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 17	

ABSTRACT 18	

Aim To assess the effects of climate change on genetic lineages of Arabidopsis thaliana at 19	

the admixed population level by directly modelling genetic cluster membership values to predict 20	

potential genetic cluster memberships across the Iberian Peninsula. 21	

Location Iberian Peninsula 22	

Methods We used a dataset of 274 accessions structured in four genetic clusters as inferred 23	

from 250 nuclear single-nucleotide polymorphisms with Bayesian clustering methods. We 24	

predicted the change in percentages of genetic cluster membership at a population level and the 25	

changes in potential suitability across the study area by combining parametric (Beta regression) 26	

and non-parametric (Recursive trees) methods. 27	

Results Climate change will affect genetic lineages of Arabidopsis thaliana differently. 28	

Genetic clusters GC1 and GC2 will suffer a substantive reduction of their respective suitable 29	

areas while GC3 and GC4 will expand northward. At the population level, except for GC4, the 30	

rest of the lineages will undergo a genetic turnover for many of their populations. 31	

Main conclusions A. thaliana in the Iberian Peninsula will undergo a major internal genetic 32	

restructuring and range change due to climate change. Genetic lineages of Arabidopsis thaliana 33	

in the Iberian Peninsula will be affected differently which reinforce the need for taking into 34	

account intraspecific genetic variation when modelling species distribution. Despite limited 35	

predictive power of individual statistical models, the combination of distinct models can 36	

compensate this shortcoming. 37	

KEYWORDS 38	

Arabidopsis thaliana, intraspecific genetic diversity, climate change, distribution modelling, 39	
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INTRODUCTION 42	

The intraspecific response of species to climate change is a major research objective in 43	

biogeography, evolutionary ecology and conservation (Bellard et al., 2012; Cardinale et al., 44	

2012; Hoffmann et al., 2015) and a necessary step to design better species conservation actions 45	

and strategies. Yet, we need to factor in intraspecific genetic variation since a species is an 46	

aggregate of different genetic lineages which differ in their adaptation to environmental 47	

conditions.  However, the effects of climate change on genetic diversity are just beginning to be 48	

explored (Bellard et al., 2012). Indeed, climate change can profoundly affect species 49	

distributions (Bakkenes et al., 2002; Thomas et al., 2004; Thuiller et al., 2005) as it has already 50	

been documented (Davis & Shaw, 2001; Parmesan & Yohe, 2003; Parmesan, 2006). As 51	

temperature is expected to rise over the 21st century under all studied emission scenarios (IPCC, 52	

2014), it will alter species distribution (Loarie et al., 2009). We need to predict these changes if 53	

we want to take adequate actions to mitigate future losses of biodiversity (Pfenninger et al., 54	

2012). There are abundant examples in the scientific literature of tools and methodologies 55	

aimed at predicting species distributions in the face of global climate change (e.g. Aitken et al., 56	

2008; Guisan & Zimmermann, 2000; Franklin et al., 2012; Pfenninger et al., 2012; Razgour 57	

2015). However, most studies have focused on forecasting distributions at the species level and 58	

not taking into account for species internal genetic variability (Bálint et al., 2011; Benito-59	

Garzón et al., 2011; Alsos et al., 2012; Pauls et al., 2013). Within a species, this genetic 60	

variability manifests itself as an assemblage of lineages or clusters differing in their degree of 61	

adaptation (Sork et al., 2010; Neiva et al., 2015). Such genetic clusters can be inferred from 62	

genetic markers such as microsatellites or single-nucleotide polymorphisms (SNPs) using 63	

clustering algorithms such as STRUCTURE (Pritchard et al., 2000). Hence, distribution models 64	

at the species level will be necessarily less precise than models at the intraspecific genetic level. 65	

The knowledge of this intraspecific genetic diversity may give quite a different vision on the 66	

projected distributions of species under climate change (Jump et al., 2009; Benito-Garzón et al., 67	

2011; Yannic et al., 2014; Marcer et al., 2016) and be fundamental in conservation.  68	

