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ABSTRACT

Although central to regulating the access to genetic 
information, most lysine methyltransferases remain 
poorly characterised relative to other family of en-
zymes. Herein, we report new substrates for the ly-
sine methyltransferase SETD6. Based on the SETD6-
catalysed site on the histone variant H2AZ, we identi-
fied similar sequences in the canonical histones H2A, 
H3, and H4 that are modified by SETD6 in vitro, and 
putative non-histone substrates. We herein expend 
the repertoire of substrates for methylation by SETD6.

INTRODUCTION

Histone H3 lysine residues were found to be methy-
lated over fifty years ago (1, 2). However, it was not 
until 2000 that the first mammalian histone lysine 
methyltransferase was discovered (3). The latest hu-
man genome annotation predicts over 60 lysine 
methyltransferases (KMTs) based on sequence simi-
larities with either a SET or a seven β-strand catalytic 
domain (4). However, most of these enzymes remain 
uncharacterized or poorly studied. Thus, important 
questions regarding the biological relevance and bio-
chemical properties of these enzymes remain unan-
swered. Importantly, several histone KMTs also meth-
ylate non-histone substrates, such as the tumour 
suppressors p53 (5-7), ING2 (8), and pRB (9), as well as 
chromatin proteins such as DNMT1 (10), HP1α/β/γ (11), 
RUVBL1 (12), and RUVBL2 (13).

The methyltransferase SETD6 mono-methylates the 
NFκB subunit RelA at lysine 310 (K310me1) (14), the 
histone variant H2AZ at lysine 7 (K7me1) (15), and the 
kinase PAK4 (16). The expression of SETD6 is ampli-
fied in about 10% of cases of breast cancer according 
to a study using a patient xenograft model (17) and is 
required for cellular proliferation in both ER+ and ER- 
breast cancer cell models (18), suggesting an impor-
tant role in driving breast cancer progression. Indeed, 
SETD6 was recently found to associate with the cy-
toskeleton protein VIM (19), which is involved in epithe-
lial to mesenchymal transition (EMT), cellular attach-
ment, migration, and signalling, suggesting a role in 
metastasis.

Much like classical signal transduction events involve 
phospho-dependent protein-protein binding, chro-
matin signalling events implicate post-translational 
modifications in the regulation of macro-molecules 

interactions. For example, lysine methylation of his-
tones lysine residues serves as landing pads for 
chromatin proteins, which are referred to as histone 
mark readers or simply readers, thereby nucleating 
enzymatic complexes that modify and remodel chro-
matin to regulate access to genetic information.

Herein, we demonstrate that recombinant SETD6 
methylates canonical histones H2A, H3, and H4, as 
well as linker histones H1 and the non-histone protein 
ING2 in vitro, and identify several putative novel sub-
strates, including chromatin proteins and other lysine 
methyltransferases.

RESULTS

We previously identified 2 mono-methylation sites on 
the histone variant H2AZ catalysed by SETD6 (15). 
Interestingly, these modified sites, H2AZK4me1 and 
H2AZK7me1, are similar. Both modified lysine residues 
are preceded by a small amino acid (alanine or 
glycine) at position -2 and a glycine at position -1 
(Table 1). Examination of canonical histone tails re-
vealed similar sequences in histones H2A, H3, and 
H4, and identification of a putative SETD6 methylation 
consensus motif A/G/RGKme1A/GG (Table 1).

Table 1: SETD6 consensus motif. Based on H2AZ methylation 
sites by SETD6, putative modification sites were identified in 
canonical histones H2A, H3, and H4.

�

To test whether SETD6 could methylate these other 
histones, we used a mixture of purified calf thymus 
histones as substrates. Interestingly, SETD6 was ca-
pable of modifying the linker H1 histones as well as 
the canonical histones H2A, H3, and H4 (Figure 1). 
As a positive control, we used SET7, which is known 
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to methylate H3 (20), and H1 histones (21). As a nega-
tive control, GST alone was used and as expected 
GST had no detectable methyltransferase activity on 
histones (Figure 1).

�

Figure 1: SETD6 methylates histones. Recombinant KMTs were 
used to modify histones isolated from calf thymus in the presence 
of 3H-SAM. Samples were analysed by SDS-PAGE, then either 
stained with Coomassie (top panel) or transferred to PVDF mem-
brane and autoradiographed (bottom panel).

To confirm the SETD6-catalysed methylation sites on 
canonical histones, the first 50 amino acid residues of 
H2A, H3, and H4 were fused to the amino terminus of 
GST to leave the histone tail free at the amino termi-
nus and generate H2A1-50-GST, H31-50-GST, and 
H41-50-GST. Then the predicted sites (Table 1) were 
converted to arginine by site-directed mutagenesis. 
The affinity purified recombinant proteins were then 
used for in vitro KMT assays with SETD6. In agree-
ment with previous experiments showing that SETD6 
modifies canonical histones (Figure 1), SETD6 
methylated recombinant histone tails from H2A, H3, 
and H4 (Figure 2A). Importantly, mutation of the GK 
motifs reduced drastically the methylation of H2A and 
H3 by SETD6 (Figure 2A). However, single mutation 
of H4 at K5 or K12 only minimally reduced meth-
ylation by SETD6 (Figure 2A).

