
 1 

Training qualitatively shifts the neural mechanisms that support attentional 
selection 
 
Short title: Training shifts attentional mechanisms 
 
 
Sirawaj Itthipuripat1,*, Kexin Cha2, Anna Byers2, John T. Serences1,2,3,*  
 
Neurosciences Graduate Program1 and Department of Psychology2, Kavli Institute for 
Brain and Mind3, University of California, San Diego, La Jolla, California 92093 
 
Corresponding authors 
Sirawaj Itthipuripat or John T. Serences 
Email: itthipuripat.sirawaj@gmail.com or jserences@ucsd.edu 
Department of Psychology 
University of California, San Diego  
9500 Gilman Dr., 92093 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2016. ; https://doi.org/10.1101/091413doi: bioRxiv preprint 

https://doi.org/10.1101/091413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

 
 
 
 
Abstract (245 words) 
 
Attention supports the selection of relevant sensory information from competing 
irrelevant sensory information. This selective processing is thought to be supported via 
the attentional gain amplification of sensory responses evoked by attended compared to 
unattended stimuli. However, recent studies in highly trained subjects suggest that 
attentional gain plays a relatively modest role and that other types of neural modulations 
– such as a reduction in neural noise – better explain attention-related changes in 
behavior. We hypothesized that the amount of training may alter neural mechanisms that 
support attentional selection in visual cortex. To test this hypothesis, we investigated the 
influence of training on attentional modulations of stimulus-evoked visual responses by 
recording electroencephalography (EEG) from humans performing a selective 
visuospatial attention task over the course of one month. Early in training, visuospatial 
attention induced a robust attentional gain amplification of sensory-evoked responses in 
contralateral visual cortex that emerged within ~100ms after stimulus onset, and a 
quantitative model based on signal detection theory (SDT) successfully linked this 
attentional gain amplification to attention-related improvements in behavior. However, 
after training, this attentional gain amplification of visual responses was almost 
completely eliminated and modeling suggested that noise reduction was required to link 
the amplitude of visual responses with attentional modulations of behavior. These 
findings suggest that the neural mechanisms supporting selective attention can change 
as a function of training and expertise, and help to bridge different results from studies 
carried out in different model systems that require substantially different amount of 
training.  
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Introduction 
 
Selective attention mediates the processing of sensory information so that relevant 
information is preferentially processed over irrelevant information. Over the last several 
decades, multiple electrophysiological and neuroimaging studies in humans and non-
human primates (NHPs) have shown that attention selectively increases the amplitude of 
visual responses evoked by attended stimuli compared to those evoked by unattended 
stimuli (i.e., attentional gain) (1–31). Particularly in studies that use human participants, 
the magnitude of these attentional gain changes has been shown to be tightly 
associated with attentional modulations of behaviorally measured perceptual sensitivity 
(7,11,14). For example, human electroencephalography (EEG) studies demonstrated 
that the attentional gain amplification of neural responses in contralateral visual cortex 
that began within ~100ms post-stimulus were highly correlated with subjective reports of 
perceived contrast of visual stimuli (11) and with improvement in target detection 
performance (7). Moreover, it has recently been shown that attention-induced changes 
in psychophysically-measured perceptual contrast discrimination performance could be 
accurately predicted by the observed amount of attentional gain amplification of these 
visual responses (14). Taken together, these EEG findings suggest that the attentional 
gain amplification of neural responses in visual cortex has a significant impact on 
perception and behavior during behavioral tasks that require selective attention. 
  
Despite this support for the importance of attentional gain, a growing number of recent 
studies suggest that other types of neural modulations in visual cortex more closely track 
perceptual performance. For example, electrophysiological studies in NHPs have 
demonstrated that, in addition to enhancing gain, attention can also reduce trial-by-trial 
variability in single neuron spike rates as well as pairwise correlations between neurons 
(32–40). Moreover, these modulations of neuronal noise may improve the signal-to-
noise ratio of sensory codes more than attentional gain (33,38) and are also more 
closely correlated with changes in behavioral performance (33). While these two 
attention mechanisms are not mutually exclusive, the relative contribution of each type of 
modulation to behavioral performance is hard to evaluate given large differences in 
methodologies and animal model systems employed across different studies (18,41–44). 
One particularly salient difference concerns the amount of training that subjects receive 
on behavioral tasks before neural data is collected. For example, studies that tend to 
reveal attentional gain as a predominant attention mechanism typically used human 
participants trained for brief periods of time (typically less than one hour) (8–11,13). On 
the other hand, studies that support the importance of other mechanisms such as noise 
reduction typically used monkeys trained for many months (32,33,38). Thus, 
understanding the impact of training on the mechanisms that support selective attention 
is important for generalizing results across tasks and model systems that involve 
different levels of training and expertise. 
 
To directly test the influence of training on the mechanisms underlying attentional 
selection, we had human participants perform a selective visuospatial attention task for 
over one month. Throughout training we concurrently measured their psychophysical 
performance and brain activity using electroencephalography (EEG), which is an 
advantageous approach for several reasons. First, human participants require less 
practice with complex tasks compared to other model systems, which enabled us to 
immediately acquire measures of neural activity with relatively little initial training and to 
continue tracking neural activity over the course of one month. Second, several past 
studies have used a positive-going event-related potential (ERP) that peaks about 
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100ms after stimulus onset (termed the P1 component) to measure the gain of 
population-level responses in extrastraite visual cortex (6,8–14,31,45–47). Importantly, 
the P1 component has been shown to be sensitive both to stimulus intensity (e.g., 
contrast and luminance) and attentional modulations (14,46).  Accordingly, we focused 
on examining the impact of training on the attentional gain of the P1 component in 
human participants performing a contrast-discrimination visuospatial attention task. We 
expected to observe a robust attentional gain amplification of the P1 component early in 
training based on previous results (6–14,47). However, if training leads to a transition 
from attentional gain to another mechanism such as noise reduction, then attentional 
modulations of the P1 component should be reduced over time (Fig. 1). To link 
attentional modulations of the P1 with behavior at different points in training, we also 
adopted a standard quantitative model, based on signal detection theory (SDT), to infer 
whether attentional gain or noise reduction best predicted behavior (14,25,26,48–50). 
The results are consistent with a qualitative shift from attentional gain to noise reduction 
over time, suggesting that extended training can alter the mechanisms that support 
selective information processing in visual cortex.  
 
Fig. 1 Competing attention mechanisms. 
(A) Attentional gain mechanisms posit that selective attention enhances early visual 
responses, which increases the signal-to-noise (SNR) ratio and perceptual sensitivity 
(d’). (B) Noise modulation models hold that attention impacts SNR via changes in 
neuronal variability. According to the signal detection theory (SDT), perceptual sensitivity 
(d’) increases via increasing gain (ΔR) and via reducing noise (σ). We hypothesized that 
training might qualitatively alter the neural mechanisms that support attentional 
selection. Specifically, we predicted a qualitative shift from attentional gain (A) to noise 
reduction (B) over time. 
 