Data on intraspecific genetic lineages come as proportions (i.e. percentages of genetic 69	

cluster or lineage membership for admixed populations) instead of the presence/absence data 70	

used in traditional SDM techniques. However, despite the existence of notable studies that try to 71	

infer species distributions by working at the genetic level (e.g. Razgour et al, 2013; Valladares 72	

et al., 2014; Yannic et al, 2014), few studies (e.g. Jay et al., 2012) have directly used these 73	

proportion-type data to model the distribution of intraspecific units as suggested by Gotelli & 74	

Stanton-Geddes (2015). More studies are much in need in this respect. 75	
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A model species well suited for exploring this issue is the annual plant Arabidopsis thaliana 76	

(L.) Heynh (Brassicaceae). Indeed, for A. thaliana, an extensive georeferenced database has 77	

already been collected for the Iberian Peninsula (Picó et al., 2008; Manzano-Piedras et al., 78	

2014) which is a major area of genetic diversity in the global distribution of this species 79	

(Brennan et al., 2014). The Iberian Peninsula is an environmentally diverse region where  A. 80	

thaliana shows local adaptation to the different environments as this region was a glacial 81	

refugium (Picó et al., 2008). It comprises a wide range of climates and A. thaliana shows great 82	

variation in response to these different conditions (Bouchapke et al., 2008; Picó et al., 2008; 83	

Hancock et al., 2011; Fournier-Level et al., 2011; Manzano-Piedras et al., 2014). This local 84	

adaptation is reflected in the intraspecific genetic clusters of this species (Hancock et al., 2011; 85	

Fournier-Level et al., 2011).  86	

Here, we analyse how the distribution of Arabidopsis thaliana could be affected by climate 87	

change at the intraspecific genetic level in the Iberian Peninsula. We used admixed genetic 88	

lineages inferred from a set of 250 SNPs analysed in 274 accessions spread across the Iberian 89	

Peninsula. Our objectives are a) to assess the effects of climate change on genetic lineages at the 90	

admixed population level by directly modelling genetic cluster membership values and b) to 91	

predict potential genetic cluster membership values across the Iberian Peninsula. Our work 92	

complements and expands comparable studies (Jay et al., 2012; Gotelli & Stanton-Geddes, 93	

2015) and aims at modelling genetic diversity directly from values of membership to genetic 94	

clusters. 95	

MATERIALS AND METHODS 96	

Study area 97	

The Iberian Peninsula is located in the western part of Eurasia (ca. between 10 W and 4 E, 98	

and 36 S and 44 N). It is a mountainous region of circa 580 000 km2 and one of the major 99	

biodiversity hotspots in the Mediterranean. It harbors around 50% of the European plant species 100	

and 31% of the European endemic plants (Williams et al., 2000; Araújo et al., 2007) and has 101	

been a major Pleistocene glacial refugium (Hewitt, 2001; Gomez and Lunt, 2006). 102	

Species, accessions and genetic data 103	

We used a dataset of 274 accessions of Arabidopsis thaliana (L.) Heyhn. derived from the 104	

one described in Marcer et al. (2016) and which includes additional climate predictors. Genetic 105	

data consist of percentages of cluster membership assignment derived with the STRUCTURE 106	

algorithm (Pritchard et al., 2000), version v.2.2, from a set of 250 nuclear genetic 107	

polymorphisms (SNPs) as described in Manzano-Piedras et al. (2014).  108	
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Climate data 109	

Present time 110	

A set of eight bioclimatic variables relevant to the species’ ecology were selected as model 111	

predictors: BIO1 (Annual Mean Temperature), BIO2 (Mean Diurnal Range), BIO3 112	

(Isothermality), BIO4 (Temperature seasonality), BIO8 (Mean Temperature of Wettest 113	

Quarter), BIO12 (Annual precipitation), BIO15 (Precipitation seasonality) and BIO18 114	

(Precipitation of Warmest Quarter) (see Table ST1 in Supplementary Information). These 115	

variables were derived from the Digital Climatic Atlas of the Iberian Peninsula 116	

(http://opengis.uab.es/wms/iberia/en_index.htm) using the dismo package in R (Hijmans et al., 117	

2015). Data were accessed on February 19, 2015. Their pairwise degree of collinearity 118	

(Spearman’s correlation coefficient) is lower than 0.7. 119	

Future scenarios of climate change 120	

We selected the 2070 RCP2.6 and RCP8.5 climate change scenarios (Moss et al., 2008), 121	

which represent the minimum and maximum trends in radiative forcing (van Vuuren et al., 122	

