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Abstract 
 
The degree to which germline variation drives cancer development and shapes tumor phenotypes 
remains largely unexplored, possibly due to a lack of large scale publicly available germline data for a 
cancer cohort. Here we called germline variants on 9,618 cases from The Cancer Genome Atlas 
(TCGA) database representing 31 cancer types. We identified batch effects affecting loss of function 
(LOF) variant calls that can be traced back to differences in the way the sequence data were 
generated both within and across cancer types. Overall, LOF indel calls were more sensitive to 
technical artifacts than LOF Single Nucleotide Variant (SNV) calls. In particular, whole genome 
amplification of DNA prior to sequencing led to an artificially increased burden of LOF indel calls, 
which confounded association analyses relating germline variants to tumor type despite stringent 
indel filtering strategies. Due to the inherent noise we chose to remove all 614 amplified DNA 
samples, including all acute myeloid leukemia and virtually all ovarian cancer samples, from the final 
dataset. This study demonstrates how insufficient quality control can lead to false positive germline-
tumor type associations and draws attention to the need to be sensitive to problems associated with a 
lack of uniformity in data generation in TCGA data. 
 
Author Summary 
 
Cancer research to date has largely focused on genetic aberrations specific to tumor tissue. In 
contrast, the degree to which germline, or inherited, variation contributes to tumorigenesis remains 
unclear, possibly due to a lack of accessible germline variant data. In this study we identify germline 
variants in 9,618 samples using raw germline exome data from The Cancer Genome Atlas (TCGA). 
There are substantial differences in the way exome sequence data was generated both across and 
within cancer types in TCGA. We observe that differences in sequence data generation introduced 
batch effects, or variation that is due to technical factors not true biological variation, in our variant 
data. Most notably, we observe that amplification of DNA prior to sequencing resulted in an excess of 
predicted damaging indel variants. We show how these batch effects can confound germline 
association analyses if not properly addressed. Our study highlights the difficulties of working with 
large public genomic datasets like TCGA where samples are collected over time and across data 
centers, and particularly cautions the use of amplified DNA samples for genetic association analyses. 
 
Introduction 
 
Cancer research to date has largely focused on genetic aberrations that occur specifically in tumor 
tissue. This is not without reason as tumor formation is driven to a great degree by somatically-
acquired changes[1]. However, the degree to which germline, or inherited, DNA contributes to 
tumorigenesis is unknown. While it has been clearly demonstrated that germline variation increases 
cancer risk in overt and rare familial cancer predisposition syndromes, the contribution of germline to 
more common and sporadic cancer risk is unclear and highly debated[1,2]. It is likely that inherited 
germline variation in fundamental molecular processes, such as DNA repair, can create a more 
permissive environment for tumorigenesis and shape tumor growth in some individuals.[3–5]. It is 
also likely that variation in the host germline genome can act synergistically with acquired somatic 
mutations to shape the way in which tumors grow and ultimately manifest.  
 
There is a growing interest in better understanding the contribution of germline variation to cancer risk 
and tumor phenotypes[6,7]. The most extensive pan-cancer germline study to date identified 
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associations between deleterious germline variation in known cancer predisposing genes and both 
age of onset and somatic mutation burden[6]. This study demonstrates that inherited variants can 
increase risk of developing cancer, as well as influence tumor growth and overall phenotypic features. 
Similar results were found in a study of bialleleic mismatch repair deficiency (bMMRD). It is known 
that bMMRD predisposes to childhood cancer, but it was further demonstrated that acquisition of 
somatic mutations in polymerase genes (POLE, POLD1) led to a hypermutated phenotype in 
childhood brain tumors[8]. This demonstrates a synergistic interaction between germline variation and 
somatic mutation. A comprehensive study of breast cancer whole genomes identified a somatic copy 
number profile signature associated with BRCA1 inactivation[9]. Interestingly, this profile was 
associated with either inactivation of BRCA1 in the tumor via mutation or promoter hypermethylation, 
or via inherited germline variants. This shows that somatic mutation and germline variation can both 
influence tumor phenotype. 
 
We chose to use the whole exome sequence (WXS) data from TCGA to investigate the role of 
germline variation in shaping tumor phenotypes. TCGA is an attractive dataset for this purpose as 
there are paired tumor normal data for many cancer types. We took a pan-cancer approach for two 
reasons: 1. increased sample size and therefore increased power to detect associations of small 
effect size; and 2. cancers of disparate origin may share common features which would be 
overlooked in a cancer type-specific analysis[10]. For example, germline mutations in BRCA1/2 are 
most commonly studied in breast and ovarian cancer, but have also been shown to increase risk for 
stomach and prostrate cancer[11]. Further, germline BRCA2 mutations have been associated with a 
distinct somatic mutational phenotype and an overall increased somatic mutation burden in both 
prostrate and breast cancer[6,9,12]. To our knowledge, a comprehensive germline analysis of all 
cancer types available in TCGA has not been performed. Thus other cross-cancer germline 
associations likely remain to be discovered. 
 