Results  

 
Behavioral Results 
 
Human participants performed a two-interval-forced-choice (2IFC) contrast 
discrimination task (Fig 2A). We used this task to make contact with previous studies in 
both humans and NHPs that have employed similar paradigms (14,25,26,32,35). On 
each trial, subjects were cued to attend to either the left or right lower visual quadrant 
(termed focused attention), or to attend to both locations (termed divided attention). The 
cue was followed by two successive stimulus intervals, and each interval contained one 
sinusoidal Gabor stimulus to the left and one to the right of fixation. In the focused 
attention condition, the two successive stimuli at the cued location were always rendered 
at different contrast values. In one of the two stimulus presentation intervals, the contrast 
value of each stimulus was pseudo-randomly drawn from 0%-61.66% Michelson 
contrast. We refer these contrast values as ‘pedestal’ contrast values. For the other 
stimulus interval, we added a slight contrast increment to the pedestal contrast value of 
one of the two stimuli and participants then had to report whether the first or the second 
interval contained the stimulus with a higher contrast value. At the uncued location, the 
two successive stimuli were always rendered at the same contrast value drawn from 0%-
61.66% Michelson contrast. We refer to the stimuli presented in the cued location as the 
‘focused target’ stimuli and the stimuli presented in the un-cued location as the ‘focused 
non-target’ stimuli. In the divided attention condition, both locations were equally likely to 
contain the contrast change, yielding the ‘divided target’ and ‘divided non-target’ stimuli, 
which contained and did not contain a contrast change, respectively. The main 
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dependent measure was the change in contrast (Δc) from each pedestal contrast that 
was required to achieve an accuracy level of 76% (a d’ of approximately 1). Importantly, 
this method allowed us to derive both neurometric and psychometric response functions 
so that we could directly link modulations in neural responses with modulations in 
behavior (see also:14,25,26,48).  
 
Fig 2. Task design. 
(A) A two-interval force choice (2IFC) contrast discrimination task that required either 
focused or divided visuospatial attention. (B) Training regimen: 12 participants 
completed one session of behavioral training and then completed 20 sessions of 
simultaneous behavioral testing and EEG recording over an average of 32.25 days. 
 
To evaluate the effects of training on attentional modulations, 12 human participants 
participated in 20 EEG sessions (1-2 sessions each day) over the course of 
approximately one month (Fig 2B). In each experimental session, we estimated the 
incremental contrast value (Δc) required to reach criterion performance at each pedestal 
contrast and attention condition (Fig 3A; mean hit rate: 76.6% ±SEM 0.3%, yielding d’ = 
~1). From this point on, in the main text, we discuss the data divided into an early 
training phase (first 10 sessions) and a late training phase (last 10 sessions). However, 
note that similar results were observed with the data divided into 4 phases (5 EEG 
sessions in each phase) or 10 phases (2 EEG sessions each phase; see S1 supporting 
Information). 
 
Fig 3. Behavioral results 
(A) The hit rate was fixed at ~76% across all conditions so that contrast discrimination 
thresholds could be measured as a function of attention and training. (F) Contrast 
discrimination thresholds (Δc) were lower on focused attention trials compared to divided 
attention trials. Training also led to lower discrimination thresholds, specifically when 
attention was divided and the pedestal stimuli had low to medium contrast levels. Error 
bars represent within-subject standard error of the mean (SEM). Black ** and *** 
represent significant main effects (ME) and interactions (INT) with p< 0.01 and p < 
0.001. Green *, **, and *** represent pairwise differences between contrast thresholds in 
the divided attention condition across training phases with p <0.05, p<0.01, and 
p<0.001, respectively. Also see data divided into 4 and 10 training phases in S1 Fig 1. 
 
Fig 3B illustrates the psychophysical contrast thresholds (Δc) required to achieve a fixed 
hit rate as a function of pedestal contrast in the focused and divided attention conditions 
(to produce a threshold versus contrast curve, or TvC). In line with previous studies, Δc 
increased as a function of contrast (F(5, 55) = 143.38, p <0.001; 14,26,52–55). In 
addition, Δc was smaller in the focused attention condition compared to the divided 
attention condition at all contrast levels (F(1, 11) = 137.95, p<0.001; all t(11)’s ≥5.03, all 
p’s < 0.001, Holm-Bonferroni correction, one-tailed; 14,26,53). Similar results were 
observed with the data divided into 4 phases or 10 phases (S1 Fig 1). Training also 
decreased Δc (F(1, 11) = 9.85, p = 0.009). However, the training effect on Δc was driven 
primarily by improved performance in the divided attention condition (F(1, 11) = 11.96, p 
= 0.005), particularly when the pedestal contrast levels were low (0% contrast: t(11) = 
2.86, p = 0.008; 2.24% contrast: t(11) = 4.70, p < 0.001, Holm-Bonferroni correction, 
one-tailed). The relatively small effect of training in the focused attention condition is 
consistent with previous studies that used similar contrast discrimination tasks (55,56).  
 
EEG Results 
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The early visual system has a contralateral mapping between external stimuli and their 
cortical representation, such that stimuli presented in the left visual field evoke 
responses in right occipital cortex and vise versa. However, EEG has relatively coarse 
spatial resolution, thus ERPs recorded over the occipital lobe typically reflect a mixture 
of responses evoked by both stimuli (unless a 0% contrast stimulus was presented). To 
better isolate the stimulus-evoked responses associated with stimuli presented on the 
left and right sides of space, we first subtracted the averaged ERPs on trials that had a 
0% contrast stimulus in the visual field contralateral to a given electrode from the 
averaged ERPs on trials where visual stimuli were rendered at each of the other contrast 
levels (Fig 4; see similar methods in 11,14,58). This subtraction method was performed 
separately for each stimulus contrast level, each attention condition and each training 
phase. This method helped not only to isolate evoked responses associated with a 
single stimulus from a bilateral stimulus array, but also to control for any spatially non-
specific anticipatory effects associated with the presentation of attention cues 
(11,14,42,57). As a result, we observed clearly lateralized visual P1 components that 
scaled with increasing stimulus contrast. As shown in Fig 5, the P1 components peaked 
in the contralateral posterior-occipital electrodes ~80-130ms post-stimulus, consistent 
with previous ERP studies (6,8–14,31,45–47).  
 
Fig 4. An example of the ERP subtraction method 
(A) Left column (in purple): schematic of a 61.66% contrast divided non-target stimulus 
presented in the left hemifield (termed the stimulus of interest) and paired with target 
stimuli rendered in all different contrasts (down the rows). Right column (in black): the 
divided non-target 0% contrast stimulus in the left hemifield, paried with the same set of 
target stimuli in the right hemifield. (B) In this case, the ERP response evoked by the left 
divided non-target stimulus of 0% contrast (A, right; B, top, black dotted traces) was 
subtracted from the ERP response evoked by the left divided non-target-stimulus of 
61.66% contrast (A, left; B, top, dotted purple traces), resulting in the baseline-
subtracted ERP response (B, bottom, solid purple traces). A similar subtraction was 
done to compute the ERPs associated with stimuli of interest rendered at all other 
contrasts. Note that the stimulus paired with the stimulus of interest (in this case, the 
right divided target stimulus) could have any of six contrast values. Therefore, this 
method amounts to subtracting out the mean response to all ipsilateral stimuli.  
 
Fig 5. ERP results 
(A) Extracted ERP traces evoked by focused targets, focused non-targets, divided 
targets, and divided non-targets across early and late training phases. The shading of 
the colors represents the contrast level of the stimulus (dark to bright colors represent 
low to high contrast levels). The ERP subtracting method, which helped isolating the 
ERPs evoked by the stimulus of interested from the bilateral stimulus array and helps 
minimizing cued-related anticipatory responses, is illustrated in Fig 4. (B) The zoom-in 
figure of the visual P1 component. (C) The zoom-in figure of the late positive deflection 
(LPD or P3). (D) Topographical maps of the P1 and the LPD component collapsed 
across all experimental conditions. The left and the sides of the topographical map 
depict the response in electrodes that are ipsilateral and contralateral to the stimulus of 
interest, respectively.  
 