2011) of the four RCP scenarios adopted by IPCC in its fifth Assessment Report (AR5) (IPCC, 123	

2014) as modelled by four different climate change models: HadGEM2-ES (Met Office Hadley 124	

Centre, UK), MRI-CGCM3 (Meteorological Research Institute, Japan), MIROC-ESM (Japan 125	

Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute 126	

(The University of Tokyo), and National Institute for Environmental Studies), NorESM1-M 127	

(Norwegian Climate Centre, Norway). Data were downloaded from the WorldClim website 128	

(http://www.worldclim.org) on February 19, 2015. We reprojected them from their original 129	

WGS84 Lat/Long (EPSG:4326) projection into ETRS89/LAEA (EPSG: 3035) equal-area 130	

projection and resampled them from 30 seconds to 1 km resolution using bilinear interpolation. 131	

Finally, for each of the two RCP scenarios we averaged the four models to generate our GCC 132	

dataset for predictive purposes. We will refer to these simply as RCP2.6 and RCP8.5. 133	

Modelling approach 134	

We used two different statistical models, namely, a parametric beta regression and a non-135	

parametric regression tree algorithm, as implemented in R packages betareg and mvpart, 136	

respectively (Cribari-Neto & Zeileis, 2010; Therneau & Atkinson, 2014). This combination of 137	

very different techniques allowed us to check for agreements and disagreements between them 138	

to make predictions more robust. We are assuming that populations are, at least, partially 139	

adapted to their local climate conditions and that their admixture setup is not exclusively due to 140	

demographic processes; a reasonable assumption for Arabidopsis thaliana (Picó et al., 2008; 141	
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Hancock et al., 2011; Fournier-Level et al., 2011). We modelled each genetic cluster separately, 142	

using their cluster membership percentages as dependent variables and the above mentioned 143	

climate variables as independent variables. No interaction terms were used. The model formula 144	

is as follows: 145	

Y[GC1, GC2, GC3, GC4] = ß0 + ß1·BIO1 + ß2·BIO2 + ß3·BIO3 + ß4·BIO4 + ß5·BIO8 + ß6·BIO12 + ß7·BIO15 + 146	
ß8·BIO18 147	

The dependent variable Y is the cluster membership coefficient for each of the four genetic 148	

clusters and can take values ranging from 0 to 1 which express the admixed degree of 149	

membership to the given genetic cluster. ß0 through ß8 are the regression coefficients and 150	

BIO1/2/3/4/8/12/15/18 are the climate predictors.  151	

To validate models and prevent overfitting, we used 10-fold cross-validation and used the 152	

average of the mean absolute error and of the pseudo-R2 of test folds as measures of predictive 153	

performance. Finally, we fitted the models again using the whole dataset and used these final 154	

models to make predictions. For each model, we calculated Moran’s I at five distance intervals 155	

(2000, 4000, 6000, 8000 and 10 000 m) in order to assess residual spatial autocorrelation 156	

assessing its significant using 10000 randomizations (R package ncf (Bjornstad, 2013)). Spatial 157	

autocorrelation was calculated both at the variable level (vSAC) and at the models’ residuals 158	

level (rSAC) in order to evaluate whether models managed to decrease already present vSAC. 159	

Prediction under global climate change 160	

At population level 161	

We calculated the cluster membership percentage change as predicted by each modelling 162	

method for each population and genetic cluster. We then checked for each population and 163	

climate change scenario whether both modelling methods agreed on the direction of change; i.e. 164	

whether a given cluster membership value either increases or decreases. For those populations 165	

in which models did not agree we did not trust the predicted changes in genetic cluster 166	

membership percentages. For the rest of populations in which the models did agree we 167	

predicted the future genetic cluster membership value as the weighted average pseudo-R2 of 168	

both modelling techniques. After that, we assessed the relative dominance of each genetic 169	

cluster in each population in order to highlight those populations for which their dominant 170	

genetic cluster changed. Finally, we assessed the degree of intraspecific composition 171	

populational change between current and future climate conditions by using the Pearson 172	

correlation coefficient between current and future genetic cluster membership percentages to 173	

give a global measure of population structure change, as in Jay et al. (2012). 174	
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At Iberian Peninsula level 175	

