCZ-

PGC1, SCZ-PGC1+SWE and SCZ-PGC2 were considered when comparing the three studies. 

The latest and most powerful GWAS (SCZ-PGC2) was used to investigate the enrichment of 

drug classes, biological pathways and gene families, with an additional filter (MAF ≥ 5%) 

leaving 5,739,569 SNPs. 

Materials: Drug gene-sets 

Drug/gene interactions are mainly derived from drug/target activity profiles. The data 

was drawn from two sources: the Drug-Gene Interaction database DGIdb v.2 13, and the 

Psychoactive Drug Screening Database Ki DB 14 downloaded in June 2016. DGIdb is a new 

resource that integrates drug/gene interactions from 15 databases, amongst which DrugBank and 

ChEMBL; the data is directly available as drug/gene pairs and genes are identified by their 

HGNC (HUGO Gene Nomenclature Committee) names 43. Ki DB provides Ki values for 

drug/target pairs and is particularly relevant for psychoactive drugs. Only human assays were 
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considered and drug/target pairs were kept if 7 ≤ pKi < 14. More details on the filtering 

procedure can be found in Supplementary Text 1. Gene-sets were produced by merging both 

DGIdb and Ki DB drug/gene data and by converting HGNC names to Ensembl release 75 36 

identifiers. The number of unique gene-sets was 3,940 at the end of the filtering process, but only 

2736 gene-sets had more than 2 genes and could be used for pathway analysis. On average, 3.8 

molecules shared the same gene-set. We annotated groups of drugs using ATC classes, listed in 

Figure 2.a and containing at least 10 drugs. The “validation” set for schizophrenia GWASs is 

the set of antipsychotics with ATC code N05A - all schizophrenia drugs belong to this class (cf. 

Supplementary Table 2 for the list of prescription drugs). Druggable gene families were 

defined using the HGNC nomenclature downloaded in July 2016 43 and keeping only the ~3000 

genes present in our drug/gene interaction dataset. 

Materials: Biological pathways 

We refer to both gene ontologies and canonical pathways as “biological pathways”. 

Pathway gene-sets were extracted from MSigDB v5.1 44, encompassing canonical (CP) and Gene 

Ontology (GO) gene-sets. MSigDB is a regularly updated resource gathering pathways and 

ontologies from the main online databases. CP sets were curated from: BioCarta, KEGG, 

Matrisome, Pathway Interaction Database, Reactome, SigmaAldrich, Signaling Gateway, Signal 

Transduction KE and SuperArray. Only pathways containing between 10-1000 genes were 

included, for a total of 2714 gene-sets (1405 GO, 1309 CP). The 10-1000 cut-off was set to limit 

the number of tested pathways, but also to avoid the case of a single gene driving the association 

(too few genes) and noisy results (too many genes). These “pathways” provide a practical way to 

investigate the function of a subnetwork without accounting for the complexity of biological 

networks. 
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Supplementary Materials 

PDF File:  

Supplementary Figures 1-2, Supplementary Tables 1–6, and Supplementary Texts 1-2 

Excel File:  

Supplementary Tables 7-17 
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Figures:  

 

Fig. 1. Using drug knowledge to validate genetic results. Drug knowledge, encompassing 

therapeutic classes and druggable genes (e.g., caffeine is a psychostimulant targeting 

adenosine receptors), may be used to validate the ability of a GWAS to find known drugs 

for a given trait (e.g., alertness). Novel targets and potential drugs could then be found in 

validated genetic results. 
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Fig. 2. (a) Enrichment of several ATC drug classes in SCZ-PGC2 GWAS. Significant classes 
(FDR < 5%) are highlighted; AUC is the area under the curve, with associated FDR-adjusted p-
values or q-values derived from Wilcoxon-Mann-Whitney’s test to account for multiple testing. 
(b) Antipsychotic enrichment in schizophrenia GWASs as a function of sample size. The figure 
shows enrichment curves in red and corresponding areas under the curve (AUC with p-values p) 
for antipsychotics (ATC code N05A), using three GWASs with increasing sample sizes. The 
expected “random” enrichment curve is indicated in blue.  
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Fig. 3. (a) Top 10 druggable gene families in schizophrenia, ranked by the number of 
antispychotics with interaction data in DGIdb or Ki DB. (b) Pathway analysis results: top 
10 druggable gene families in PGC-SCZ2, ordered by FDR-adjusted p-values (q-values). 
(c) Top 10 drugs in PGC-SCZ2. (d) Top 10 GO and canonical pathways in PGC-SCZ2.  
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