Attentional gain amplification of the visual P1 component was attenuated with training 
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Fig 6A shows the P1 mean amplitude from 80-130ms post-stimulus over the 
contralateral posterior-occipital electrodes as a function of stimulus contrast, yielding 
contrast response functions (CRFs) for focused target/non-target and divided target/non-
target conditions (see the logic for selecting analytic electrodes and time window in 
Materials and Methods). We then characterized the shape of the CRF in each condition 
using a Naka-Rushton equation (see Materials and Methods, Equation 1) to estimate the 
maximum response and the horizontal position of the CRF along the x-axis. Consistent 
with a recent report (14), we observed an increase in response gain or the maximum 
response of the P1-based CRFs with focused attention early in training (Fig 6A left). 
However, later in training, the attentional gain amplification of the P1-based CRFs was 
abolished (Fig 3A right). This led to a significant three-way interaction between training 
(early/late), attention (focused/divided), and stimulus type (target/non-target) on the 
maximum response (Fig 6B top; p = 0.036, resampling test, two-tailed; see Materials and 
Methods). This significant interaction was driven by the presence of a significant main 
effect of attention and a significant interaction between attention and stimulus type on 
the maximum response during the early training phase (p = 0.003 and p = 0.009, 
respectively, resampling test, two-tailed), but no main effect of attention or stimulus type 
and no interaction between these factors during the late training phase (p = 0.89, p = 
0.54, and p = 0.83, respectively). This lack of attentional gain amplification after training 
was due to a selective reduction in the maximum response in the focused target 
condition (p = 0.013, two-tailed), accompanied by no changes in either the focused non-
target, divided target, or divided non-target condition (all p’s ≥ 0.51). Follow-up analyses 
also revealed that the reduction in the attentional gain of the P1 occurred gradually in the 
focused target condition across training phases when the data are divided into 4 and 10 
training phases (S1 Fig 2). The fact that the training-related change in P1 amplitude was 
specific to the focused target condition suggests that training specifically impacted 
neural modulations related to the deployment of focused attention. Moreover, the 
specificity of these modulations indicates that training-related changes in P1 amplitude 
were not due to general low-level sensory/perceptual learning effects since training did 
not impact the magnitude of the P1 associated with any other condition (i.e. divided 
target and non-targets and focused non-targets). While training had a significant impact 
on the attentional modulation of the maximum response, the contrast at which the 
response reached half maximum, which governed the horizontal positon of the CRFs on 
the x-axis, was unchanged (Fig 6B bottom). There were no main effects of training (p = 
0.95), attention (p = 0.91), or stimulus type (p = 0.78), and no significant interactions 
between any of these factors (all p’s ≥ 0.13, resampling tests). Collectively, these results 
suggest that training primarily impacts the degree to which attention amplifies the 
maximum response of early stimulus-evoked responses.  
 
Fig 6. The P1 component with baseline subtraction. 
(A) The contrast response functions (CRFs) based on the amplitude of the P1 
component averaged over the contralateral posterior-occipital electrodes from 80-130ms 
post-stimulus. During the early training phase, there was a robust attentional gain 
amplification of the P1 component on focused attention trials compared to divided 
attention trials (left panel). However, no attention-related gain modulations were present 
during the late training phase (right panel). (B) Corresponding maximal response and 
contrast at which response reaches half maximum for the P1-based CRFs. Error bars in 
(A) represent within-subject SEM. Error bars in (B) represent the 68% CIs. * and ** 
represent significant main effects (ME) and interactions (INT) with p <0.05 and p<0.01, 
respectively. Red signs show significance when data were compared across training 
phases. Gray signs show significance when data were compared within each training 
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phase. See data divided into 4 and 10 training phases in S1 Fig 2 and data without 
baseline subtraction in Fig 7. Note that the contrast values on the x-axis are not exactly 
the same across target and non-target conditions because, in the target conditions, we 
used the averaged contrast values between the pedestal and incremental stimuli.  
 
For comparison, we also analyzed the P1-based CRFs without subtracting the baseline 
activity. As illustrated in Fig 7A, the results were qualitatively similar to the results 
obtained using the subtraction method (Fig 6A). First, we fit the Naka-Rushton equation 
(Equation 1) to characterize the CRFs, but this time we included an additional free 
parameter to account for baseline differences between conditions. We then performed a 
nested model comparison to assess the goodness of fit between the model that allowed 
baseline parameters to change freely and the model that fixed the baseline parameter 
across all experimental conditions (see Material and Methods). This analysis revealed 
that allowing baseline parameters to change freely did not significantly improve the 
goodness of fit (F(7, 15) = 0.47, p = 0.99, nested-test). This suggests that baseline 
parameters associated with the P1-based CRFs did not change with attention or with 
training. Moreover, we observed the same pattern of response modulation with attention 
during the early training phase that dissipated after extended training (Fig 7B top): there 
was a significant main effect of attention and a significant interaction between attention 
and stimulus type on the maximum response during the early training phase (p < 0.001 
and p = 0.033, respectively, resampling test), but no main effect of attention or stimulus 
type and no interaction between these factors during the late training phase (p = 0.91, p 
= 0.15, and p = 0.27, respectively). In addition, the horizontal shift along the x-axis was 
unchanged across experimental conditions and training sessions (all p’s ≥ 0.44; Fig 7B 
bottom). 
 
Fig 7. The P1 component without baseline subtraction. 
(A) The P1 CRFs based on ERPs without the baseline subtraction. (B) Corresponding 
maximal response and contrast at which response reached half maximum for the P1-
based CRFs. Overall the results are consistent with the P1 results with baseline 
subtraction (Fig 6), where a gain modulation of the maximal response was observed 
during the early training phase, but this attentional gain modulation disappeared after 
extended training. The main difference between this result and the baseline-subtracted 
result is that the baselines of the P1 CRFs across all experimental conditions are shifted 
down and are negative. This is due to an early negative component induced by the 
stimulus that was ipsilateral to the electrode of interest. Error bars in (A) represent 
within-subject S.E.M. Error bars in (B) represent the 68% CIs. *, **, and *** represent 
significant main effects (ME) and interactions (INT) with p <0.05, p<0.01 and p <0.001, 
respectively. Red signs show significance when data were compared across training 
phases. Black signs show significance when data were compared within each training 
phase. Note that the contrast values on the x-axis are not exactly the same across target 
and non-target conditions because, in the target conditions, we used the averaged 
contrast values between the pedestal and incremental stimuli.  
 
Quantitative modeling based on signal detection theory (SDT) suggests a transition from 
gain to noise reduction after training 
 
Overall, the P1 results suggest that while attentional gain is a prominent mechanism that 
supports attentional selection early in training, the absence of attentional gain 
amplification later in training suggests that training may alter the neural mechanisms that 
support attentional selection. Recent empirical and modeling evidence has been 
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reported to supported alternative mechanisms including noise modulation (32–
36,39,40,58) and efficient read-out mechanisms (25,26). To evaluate these alternative 
accounts, we adopted a quantitative modeling framework based on SDT that can 
evaluate the impact of gain and noise modulations on behavioral performance 
(14,25,42,43,48). Later, we also evaluate the contributions of the efficient read-out 
mechanism in relation to gain and noise modulation mechanisms (25,26).  
 