We projected both models to the whole of the Iberian Peninsula at present time climate 176	

conditions and under both RCP2.6 and RCP8.5 climate change scenarios. As with the 177	

predictions at population level we used the weighted average pseudo-R2 of both predictions to 178	

give a final map of potential genetic cluster membership suitability under climate change. We 179	

considered as unknown those areas similar to the environmental conditions of the populations 180	

for which models did not agree (greyed-out areas in Figure 3). We used the Gower’s 181	

dissimilarity coefficient (Gower, 1971) as implemented in R package StatMatch (D’Orazio, 182	

2015) and determined as unpredictable those areas with a value below 0.025. 183	

Changes in potential distribution 184	

In order to quantify the potentially suitable area for each genetic cluster and to compare its 185	

extent between present time and climate change scenarios, we used a threshold of 0.5 as a cut-186	

off point for determining whether any given location is either suitable or unsuitable for each 187	

genetic cluster. We then calculated the potentially suitable area for each genetic cluster and 188	

scenario of climate change as well as additional measures of change such as the mean and 189	

median of the suitability scores. 190	

RESULTS 191	

Model performance and residual spatial autocorrelation 192	

Overall, regression trees models showed consistent better predictive performance than beta 193	

regression ones for both mean absolute error (mae) and pseudo-R2 (hereafter pr2) metrics (Table 194	

ST2). For all genetic clusters, beta regression results in an average mae of 0.158 and average pr2 195	

of 0.263 while regression trees result in an average mae of 0.126 and average pr2 of 0.320. The 196	

best predicted genetic cluster was GC2 for both regression trees (mae: 0.081 ± 0.013, pr2: 0.561 197	

± 0.142) and beta regression (mae: 0.103 ± 0.016, pr2: 0.468 ± 0.142). On the other hand, GC3 198	

had the highest error in the case of beta regression models (mae: 0.205 ± 0.027, pr2: 0.103 ± 199	

0.102), while for regression trees it was GC1 according to mae (0.163 ± 0.025) and GC3 200	

according to pr2 (0.144 ± 0.116).  201	

Tables ST3-1/4 and figures SF3-1/4 show results of the spatial autocorrelation (SAC) 202	

analysis. At the variable level (vSAC), it was always highest at the second distance class (4 000 203	

m) for all genetic clusters with the exception of GC4, for which it was the third distance class (6 204	

000 m). Except for 5 cases (GC1-Beta-4000, GC2-Beta-4000, GC2-RT-4000, GC4-Beta-8000 205	

and GC4-RT-8000) residual SAC (rSAC) was always lower than vSAC, meaning that the 206	
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models were able to reduce inherent vSAC in most cases. For GC1 and GC4 rSAC was not 207	

significant in all models and distance classes except for one case each. GC3 rSAC was 208	

significant in two distance classes of the beta model and one distance class of the regression tree 209	

model. Beta regression for GC4 only had one class with non-significant rSAC but the regression 210	

tree model rSAC was only significant in two of them. 211	

Predictions at the population level 212	

Model comparison and prediction of change for genetic cluster membership percentages 213	

Table 1 and Figure 1 summarize the degree of agreement between both modelling methods 214	

in determining the direction of change in genetic cluster membership percentages per population 215	

and climate change scenario. In most of the populations and for both climate change scenarios, 216	

both beta regression and regression tree models coincide in determining the direction of change, 217	

i.e. whether a given population increases or decreases its membership percentage for a given 218	

genetic cluster. For scenarios RCP2.6 and RCP8.5 the maximum coincidence was in the case of 219	

GC1, for which they only differed in 25 populations (9.1 %), while the minimum coincidence 220	

for RCP2.6 was in the case of both GC2 and GC4 with 50 populations each (18.2 %), and for 221	

RCP8.5 was in the case of GC4 with 63 populations (23.4 %). Considering only the populations 222	

for which models agreed in the direction of change, we can state that for scenario RCP2.6, GC1 223	

had the biggest gain (+0.169 ± 0.100) and GC3 the biggest loss (-0.456 ± 0.273), while for 224	

scenario RCP8.5 the biggest gain was for GC3 (+0.214 ± 0.172) and the biggest loss also for 225	