Since H4 methylation seemed stronger (Figure 1), 
and to further investigate the methylation of H4 by 
SETD6, methyltransferase assays on H4 peptides 
H41-20 and H410-31 were performed and confirmed that 
SETD6 methylates H4 (Figure 2B). Interestingly, 
SETD6 methylated H410-31 better than the H41-20 pep-
tide, while methylation at K20 (K20me1, K20me2, or 
K20me3) impaired this effect (Figure 2B), suggesting 
that SETD6 modifies H4K20 in addition to H4K12 or 
other site(s), such as H4K16 or H4K31 (Figure 2C). 

Alternatively, these results may suggest that there is a 
cross-talk between H4K20me and the SETD6-catal-
ysed methylation site(s).

�

Figure 2: SETD6 methylates GK motifs in canonical histones. (A) 
SETD6 was used to methylate the indicated recombinant histone 
tails. Samples were analysed by SDS-PAGE, then either stained 
with Coomassie (top panel) or transferred to PVDF membrane and 
autoradiographed (bottom panel). (B) KMT assays were performed 
with SETD6 on H4 peptides. (C) Sequence of H4 peptides used in 
panel B with each lysine numbered.

Several KMT, including SETD6, modify non-histone 
proteins. We thus searched for the GKDS motif in pro-
tein sequence repositories and identified several puta-
tive SETD6 substrates (Table 2 and S1), including the 
ATPase RUVBL1, which is modified by the H3K9 
methyltransferases G9A and GLP (12). Importantly, 
some putative SETD6 substrates (AHNAK2, ERICH3, 
and MDN1) were found in the PhosphoSitePlus mass 
spectrometric database to be methylated at the pre-
dicted site (22) (Table S1). A similar search using the 
H4K5 and H4K12 motif GKGG also yielded several 
putative substrates for SETD6, such as the chromatin 
remodeller BRG1 (GK1029GG) and the HBO1 acetyl-
transferase subunit JADE2 (GK638GG).
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Table 2: Novel SETD6 putative substrates. The GKDS motif from 
H2AZ was used to identify novel substrates for SETD6.

�

Herein, we found that SETD6 methylates histones 
H2A, H3, and H4 on lysine residues within an A/G/
RGKme1A/GG consensus motif.

DISCUSSION

Proteomic studies have identified post-translational 
modifications on histones and non-histone proteins, 
but the enzymatic activities depositing these modifica-
tions remain largely unknown. There is a dire need to 
identify PTMs to understand how proteins are regu-
lated, but more importantly to identify the enzymes 
catalysing these biochemical events. To this end, we 
have in the past designed an unbiased chemical-biol-
ogy approach to tag novel KMT substrates (23). How-
ever, traditional biochemical studies are still required 
to investigate and validate novel post-translational 
modifications.

The H3K14me1 mark was reported to occur in both 
human and mouse (24, 25), supporting the existence of 
the modification in cells. We have herein identified the 
first KMT capable of modifying this site in vitro. Fur-
ther work will be required to validate the role of SET-
D6 in the catalysis of H3K14me1 in cells and the func-
tion of this mark.

Interestingly, H4K12me3 (22), H4K16me3 (22, 24), and 
H4K31me1 (26) were detected by mass spectrometry. 
However, no other reference to these modifications 
appear in the current literature. H4K5 was recently 
found to be methylated by SMYD3 (27).

Although mono-methylation events on the linker his-
tone H1 H1F0 was reported at K12, K59, K82, K102, 
K108, and K155 (22, 28), these sites do not share simi-
larities with the SETD6 consensus motif, suggesting 
that SETD6 modifies non-GKDS sequences. Indeed, 
SETD6 methylates RelA at the non-GKDS site 
FK310SI (14). In addition, SETD6 can methylate the 
histone mark reader ING2 in vitro (Figure S1) and 
PAK4 (16), both of which do not contain any GKDS-like 
motif.

Together, the in vitro data provided here identifies 
SETD6 as a likely candidate for the methylation of 

reported events on H3K14, H4K5, H4K12, H4K16, 
and H4K31. In addition, we identified several putative 
non-histone protein substrates for SETD6.

METHODS

Plasmids. The modified pGEX plasmid with an engi-
neered multi-cloning site at the N-terminus of the GST 
coding sequence was described previously (15). The 
cDNA of histones H2A, H3, and H4 was amplified by 
PCR from reverse transcribed total RNA and inserted 
in frame with GST using restriction endonucleases 
and T4 DNA ligase (NEB).

Recombinant protein expression and purification. 
Essentially, BL21 DE3 competent bacteria (Strata-
gene) were transformed with pGEX plasmids. Single 
colonies were picked and grown in 2YT media. Ex-
pression of GST-fusion proteins was induced with 
0.01mM IPTG for 2.5 hours at 37°C, cells were col-
lected and lysed in buffer (50mM Tris-Cl pH 7.5, 
150mM NaCl, 0.05% NP-40). Recombinant protein 
were batch purified using glutathione-sepharose 
beads. GST-SETD6 was purified similarly, but from 
Sf9 insect cells as described (15).

In vitro KMT and Flashplate KMT assays. Lysine 
methylation assays were performed in reaction buffer 
(50mM Tris-Cl pH8.0, 10% glycerol, 20mM KCl, 5mM 
MgCl2) supplemented with 3H-SAM as described (8), 
using calf thymus histones (Worthington), recombi-
nant histone tails (see above), or biotinylated histone 
H4 peptides.

Motif search. The GKDS sequence was used in a 
motif search using PHI-BLAST against the Non-re-
dundant protein sequences (nr) database, restricted 
to Homo sapiens (taxid:9606).
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