In an ideal dataset, a single protocol should be used for processing all samples. Unfortunately, this is 
unrealistic in large public datasets like TCGA in which samples are collected over time and across 
many data centers. Since its inception in 2005, TCGA has collected data on 11,000 patients from 20 
collaborating institutions and generated sequence data from 3 sequencing centers[13]. Differences in 
sample collection and processing across centers could lead to batch effects, or variation in the data 
due to a technical factor that masks relevant biological variation[14]. Problems with batch effects can 
be magnified when analyzing samples across TCGA, since the number of methods used to collect 
samples increases with the number of cancer types. The Pan-Cancer Analysis Project has 
recognized this and aims to generate a high quality dataset of 12 TCGA cancer types, taking care to 
identify and minimize technical artifacts[10].  
 
While extensive curated somatic data is available from TCGA, germline information is currently only 
available in raw form, under controlled access. Therefore, we first had to develop and execute a 
variant calling pipeline on the raw normal tissue sequence data to generate TCGA germline variant 
calls. As a main goal of our variant calling analysis is to create a cohesive, pan-cancer dataset, we 
chose to use the Genome Analysis Toolkit (GATK) group-calling approach[15,16]. Group-calling is a 
strategy for variant calling in which read data is shared across samples, in contrast to single sample 
calling where genotype decisions are made based on reads from a single sample only. There are 
three major advantages of this approach: the ability to distinguish sites that are homozygous 
reference vs. those that have insufficient data to make a call, increased sensitivity to detect variant 
sites that are poorly covered in any individual sample but well covered when the cohort is considered 
as a whole, and the ability to use GATK’s statistical modeling approach to variation filtration, known 
as ‘variant quality score recalibration’ (VQSR).  
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Here we describe our experience calling germline variants from a large cohort of TCGA normal tissue 
WXS samples spanning 31 cancer types. Specifically, we were interested in cataloguing sources of 
heterogeneity in sample preparation, identifying batch effects in our variant calls, and determining 
methods to reduce or control for technical noise. Our findings highlight the importance of quality 
control at all stages of the variant calling process and suggest that pan-cancer analysis with TCGA 
data be approached with caution. 
 
Results 
 
Technical heterogeneity in TCGA WXS Data Generation 
We obtained TCGA WXS data from CGhub in the form of reads aligned to the human reference 
genome (BAM files)[17]. From the BAM files and available metadata we identified seven technical 
sources of variation in the way the sequence data were generated: tissue source of normal DNA, 
exome capture kit, whole genome amplification of DNA prior to sequencing (WGA), sequencing 
center, sequencing technology, BWA version, and capture efficiency (C20X) (S1 Fig). We found 
substantial variation existed within and between cancer types with respect to these technical factors 
(Fig 1). Some of these technical factors were found to be highly associated with cancer type, such as 
use of Illumina Genome Analyzer II and ovarian cancer (OV), while others exhibited no clear 
relationship with cancer type, such as use of solid normal tissue as opposed to blood as a source of 
normal DNA. Relationships existed between pairs of technical factors as well, such as the Broad 
Institute’s exclusive use of a custom Agilent exome capture kit. All possible combinations of the first 
six technical factors produce 1152 unique workflows, of which only 44 were used to generate the 
TCGA data. This further demonstrates that relationships exist between technical factors. Of the 31 
cancer types examined, only uveal melanoma (UVM) and testicular germ cell tumors (TCGT) had a 
uniform workflow for all samples (S2 Fig). These observations highlight the substantial heterogeneity 
in data generation across TCGA and importantly even within cancer types.  
 
The technical factors can ultimately be divided into two categories: those that can be modified during 
processing of the sequence data (BWA version, target regions of a capture kit), and those that cannot 
be modified computationally (source of normal DNA, WGA, center, technology, capture efficiency). 
Six exome capture kits ranging in size from 33-64 MB were used to capture normal DNA for 
sequencing (S2 Table). As the goal of our variant calling pipeline was obtain a uniform set of variants 
across samples, we chose to limit analysis to the common capture regions. The area lost by confining 
attention to the intersection region of the capture kits is largely in exon flanking regions. The 
intersection covers 97.7% of Gencode exons, thus for the purposes of studying protein-coding 
variation using the intersection of the kits leads to minimal loss of data (S2 Table)[18]. It has been 
shown that differences in capture efficiency and sample preparation protocols between exome kits 
can affect variant calls, even in regions common between kits[19]. Therefore, despite using the 
common capture region, the use of multiple capture kits may still introduce artifacts.  
 