GC3 (-0.434 ± 0.268). In figure 1 populations for which models do not agree are marked with a 226	

black diamond. 227	

Genetic cluster turnover 228	

Figure 2 shows for each climate change scenario and genetic cluster which populations are 229	

predicted to have their dominant genetic cluster changed. Numbers are calculated taking only 230	

into account those populations for which models agree (black dots in Figure 2), which is not 231	

applicable to present time. All genetic clusters but GC4 will suffer a switch in suitability for 232	

some of their dominant populations; i.e. their present time dominant cluster will be switched to 233	

another one. Overall, taking into account all shifts from every genetic cluster at present time, 234	

GC1 will go from 148 dominated populations to 132 in RCP2.6 and 60 in RCP8.5 with 16 235	

populations of uncertain fate in RCP2.6 and 12 in RCP8.5. GC2 will go from its current 57 236	

populations to 43 in RCP2.6 and 58 in RCP8.5 with 18 populations of uncertain fate in RCP2.6 237	

and 15 in RCP8.5. GC3 will go from its current 38 populations to only 9 in RCP2.6 and 55 in 238	

RCP8.5 with no populations of uncertain fate in RCP2.6 and 3 in RCP8.5. Finally, GC4 will be 239	
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the only genetic cluster which will keep all its present time dominated populations in both 240	

climate change scenarios and will increase from its current 31 to 51 in RCP2.6 (with 5 of 241	

uncertain fate) and to 67 in RCP8.5 (with 4 of uncertain fate). 242	

Figure SF4 and SF5 show the degree of genetic structure change that each population must 243	

undergo to be best suited for its new environment. Approximately a fifth of existing populations 244	

will have to undergo a major structural change: 17.3% in the case of RCP2.6 and 21% in the 245	

case of RCP8.5 (Table ST4).  246	

Predictions at the level of the Iberian Peninsula 247	

Table 2 shows the potentially suitable area, the mean and the median for each genetic 248	

cluster at present time and future scenario as a way to measure the overall change across the 249	

Iberian Peninsula (Figure 3) that each genetic cluster would undergo in each scenario of climate 250	

change. Genetic clusters GC1 and GC2 show a reduction in mean suitability. For RCP2.6 their 251	

means get reduced from 0.314 to 0.270 and from 0.208 to 0.204 and their potential distribution 252	

area gets reduced by 50.8% and 87.5%, respectively. On the other hand, GC3 and GC4 would 253	

undergo a general increase in their suitability to climate change. Although GC3 would decrease 254	

its mean from 0.225 to 0.217 for RCP2.6, for RCP8.5 it would increase up to 0.257. With 255	

respect to potential distribution area, it would increase by 835.0% for RCP2.6 and by 4887.4% 256	

for RCP8.5. Finally, land suitability for GC4 would also be substantially increased; from a 257	

mean value of 0.253 to 0.302 for RCP2.6 and up to 0.369 for RCP8.5 and an increase of 258	

potential distribution area of 175.2% for RCP2.6 and of 238.1% for RCP8.5.  259	

The spatial distribution of these changes is shown in Figure 3 where there are clear trends 260	

northward. Higher values of suitability for GC1 get more constrained to the most northern part 261	

of the Iberian Peninsula both for RCP2.6 and RCP8.5. GC2 shows a shift towards the north-east 262	

of its climate suitability. GC3 moves towards central parts of the Iberian Peninsula and GC4 263	

again shows a clear northerly expansion of climate suitability. Supplementary materials provide 264	

Figures SF6 and SF7-1/4 which show future predictions differentiated by modelling method. 265	

DISCUSSION 266	

Our results confirm the need for dealing with intraspecific genetic variation in order to 267	

understand and forecast the effects of climate change on species distributions as has been 268	

suggested (Hancock et al., 2011; Fournier-Level et al., 2011). We have shown that the impact of 269	

climate change is unevenly felt by the different genetic lineages of Arabidopsis thaliana in the 270	