As illustrated in Fig 1 and Equation 3, The SDT-based model posits that the perceptual 
sensitivity (or d’) is determined by the difference between the mean responses (ΔR) 
evoked by two different stimuli (e.g., the pedestal and the increment stimuli) divided by 
the trial-by-trial variability of those responses (σ) (14,25,26,43,48–50). If attention 
operates solely via an attentional gain mechanism, it will increase ΔR, and hence 
increase d’ (Fig 1 left). Alternatively, if attention operates solely via a noise modulation 
mechanism, a reduction in σ is expected so that the overlap between the two response 
distributions becomes smaller and discrimination becomes more accurate (Fig 1 right). 
Thus, this modeling framework can be used to indirectly infer the relative contribution of 
attentional gain and noise modulations in situations where direct measures for neuronal 
noises are not available (14,25,26). According to this modeling framework, when d’ is 
fixed and there is a decrease in psychophysical contrast thresholds (Δc) with attention, a 
model based solely on changes in attentional gain (termed gain model) would predict an 
increase in the maximum response of the neural CRFs in the focused compared to 
divided target conditions. In turn, if these changes in gain are not sufficient to explain 
behavior, then the model will incorporate changes in σ (termed noise model) to improve 
the link between neural CRFs and behavior.  
 
Consistent with a recent study (14), the gain model effectively linked changes in contrast 
thresholds and changes in the slope of the P1-based CRFs during the early training 
phase (compare black curve and blue circles in the middle panel of Fig 8A, R2 = 0.942). 
Moreover, the noise model did not significantly improve the fit between the behavioral 
data and the P1-based CRFs compared to the gain model (compare red and black lines 
in Fig 8A; R2 = 0.943, F(1, 8) = 0.12, p = 0.74, nested test). This suggests that the 
attentional gain mechanism can sufficiently account for the relationship between 
attentional modulations in neural and behavioral data early in training. Later in training 
there was no attentional modulation of the P1-based CRFs but there was still an 
improvement in behavior (Fig 8B). Thus, the gain model overestimated the slope of the 
P1-based CRFs in the focused attention condition (compare blue squares and the black 
dotted curve in the middle panel of Fig 8B; R2  = 0.671). Instead, the noise model 
provided a significantly better fit compared to the gain model (compare red and black 
dotted lines in Fig 8B) (R2  = 0.874, F(1, 8) = 12.99, p = 0.007, nested test). In addition, 
the model estimated that the noise parameter (σ) had to be reduced by 31.67%. This 
reduction of ~32% is roughly analogous to those observed in single-unit and multiple-
unit recording data acquired with highly trained NHPs (~50% reduction) (33,38).  
 
Fig 8. Linking changes in the psychophysical data and the P1 data using gain and 
noise models. 
(A) A quantitative model based on the signal detection theory (SDT) reveals that, early in 
training, attention-induced improvements in behavioral performance is sufficiently 
explained by the gain model, and the noise model does not significantly improve the fit. 
(B) In contrast, later in training, the noise model provides a significantly better prediction 
than the gain model late in training. 
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In addition to attentional gain and noise reduction, attention can also impact behavior by 
enhancing the efficiency with which sensory responses are read-out by later 
sensorimotor and decision-related mechanisms (25,26,59,60). Therefore, we also 
considered a variant of an efficient read-out model that is based on a max-pooling rule 
(Equation 11) to account for behavior during the late training phase (25,26). However, 
given that the noise and gain models almost perfectly predicted behavior, using efficient 
read-out actually impaired model predictions in this data set (Fig 9). Collectively, these 
results suggest that training reduced the impact of gain mechanisms and that noise 
modulations gradually come to play a more dominant role in predicting behavior.  
 
Fig 9. Linking changes in the psychophysical data and the P1 data using the 
efficient read-out model.  
(A) The psychophysical contrast-discrimination thresholds estimated from the P1 data 
using the max-pooling rule (Equation 11) with different k values and with the noise 
values that yield the best fits for those k values. (B) Corresponding R2 values. Overall, 
the efficient read-out model did not accurately capture the link between behavior and the 
P1 data, as R2 values are below zero for all k and noise values. 
 
Attentional gain amplification of the posterior late positive deflection (LPD) component 
persisted throughout training 
 
In addition to our main analysis of attentional modulations of the P1 component, we also 
examined attentional modulations of another ERP component referred to as the late 
positive deflection (LPD or P3), which emerged in a later time window about 230-380ms 
in more central posterior electrodes (Fig 4). This ERP component is thought to index 
more prolonged post-sensory processes such as sensory evidence accumulation during 
decision making (14,45,61–64). As shown in Fig 10A, we found that that attentional gain 
amplification in the LPD occurred to a comparable degree across training phases. For 
both early and late training phases, we observed significant main effects of attention (p < 
0.001 and p = 0.01 for early and late; resampling test, two-tailed) and stimulus type (p 
<0.001 and p = 0.003 for early and late) and significant interactions between the two 
factors on the maximum response (p < 0.001 and p =0.035 for early and late; Fig 10B 
top). These modulations were driven by an increase in the maximum response in the 
focused target condition relative to all the other conditions (all p’s < 0.001, Holm-
Bonferroni correction, two-tailed). Importantly, we observed no significant changes in the 
maximum response across early and late training phases in any experimental condition 
(all p’s ≥ 0.21, two-tailed). For the contrast at which the response reached half 
maximum, we also found significant main effects of attention (p = 0.010) and stimulus 
type (p = 0.004), as well as a significant interaction between these factors (p = 0.001, 
resampling test) (Fig 10B bottom). These results were driven by an increase in the 
contrast at which the response reached half maximum (decrease in contrast gain) in the 
focused non-target condition compared to all the other conditions (all p’s ≤ 0.002, Holm-
Bonferroni correction, two-tailed). Also, we observed no significant changes in the 
contrast at which the response reached half maximum across early and late training 
phases in any experimental condition (all p’s ≥ 0.26, two-tailed).  Additional analyses 
also revealed that attentional gain amplification in the LPD occurred to a comparable 
degree when the data are divided into 4 and 10 training phases (S1 Fig 3). 
 
Fig 10. The LPD component with baseline subtraction. 
(A) The CRF based on the amplitude of the LPD component averaged over posterior 
electrodes from 230-380ms post-stimulus. Focused attention resulted in increased gain 
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amplification of the LPD during both early and late training phases. (B) Corresponding 
maximal response and contrast at which response reaches half maximum for the LPD-
based CRFs. Error bars in (A) represent within-subject SEM. Error bars in (B) represent 
the 68% CIs. *, **, and  *** present significant main effects (ME) and interactions (INT) 
with p <0.05, p<0.01 and p <0.001, respectively. Red signs show significance when data 
were compared across training phases. Gray signs show significance when data were 
compared within each training phase. See data divided into 4 and 10 training phases in 
S1 Fig 3 and data without baseline subtraction in Fig 11. Note that the contrast values 
on the x-axis are not exactly the same across target and non-target conditions because, 
in the target conditions, we used the averaged contrast values between the pedestal and 
incremental stimuli.  
 