Iberian Peninsula, an expected result given that these lineages are known to have local 271	

adaptation and their relative percentage mixture in populations is geographically structured in 272	
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the Iberian Peninsula (Picó et al., 2008). Moreover, it is possible to identify those populations 273	

which, for their particular genetic makeup, will need to undergo a major structural genetic 274	

change from those which may have a minor impact. This is a potentially useful outcome since it 275	

can help in optimizing scarce resources when undertaking conservation efforts.  276	

Species distribution models should therefore consider genetic variation as has been 277	

suggested (Jump et al., 2009; Benito-Garzón et al., 2011; Yannic et al., 2016; Marcer et al., 278	

2016). Although for the vast majority of species this kind of information is unavailable and 279	

traditional SDM techniques might be the only option, these results clearly suggest that, when 280	

possible, this should be the way to proceed. Also, given the fast pace in which genetics and 281	

genomics technologies progress (Hoffman et al., 2015; Tyler-Smith et al., 2015) it is not 282	

unthinkable that in a not so distant future this could be done for most species. 283	

It is important to recognize that these kinds of analyses forget an important component, 284	

demography. As shown, we can give a snapshot of what might happen to a given species in the 285	

face of rising temperatures and shifting climate regimes. However, this is done as a single leap 286	

forward into the future without considering the population dynamics and resulting demographic 287	

changes which would occur if a sequence of many events in a real-time path to the projected 288	

2070 year was considered. Although future research should try to incorporate demographic 289	

processes at the landscape level into the modelling process, this is not an easy task. The 290	

difficulty resides not only in model development but more importantly in the lack of sufficient 291	

quality data (Ehrlén & Morris, 2015) on species life history traits and populations and in the 292	

stochasticity, inherent to some processes like long-distance dispersal events (Pergl et al., 2011). 293	

In order to project spatially explicit models in time we need data on local demographic 294	

parameters over broad areas (Nathan 2006; Thuiller et al., 2014), which is usually unavailable. 295	

Even in the case of Arabidopsis thaliana, a model species and one of the better-known species, 296	

there is no reliable field-obtained data on important traits, such as population size, seed 297	

production, seedling survival or dispersal distance of natural populations over broad areas, 298	

which would be needed to build such models. A possibility is that of running simulations but 299	

this has it’s owns caveats, too. Without actual data, their outcomes are very dependent on the 300	

value of the parameters that are fed to them and, thus, their results difficult to interpret. 301	

The expected effect of climate change on the genetic lineages of Arabidopsis thaliana in the 302	

Iberian Peninsula is in accordance to the work of Marcer et al. (2016). Genetic clusters GC3 and 303	

GC4 will increase their potential distribution by expanding northward their distribution ranges. 304	

On the other hand, GC1 and GC2 will shrink their distribution ranges and their highest suitable 305	

areas will be more constrained to the north and north-east, respectively. At the population level, 306	

Arabidopsis thaliana will undergo a genetic turnover in many of its populations which will need 307	
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to shift from one dominant genetic cluster to another. Either dispersal, local re-adaptation or 308	

phenotypic plasticity must come to the rescue if most populations are to survive these changes 309	

induced by climate change. For instance, as shown by Picó et al. (2014), flowering time, which 310	

is mediated by temperature, appears to be the major life-history trait adjusting Arabidopsis 311	

thaliana to the different environmental conditions across the Iberian Peninsula. Plasticity in this 312	

and other traits may provide for some necessary time for populations to adapt (Donohue et al., 313	

2005; Levin, 2009; Nicotra et al., 2010). 314	

We have modelled genetic cluster membership percentages to infer potential future 315	

distributions at the intraspecific level rather than resorting to the use of thresholds to transform 316	

data into presence/absence and use SDM techniques. This work adds to the need for more 317	

research in this respect (Jay et al., 2012; Gotelli & Stanton-Geddes, 2015). We used two very 318	

different modelling approaches, a parametric beta regression and a non-parametric regression 319	

tree analysis, which showed a high degree of agreement in their predictions. Despite, their 320	

individual predictive power with a set of only-climate predictors was limited, their combined 321	

use allowed us to identify which predicted changes could be trusted and use this information to 322	

make predictions with highlighted populations and areas of uncertainty. The limited predictive 323	

power should not be attributed to the statistical modelling techniques themselves but it probably 324	

reflects the lack of important predictors such as land use and soil type (Marcer et al., 2016), a 325	