For comparison, we also analyzed the LPD data without subtracting the baseline activity 
levels. As illustrated in Fig 11, there were robust modulations of the baseline activity of 
the LPD component. A nested model comparison analysis confirmed that allowing the 
baseline parameter to change freely significantly improved the goodness of fit compared 
to fixing the baseline parameter across experimental conditions (F(7, 15) = 18.03, p 
<0.001, nested-test). An additional resampling analysis revealed a significant main effect 
of stimulus type (p < 0.001) and a significant interaction of stimulus type and attention on 
the baseline parameter (p = 0.013) on the baseline parameter (Fig11B right). This was 
driven by a significantly larger difference in the baseline activity between the focused 
non-target and the focused target conditions compared to the difference in baseline 
activity between the divided target and divided non-target conditions (p = 0.013, two-
tailed). We speculate that this elevated baseline response in the focused non-target 
condition reflects the influence from the decision-related processes associated with the 
target stimuli, which were enhanced by focused attention. Note that the baseline 
elevation in the focused non-target condition occurred in an additive fashion because the 
focused non-target stimuli of each contrast level were simultaneously presented along 
with focused target stimuli of all possible contrast levels. Therefore, on average, the 
responses associated with the focused non-target stimuli of each contrast level were 
contaminated by a similar amount by responses associated with the focused target 
stimuli averaged across all contrast values, and these effects of stimulus pairing were 
removed via the baseline subtraction method in the previous section (Fig 10). In 
addition, we observed a significant interaction between attention and training on the 
baseline parameter (p = 0.043). This was driven by an increase in the baseline activity in 
the divided attention conditions in the late training phase compared to the early training 
phase (p = 0.010, two-tailed), without changes in the focused attention conditions (p = 
0.57, two-tailed). This result is consistent with the behavioral result where significant 
training effects were only observed in the divided attention condition, particularly for low 
contrast levels, but not in the focused attention condition (Fig 3B).  
 
Fig 11. The LPD component without baseline subtraction. 
(A) The LPD CRFs, based on ERPs without baseline subtraction. (B) Corresponding 
maximal response, contrast at which response reaches half maximum, and baseline 
parameters. Error bars in (A) represent within-subject SEM. Error bars in (B) represent 
the 68% CIs. *, **, and  *** present significant main effects (ME) and interactions (INT) 
with p <0.05, p<0.01 and p <0.001, respectively. Red signs show significance when data 
were compared across training phases. Gray signs show significance when data were 
compared within each training phase. Note that the contrast values on the x-axis are not 
exactly the same across target and non-target conditions because, in the target 
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conditions, we used the averaged contrast values between the pedestal and incremental 
stimuli.  
 

 
While the LPD results without baseline subtraction revealed robust modulations in the 
baseline parameters of the LPD-based CRFs, overall modulations of other parameters 
including the maximum response and the contrast at which the response reached half 
maximum (Fig 11B left) are consistent with the results with the subtraction method (Fig 
10B). Specifically, we observed robust response and contrast gain modulations across 
early and late training phases. This is statistically confirmed by significant main effect of 
attention (p’s = 0.011 and 0.010) and stimulus type (p’s < 0.001 and = 0.008) and a 
significant interaction between the two factors on the maximum response and the 
contrast at which the response reached half maximum, respectively (p’s = 0.012 and p = 
0.003). Overall, the attention effects on the LPD, which persisted across training phases, 
stand in contrast to the attention effects on P1 results, which were significantly 
attenuated with training. 
 
Discussion  
 
Recent studies using quantitative modeling suggest that there are several candidate 
mechanisms that can link attentional modulations in visual cortex with attentional 
modulations of behavior (14,25,26,33,50). While some discrepancies between the 
putative mechanisms are likely due to differences in stimulus display properties and task 
designs (15,41,65–67) and methods of measuring neural activity (14,42,43,65), we show 
here that another major factor is the duration of training. Going beyond previous studies 
of training that have shown changes in attentional modulations, we quantitatively 
modeled the relationship between neural activity and behavior to systematically examine 
the relative contributions of different attention mechanisms (68–72). We found that 
attentional gain of the visual P1 component accurately predicted attention-induced 
behavioral benefits early in training. However, this attentional gain was abolished later in 
training and our SDT-based model (14,25,26,43,48,49) suggested that a substantial 
reduction in noise was required to explain behavior. In contrast to the P1 results, a 
similar amount of attentional gain in the LPD component persisted across early and late 
in training. On a more general level, the observation that the link between attentional 
modulations of a well-established neural marker like the P1 and behavior can 
qualitatively change over time underscores the importance of critically considering 
training when generalizing empirical observations across methods and model systems. 
This is particularly important given the significant discrepancies in the amount of training 
that different classes of experimental subjects receive.   
 
The observation of attentional gain of the P1 component during the early training phase 
is consistent with many prior studies in human participants that reported similar 
attentional gain effects even when subjects were minimally trained (6–
11,13,14,31,46,47). The attenuation of attentional gain with training, however, is more 
consistent with observations that noise reduction is the dominant form of attentional 
modulation in highly trained NHPs (33,38). Interestingly, the SDT model that we used in 
the current study suggests that the degree of noise reduction needed to compensate for 
the reduction in P1 gain (~32% reduction) is not far from estimates reported in previous 
monkey neurophysiology studies (~50% reduction) (33,38). Note that even though this 
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P1 attentional gain modulation occurred very early (~100ms post-stimulus), such 
modulations likely reflect both feedforward and feedback processes (6,9,73). 
 
Consistent with our study, previous perceptual learning studies have also shown that the 
P1 component and the earlier C1 component (~50ms post-stimulus) undergo a reduction 
in amplitude after extended training (74,75 but see 76). A previous neuroimaging study 
also observed a training-related reduction in activity in primary visual cortex (77). In the 
present study, training specifically reduced P1 amplitude, however; this training induced 
change in P1 amplitude occurred only in the focused target condition, with no 
modulations associated with the focused non-target or the divided attention conditions. 
Therefore, the training-induced changes in early visual signals that we observe here 
reflect an attentional modulation and not a more general perceptual learning effect that is 
related just to repeated exposure to the stimulus set.  
 
In contrast to the P1 results, a comparable amount of gain modulations of the LPD 
component were observed across training phases, even though attentional gain 
modulation of the P1 was abolished after training. The LPD has been closely linked to 
post-sensory decision-related processing and is associated with factors such as 
response confidence, task difficulty, and decision times (14,45,47,61–64,78,79). Recent 
EEG studies (63,64) have demonstrated that this LPD component also tracks the 
accumulation of sensory evidence in a manner that is similar to the average response 
profile of neurons in the lateral intrapareital area and the frontal eye fields in monkeys 
during decision making (80–88). Collectively, these findings suggest that while the 
mechanisms that support attentional modulations of early visual signals shift with 
training, attentional gain modulations of processing that is closer to the ‘read-out’ stage 
remain relatively stable over time. 
 
In conclusion, our data demonstrate that attentional gain of the visually evoked P1 
component plays a prominent role in enhancing perceptual sensitivity early in training, 
but noise reduction is required after extensive training. In contrast, attentional gain of the 
LPD component persists throughout training. This pattern is consistent with an attention-
related improvement in the efficiency of the transfer of information, such that earlier 
stages provide more reliable information to downstream decision-related mechanisms 
after training. Most importantly, our data show that training can qualitatively alter the 
relationship between attentional modulations of neural responses and behavior, and this 
observation carries important implications for understanding attention, as well as for 
linking observations collected from different model systems that may employ 
substantially different amounts of training (c.f. 44). 
 
Materials and Methods 
 
Subjects 
 
Twenty-three neurologically healthy human observers with normal or corrected-to-
normal vision were recruited from the University of California, San Diego (UCSD). All 
participants provided written informed consent as required by the local Institutional 
Review Board at UCSD. Data from 10 subjects were discarded in the main analysis due 
to failure to complete the experimental protocol (20 EEG sessions). One subject only 
completed a behavioral training session. Among the other 9 subjects, 1, 1, 1, 1, 3, 1, and 
2 subjects voluntarily withdrew after the 2nd, 6th, 8th, 10th, 12th, and 14th EEG sessions. In 
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addition, one of 13 subjects who completed 20 EEG sessions was discarded due to 
excessive small saccades (>90% of trials). This left 12 subjects in the main analysis (7 
female, 20-26 years old, all right-handed). Subjects were compensated at a rate of 10 
and 15 US dollars per hour for behavioral training and EEG sessions, respectively.  
 
Stimuli and task 
 
Stimuli were presented on a PC running Windows XP using MATLAB (Mathworks Inc., 
Natick, MA) and the Psychophysics Toolbox (version 3.0.8) (89,90). Participants were 
seated 60 cm from the CRT monitor (which had a grey background of 34.51 cd/m2, 60Hz 
refresh rate) in a sound-attenuated and electromagnetically shielded room (ETS 
Lindgren).  
 
We employed a 2-IFC contrast discrimination task (Fig 2A). Each trial started with a 
colored cue (pre-cue) instructing subjects where to attend on each trial. A red cue 
corresponded to the lower left quadrant, a blue cue corresponded to the lower right 
quadrant (focused attention conditions), and a green cue indicated that subjects should 
attend both lower quadrants (divided attention condition). The focused attention cue was 
100% valid, whereas the divided attention cue was 50% valid (i.e. the target was equally 
likely to be presented in the left or the right quadrant). The pre-cue appeared for 500ms 
followed by a 400-600ms blank inter-stimulus interval (ISI). This ISI was followed by two 
successive stimulus presentations (the first and second stimulus intervals) with each 
presentation containing a pair of sinusoidal Gabor stimuli (spatial frequency, 1.04 
cycles/°; SD of Gaussian window, 1.90°) located in the lower left and right quadrants 
(±8.58° and −7.63° from the horizontal and vertical meridians, respectively). Each pair of 
stimuli appeared for 300ms, followed by a 600-800ms ISI (pseudo-randomly jittered from 
a uniform distribution). The pedestal contrasts of the Gabor stimuli were randomly 
selected from six values: 0, 2.24, 5.13, 11.75, 26.92, and 61.66% Michelson contrasts. 
Contrast values, except for 0%, were jittered ±0.01 log contrast from the mean contrast 
value. The orientations of the left and right Gabors were identical within each trial, and 
the orientation value on a given trial was randomly drawn from a uniform distribution.  
During one of the two stimulus intervals, a contrast increment (Δc) was added to either 
the left or the right Gabor stimulus for the entire duration of that interval. After the second 
stimulus interval, the post-cue appeared to inform subjects whether the left (a red cue) or 
the right stimulus (a blue cue) contained this contrast increment. Subjects reported 
whether the increment occurred during the first or the second stimulus interval and they 
were told to prioritize accuracy; there was no response deadline. 
 
On the first day, subjects participated in a ~2.5h behavioral training session where a 
staircase procedure (3-down, 1-up) was applied to estimate the contrast discrimination 
thresholds for each attention condition and each pedestal contrast level (see a similar 
method in 14). These thresholds were then used in the first EEG session. Subjects 
completed 20 EEG sessions (1-2 sessions each day and 2-3 days a week). Each EEG 
session contained a total of 8 experimental blocks and contained 288 trials, where all 
experimental conditions were counterbalanced: 2 (attention conditions: focused, divided) 
× 2 (target locations: left, right) × 2 (target intervals: first, second) × 6 (pedestal contrast 
levels of target) × 6 (pedestal contrast levels of non-target). The contrast threshold 
(Δc) for each attention condition and each target pedestal contrast was adjusted after 
each EEG session so that accuracy was maintained at ~76% (d’ = ~1) across all 
experimental conditions. Across the 12 subjects, the average time elapsed between the 
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initial behavioral training session and the 1st EEG session, between the 1st and the 11th 
EEG sessions (early-training phase), and between the 11th and the last EEG sessions 
was 3.33 ± 0.66, 17.41 ± 2.31, and 11.50 ± 1.12 days (mean ± SEM), respectively (Fig 
2B).  
 
Behavioral analysis  
 
Contrast discrimination thresholds were measured at ~76% hit rate (d’ = ~1) for all 
attention conditions (focused and divided attention), training phases (early and late), and 
stimulus pedestal contrasts (0% to 61.66%). The within-subject SEM of the data for each 
contrast level was calculated using the Loftus and Masson method (91). Specifically, the 
mean value between attention and training conditions was removed from the individual 
subject data before computing the SEM for each contrast value. Three-way repeated 
measures ANOVAs with within-subject factors of attention condition, training phase, and 
stimulus pedestal contrast were performed to test the main effect of each of these 
factors and their interactions on contrast discrimination thresholds. Post-hoc paired t-
tests were then used to examine attention effects and learning effects on the contrast 
discrimination threshold data for each pedestal contrast level (one-tailed, corrected by 
Holm-Bonferroni method). We used one-tailed statistics here, under the assumption that 
perceptual sensitivity is enhanced with focused attention and with training.   
 
EEG preprocessing and analysis 
 
We recorded EEG data with a 64+8 channel Biosemi ActiveTwo system at a 512-Hz 
sampling rate. All signal offsets from the CMS-DRL reference were maintained below 20 
uV. We employed EEGlab11.0.3.1b (92) and custom MATLAB scripts to preprocess the 
EEG data offline. First, we re-referenced the continuous EEG data to the mean of the 
two mastoid electrodes and applied 0.25-Hz high-pass and 55-Hz low-pass Butterworth 
filters (3rd order). Second, the data were segmented into epochs extending from 500ms 
before to 3500ms after the trial onset. Third, prominent eye blink artifacts were first 
rejected by independent component analysis (93). We then discarded epochs 
contaminated by residual eye blinks and vertical eye movements (more than ±80-120 µV 
deviation from zero, with thresholds chosen for each individual subject), horizontal eye 
movements (more than ±75-90 µV deviation from zero), excessive muscle activity, or 
drifts using threshold rejection and visual inspection (11.23 % of trials ± 1.74% S.E.M).  
Lastly, the data were aligned to the stimulus onset and baseline-corrected based on the 
mean response from 0-200ms before stimulus onset. For all individual subjects, eye bias 
scores computed by the difference between averaged horizontal electrooculography 
contralateral and ipsilateral to the stimulus of interest divided by two are less than 1.6 
µV, corresponding to less than 0.1o visual angle which is a standard criterion used in 
ERP studies (94). Moreover, no difference in eye bias scores were observed across 
early and late training phases (S1 Fig 4). These results support the notion that any 
residual horizontal eye movements did not contaminate training-related changes in 
ERPs.  
 