price currently needed to pay due to the lack of climate change models for these types of 326	

variables. 327	

Finally, we would like to express the need for quality data if we are to understand the 328	

biological and environmental processes that drive species distributions and predict the fate of 329	

species in front of climate change. The building of quality and extensive datasets on natural 330	

populations such as the one used in this study require substantial resources in terms of time and 331	

funding. Yet, they are paramount to such undertakings. The lack of sufficient funding for such 332	

basic research and of community recognition for data building and curation is a major handicap 333	

which hinders advancement in this respect. The authors encourage funding agencies not to 334	

dismiss this pressing need.  335	

  336	
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TABLES 499	

TABLE 1 500	

Changes in genetic cluster membership at the population level.  501	

Columns - gen.unit: Genetic cluster, rcp: Representative concentration pathway (climate change scenario), 502	
n.gain: Number of populations for which models agree on an increase in genetic cluster membership value, n.loss: 503	
Number of populations for which models agree on a decrease in genetic cluster membership value, unknown: 504	
Number of populations for which models do not agree, avg.gain: Average gain for populations on which models 505	
agree, sd.gain: Standard deviation of gain for populations on which models agree, avg.loss: Average loss for 506	

populations on which models agree, sd.loss: Standard deviation of loss for populations on which models agree 507	

gen.unit rcp n.gain n.loss unknown avg.gain sd.gain avg.loss sd.loss 
GC1 +2.6  93 156 25 0.169 0.100 -0.264 0.127 
GC1 +8.5  76 173 25 0.138 0.084 -0.335 0.160 
GC2 +2.6 157  67 50 0.117 0.078 -0.136 0.098 
GC2 +8.5 141  72 61 0.122 0.089 -0.148 0.109 
GC3 +2.6 183  50 41 0.135 0.074 -0.456 0.273 
GC3 +8.5 200  46 28 0.214 0.172 -0.434 0.268 
GC4 +2.6 161  63 50 0.129 0.110 -0.162 0.124 
GC4 +8.5 173  38 63 0.200 0.138 -0.190 0.107 
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TABLE 2 509	

Changes in land suitability in the Iberian Peninsula for each genetic cluster and time frame. Potential 510	

area is expressed in km2 after applying a cut-off threshold of 0.5. Mean and Median are the mean and 511	

median predicted cluster membership percentage divided by 100, respectively. Present time shows the 512	

current values for each Genetic cluster and Statistic, and RCP +2.6 and RCP +8.5 show these values for each 513	

climate change scenario. 514	

Genetic cluster Statistic Present time RCP +2.6 RCP +8.5 
GC1 Potential area 101900 50173 12713 
GC1 Mean 0.314 +/- 0.148 0.270 +/- 0.113 0.194 +/- 0.088 
GC1 Median 0.290 0.224 0.162 
GC2 Potential area 60870 48371 42885 
GC2 Mean 0.208 +/- 0.167 0.204 +/- 0.154 0.198 +/- 0.146 
GC2 Median 0.162 0.178 0.171 
GC3 Potential area 1033 8630 50487 
GC3 Mean 0.225 +/- 0.062 0.217 +/- 0.080 0.257 +/- 0.132 
GC3 Median 0.251 0.231 0.244 
GC4 Potential area 89036 156021 212014 
GC4 Mean 0.253 +/- 0.168 0.302 +/- 0.180 0.369 +/- 0.188 
GC4 Median 0.154 0.200 0.300 

 515	
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FIGURES 517	

FIGURE 1 518	

Gains and losses in membership percentage to genetic clusters. Black diamonds show the populations for 519	

which models do not agree. Degree of change is expressed in membership percentage units divided by 100. 520	

 521	
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FIGURE 2 523	

Genetic cluster turnover for populations under two scenarios of climate change in 2070. Numbers at 524	

bottom right of each map show the number of populations dominated per genetic cluster in each case. UNKN 525	

(unknown) is the number of populations for which models do not agree. 526	
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FIGURE 3 528	

Projection of genetic cluster membership percentage under two scenarios of climate change (2070). Gray 529	

areas are zones environmentally similar to the environmental conditions of the populations for which models 530	

do not agree and thus cannot be predicted with confidence. Legends are expressed in membership percentage 531	

values divided by 100. 532	
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