The artifact-free EEG data were then sorted into the following bins: 2 attention conditions 
(focused and divided attention) x 2 stimulus types (target and non-target) x 2 training 
phases (early and late) x 6 stimulus contrast levels x 2 stimulus intervals (first and 
second) x 2 stimulus locations (left and right). Note that in Supporting Information (S1 
Figs 3&4) the data are also sorted into 4 and 10 training phases. The stimulus-locked 
ERPs were then computed by averaging the EEG data in each bin. To extract ERPs 
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evoked by the stimulus of interest (i.e., subtract out responses evoked by stimuli paired 
with the stimulus of interest) and minimize confounds from any anticipatory effect from 
the cue, we subtracted the ERPs evoked by the pedestal 0% contrast stimulus (i.e., 
when no stimulus was present in the contralateral visual field with respect to a given 
EEG electrode) from the ERPs on all other conditions (11,14,57) (Fig 4). Thus, the 
response that was subtracted should be interpreted as “the mean response evoked by 
an ipsilateral stimulus when no stimulus was presented in the contralateral visual field”, 
and this served to help isolate the ERP specifically associated with the presentation of a 
contralateral stimulus.  It is critical to isolate the CRFs evoked by the stimuli of interest 
(focused target, focused non-target, divided target, or divided non-target) from the stimuli 
on the opposite side that were simultaneously presented on the other side of the display 
(e.g., if the stimulus of interest was a focused target then the stimulus that was paired 
with it would be a focused non-target). Thus, subtracting out the small response evoked 
by the ipsilateral stimulus helps to improve the spatial selectivity of the ERP responses. 
Moreover, without subtracting this 0%-contrast ERP out, it is possible that the attentional 
modulations that we may observe would be confounded by cue-related and non-spatially 
selective anticipatory responses rather than attentional modulations of stimulus-evoked 
responses (i.e. changes in arousal but not changes in selective spatial attention). While 
studying such non-selective modulations is potentially interesting in its own right, it would 
complicate the interpretation of the observed attentional modulations of stimulus-evoked 
responses. This is a serious issue that has been brought up and dealt with in a similar 
manner in many previous studies that use both EEG and fMRI (11,14,26,57). By 
subtracting this 0%-contrast ERP out, we controlled for this potential confound. That said 
we also included the results without this baseline subtraction for comparisons (Figs 
7&11; and see detailed methods in later paragraphs). 
 
The mean amplitude of the visual P1 component from 80-130ms post-stimulus was 
computed across the contralateral-posterior electrodes, where the P1 mean amplitude 
averaged across all experimental conditions is maximal (PO7, P5, and P7 for the left 
hemisphere and PO8, P6, and P8 for the right hemisphere). The selected temporal 
window was based on previous ERP studies of visual attention (8,10,13,14,46,47,95) 
and the 50ms window size is suggested as the standard by Luck (94). The mean P1 
amplitude was then plotted as a function of stimulus contrast to yield the P1-based CRF 
separately for each attention condition, each stimulus type, and each training phase. On 
the y-axis, the stimulus contrast values for the focused and divided non-targets were 
fixed at 0, 2.24, 5.13, 11.75, 26.92, and 61.66% Michelson contrasts. However, since the 
target sequence contained both pedestal and increment stimuli, we used the averaged 
contrast values between the two stimuli for plotting the CRFs in the focused and divided 
target conditions. The within-subject SEM of the data for each contrast level was 
calculated using the Loftus and Masson method (91) in which the mean value between 
attention, stimulus type, and training conditions was removed from individual data before 
computing the SEM for each contrast value. Next, the P1 data were bootstrapped by 
resampling subjects, with replacement, 10,000 times. In each bootstrap iteration, the 
CRF data for each attention condition, stimulus type, and training phase were fit with a 
Naka-Rushton equation:  

                                             ���� �  �� ��

�����
�  � 	,            (Equation 1) 

 
where R(c) is the P1 amplitude as a function of stimulus contrast, Gr is a multiplicative 
response gain factor that controls the vertical shift of the CRF, Gc is a contrast gain 
factor that controls the horizontal shift of the CRF, b is the response baseline offset and 
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q is the exponent that controls the speed at which the CRF rises and reaches 
asymptotes. Given that past EEG studies of spatial attention have consistently reported 
no changes in response baseline of EEG-based CRFs (3,14–17,29) and in the present 
study the evoked response to 0%-contrast stimuli was subtracted from all trials, such 
that the ERP was flat on 0% contrast trials, b was fixed as the average of the minimum 
amplitude across all experimental conditions. We then used a least square error 
estimation method (fminsearch function in MATLAB) to estimate the maximum response 
(the response at 100% contrast minus baseline), the contrast at which the response 
reached half maximum, and the exponent (q) parameters. Since in many experimental 
conditions the CRFs did not saturate at the maximal contrast level (100%), we 
constrained the fitting procedure so that the maximum response value could not exceed 
the 1.5 x responses at the 61.66% contrast value (the highest contrast in the stimulus 
set). Gr and Gc were constrained so that they could not be less than 0 and 1, 
respectively.  The exponent q was also constrained within a range of -10 to 10. We used 
the 30% contrast value (about half of 61.66% contrast) as the initial seed value for Gc, 
the difference between maximum and minimum responses as the seed value for Gc, and 
1 and 5 for the seed values of the exponent q when fitting the CRFs based on the P1 
and the LPD (see below for LPD), respectively. The initial seed values for the exponent 
q were adopted from the estimated values based on a previous study (14). To test all 
main effects and interactions between attention, training and stimulus type, we first 
computed bootstrap distributions of the differences between the estimated fit 
parameters:  
 

i) Training effect: early minus late training phases 
ii) Attention effect: focused attention minus divided attention  
iii) Stimulus type effect: target minus non-target 
iv) Two-way interaction between training and attention: (focused attention 

minus divided attention during the early training phase) minus (focused 
attention minus divided attention during the late training phase) 

v) Two-way interaction between training and stimulus type: (target minus 
non-target during the early training phase) minus (target minus non-target 
during the late training phase) 

vi) Two-way interaction between attention and stimulus type: (focused target 
minus focused non-target) minus (divided target minus divided non-
target) 

vii) Three-way interaction between training, attention, and stimulus type: 
[(focused target minus focused non-target) minus (divided target minus 
divided non-target) during the early training stage] minus [(focused target 
minus focused non-target) minus (divided target minus divided non-
target) during the late training stage] 

 
 
Then, we computed the percentage of values in the tail of each of these compiled 
distributions that were larger or smaller than zero (two-tailed). If there was any significant 
interaction between training and any of other remaining factors for each training phase, 
we then tested for main effects of attention and target type as well as for an interaction 
between attention and target type using the procedure described above. Post-hoc 
pairwise comparisons were subsequently performed between these pairwise 
comparisons and were corrected for multiple comparisons using Holm-Bonferroni 
method (two-tailed).  
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For the ‘isolated’ LPD component, the mean amplitude from 230-380ms post-stimulus 
was computed across the posterior and posterior-occipital electrodes (P5, P7, PO7, P1, 
Pz, P2, P6, P8, PO8). This analysis window was selected based on the broad activation 
of the LPD amplitude averaged across all experimental conditions and stimulus contrast 
levels. Also note that the analysis windows of both P1 and LPD components were 
chosen to minimize contaminations of the negative-going N1 component that emerges 
~150-200ms post-stimulus (see the zoom-in ERP traces for the P1 and LPD 
components in Figs 5B&5C where minimal negative potentials were observed across 
these windows). The same bootstrapping, fitting, and statistical analyses described 
above were also performed on the LPD data.  
 
For comparison, we also analyzed the P1 and the LPD data without baseline subtraction 
(see results in Figs 7&11). First, we obtained the P1 and LPD components in the same 
electrodes and the same temporal windows as described above, and plotted the CRFs 
based on the P1 and LPD mean amplitudes. However, the baseline subtraction 
described above was not implemented. Next, we fit the Naka-Rushton equation 
(Equation 1) to characterize the CRFs, but this time we included an additional free 
parameter to account for baseline differences between conditions. We then performed a 
nested model comparison to assess the goodness of fit between the model that allowed 
baseline parameters to change freely (baseline-free model) and the model that fixed the 
baseline parameter across all experimental conditions (baseline-fixed model) using the 
following equation:  
 

�������	�
����

 ��������	�
�����




���

	��������	�
����



��


          (Equation 2) 

 
where �
��
���
���



�  and �
��
���
����
�
�  were obtained from the fits of the baseline-free 

and baseline-fixed models (full and reduced models), respectively. ��	 is the number of 
free parameters in the full model (32: 8 b’s, 8 Gr’s, 8 Gr’s, and 8 q’s for the 
focused/divided, target/non-target conditions in the early and late training phases) minus 
the number of free parameters in the reduced model (25: 8 Gr’s, 8 Gr’s, and 8 q’s for the 
focused/divided, target/non-target conditions in the early and late training phases and 1 
b shared across all 8 experimental conditions). ��� is the number of observations (48: 6 
contrast levels times 8 experimental conditions) minus the number of free parameters in 
the full model (32) minus 1. The F distribution was used to estimate the probability that 
the full model differed significantly from the reduced model. For the P1 data, the 
baseline-free model was not significantly better than the baseline-fixed model (see 
Results), so we only evaluated the significance of the best fit parameters estimated 
using Equation 1 with a fixed baseline parameter. On the other hand, the baseline-free 
model was significantly better for the LPD data, so we reported statistical results using a 
version of Equation 1 with a freely optimized baseline parameter.  
 
Modeling methods 
 
We adopted a previously established model based on SDT (14,26,42,48) to determine 
the degree to which attentional gain and noise reduction are needed to explain the 
relationship between attentional modulations in the psychophysical and ERP data during 
the early and late training phases. This modeling framework is based on the assumption 
that perceptual sensitivity (d’) is limited by the differential mean response: R(c+Δc(c))-
R(c) or ΔR, evoked by two different stimuli (i.e. standard and test stimuli) divided by the 
trial-by-trial variability of those responses (σ):  
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             d’ = ΔR/σ     (Equation 3) 
 
where R is the hypothetical CRF estimated using the Naka-Rushton equation (Equation 
1). With the combination of the d’ and Naka-Rushton equations, the contrast 
discrimination thresholds could be estimated based on the derivative (or slope) of the 
CRF as expressed in the following equation:  
 
    Δc = ΔR/(dR/dc),      (Equation 4) 
 
where dR/dc is the derivative of the underlying CRF (48). 
 
According to the attentional gain model, attention-induced reductions in contrast 
discrimination thresholds can be fully explained by an increase in the slope of the ERP-
based CRF (dR/dc), under the assumption that the neuronal noise (σ) is constant (gain 
model). In the case where the amount of increase in the CRF slope is insufficient to 
explain shifts in the psychophysical TvC functions, the σ parameter must be reduced to 
explain changes in psychophysical contrast thresholds (noise model).  
 
We applied this model using the following procedure: we first estimated the 
psychophysical TvC functions for the divided attention and focused attention conditions 
for both the early and late training phases using a polynomial function with least square 
error estimation methods (fminsearch function in MATLAB). For each training phase, we 
used the combination of the Naka-Rushton and d’ equations to simulate the CRFs based 
on the P1 amplitude in the divided target condition. Specifically, the fitting routine started 
by setting the first point of the estimated CRF (c0 = 0%) to be a baseline parameter (b) 
as the following:  
 
   R(c0) = b      (Equation 5) 
 
The next contrast (c1) was then defined as:  
 
   c1 = c0 + Δc0      (Equation 6) 
 
where Δc0 is the contrast threshold at 0% contrast. Accordingly, the response at c1 was 
estimated using the d’ equation (Eq2) as:  
 
   R(c1) = b + σ,       (Equation 7)  
 
given that d’ = 1. The next contrast was defined the same way as the following:  

 
ci = ci-1 + Δci-1      (Equation 8) 

 
where i is the current iteration that is > 1.  The response at ci is then estimated as 
 
 R(ci) = R(ci-1)  + σ     (Equation 9) 
 
These last two steps (Equations 8&9) were continued until the full CRF was estimated. 
The baseline and noise parameters (b and σ) were optimized by minimizing the least-
squares errors between the observed and the predicted CRFs based on the P1 
amplitude in the divided target condition. To test if attentional gain changes in the P1 
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CRFs in each training phase could account for changes in the TvC functions, we 
estimated the P1 CRFs in the focused target condition using the modeling routine 
described above but with the b and σ parameters fixed based on the values obtained 
from the divided target condition. Next, we tested if allowing changes in the noise 
parameter across focused target and divided target conditions could significantly 
improve the prediction of the model based on SDT. To achieve this, we estimated the P1 
CRFs in the focused target condition as described above, except that we allowed the σ 
parameter to vary freely to find the best fit. The R2 value obtained from the gain model 
with the σ parameter fixed across the divided target and focused target conditions 
(reduced model) was then compared with the R2 value obtained using the noise 
reduction model in which the σ parameter was also allowed to vary freely across 
attention conditions (full model). This comparison was done using a nested F test: 
 

 
���	, ���� �  �	����
 �����	



���

	��	����



��


          (Equation 10) 

 
where ������  and �����


�  were obtained from the fits of the attentional gain and noise 
modulation models (reduced and full models), respectively. ��	 is the number of free 
parameters in the full model (3: σ for focused attention, σ  for divided attention, and b 
shared across attention conditions) minus the number of free parameters in the reduced 
model (2: σ and b shared across attention conditions). ��� is the number of observations 
(12: 6 contrast levels times two attention conditions) minus the number of free 
parameters in the full model (3) minus 1. The F distribution was used to estimate the 
probability that the full model differed significantly from the reduced model.  
 
In addition to the gain and noise models based on SDT, we also adopted a variant of an 
efficient read-out model to see how well it could explain the link between attentional 
modulations in the P1 component and behavioral data across training stages. To start 
the procedure, we first fit the neural CRFs based on the P1 amplitudes with the Naka-
Rushton equation (Equation 1 and see the fitting procedure below the equation). Since 
the model requires all responses to be positive values (due to the k exponent in the max 
pooling rule see Equation 11 below), we subtracted the baseline values from the 
interpolated CRFs of all attention conditions and training stages. Next, for each attention 
condition of each training phase, we simulated the performance of an ideal observer in 
72,000 randomly generated trials, which consisted of 12,000 trials of each of the 6 levels 
of target pedestal contrasts. These 12,000 trials included 2,000 trials of each of the 6 
levels of non-target contrasts. For each simulated trial, we determined the response of 
each stimulus type (target or non-target) and stimulus interval (the interval that contains 
the test contrast or pedestal contrast) as a random draw from a Gaussian distribution 
with mean values equal to the mean amplitude of the interpolated P1 CRFs at the 
corresponding contrast value. The standard deviation (SD) of the Gaussian distribution 
is the noise parameter in the d’ equation (Equation 3) and it was varied from 0.001 to 
0.393 in 50 0.008-unit incremental steps. Next, the target and non-target related 
responses (Rtg and Rntg) were pooled into a single response (Rp) using the max-pooling 
equation (14,25,26).  
 

�� �  
����

� � ����
��

2  

        (Equation 11) 
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where k is an exponent that weights responses to each stimulus in a given interval. 
Under the assumption that an ideal observer would select the interval that contained a 
larger pooled response as the interval that contained the incremental target stimulus, we 
searched for the contrast increment value that yielded 76% accuracy rate across the 
12,000 simulated trials at each pedestal contrast level. Here, k was varied from 2 to 70 
in 69 1-unit incremental steps. 
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