To assess the effect of heterogeneous BWA alignments on variant calls, we called variants on 345 of 
the TCGA normal WXS samples either using the provided BAM (OldAlign) or stripping and realigning 
reads to GRCh37 using BWA MEM v.0.7.12 (NewAlign) (S3 Fig). The overall discordance rates 
between the two sets of variants is in the expected range for different alignment protocols (S4 
Fig)[20]. Indel calls were noticeably more discordant, consistent with the specific challenges and 
notorious variability of indel calling[21]. Greater discordance between variant calling pipelines has 
been observed in low complexity regions of the genome, and in accordance with this we observe 
much lower discordance rates after removing repetitive regions from analysis (S4 Fig)[22]. 
Interestingly, the discordance rate was correlated with BWA version used to generate the BAM file in 
CGhub, with older versions displaying more discordance. This effect can largely be reduced by 
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filtering the variants (S5 Fig). In the absence of a truth set of variants we cannot determine whether 
realigning BAM files produces more accurate calls. Given the computational cost of realignment, and 
that discordance can be mitigated by filtering variants and masking repetitive regions of the genome, 
we proceeded with variant calling using the provided BAM files.  
 
Functional annotation of the final VCF predicted 1,093,501 variants (625,365 missense; 371,754 
silent; 24,455 nonsense; 2,968 splice site; 553 stoploss; 46,280 frameshift indels and 22,126 in-frame 
indels) in 9,618 samples. For initial quality control we performed principal component analysis (PCA) 
to identify the most significant sources of variation in the variant calls. PCA on common variants 
showed that the first two principal components stratified samples by self-reported race and ethnicity, 
indicating that the largest source of variation is ethnic background and not technical factors (S6 Fig). 
To assess the quality of the calls, we measured the fraction of variants also present in the ExAC 
database[23]. We expect a high degree of overlap between our calls and ExAC, as the ExAC 
samples include 7,601 normal DNA samples from TCGA. Overall 88.56% of the variant calls were 
present in ExAC, with SNVs showing higher overlap than indels (89.91% vs. 53.94%). Taken 
together, we concluded the variant calls were free of overt technical artifacts and proceeded to the 
next stage of analysis. 
 
Impact of technical heterogeneity on loss of function variants 
We are ultimately interested in testing the hypothesis that inherited impaired functionality of cancer-
relevant pathways shape tumor phenotypes, as has been previously demonstrated for bMMRD and 
BRCA1 germline mutations[6,8,9]. To identify germline variation likely to disrupt function of genes, we 
used VEP and LOFTEE to predict LOF variants in this cohort[24]. We observed a median 150 LOF 
per sample across our entire cohort, consistent with the ExAC findings (Fig 2). [23]. However, two 
cancer types, acute myeloid leukemia (LAML) and OV deviate significantly from this expected value, 
with individuals with these cancers having up to 500 LOF germline variants. This suggests an artifact 
was manifesting in rare LOF variants that was not identified by PCA on common variants. Notably this 
effect is specific to LOF indels, in contrast to LOF SNVs that are distributed more uniformly across 
cancer type (S7 Fig).  
 
We used Analysis of Variance (ANOVA) to assess the contribution of each technical factor to 
individual LOF variant burden. Initial analysis showed that source of normal control DNA and 
sequencing technology were not significantly associated with LOF variant burden, and that capture kit 
was highly collinear with sequencing center. Therefore, we limited subsequent analysis to sequencing 
center, BWA version, WGA, and C20X. It is known that LOF variant burden varies between ethnic 
groups, thus we include self-reported race as a covariate in this analysis as a reference point for 
expected variation[23]. All technical factors combined explain less than 1% of the variance in LOF 
SNV burden, indicating SNVs are largely unaffected by technical variation. In contrast, 59% of 
variation in LOF indel burden was explained by technical factors, with WGA alone explaining over 
50% (Table 1).  
 
Table 1. Variance in LOF SNV and indel burden explained by technical covariates.  

LOF SNV LOF Indel 
Sum Sq Df F value Pr(>F) Sum Sq Df F value Pr(>F) 

C20X 1785.49 1 52.95 3.72E-13 52930.43 1 153.90 4.95E-35 
WGA 156.89 1 4.65 3.10E-02 3744887.28 1 10888.62 0.00E+00 
Center 716.08 2 10.61 2.48E-05 383585.43 2 557.65 4.53E-228 
BWA 79.59 5 0.47 7.97E-01 169507.9 5 98.57 2.76E-101 
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RACE 30698.90 5 182.10 1.33E-184 146904.86 5 85.42 7.59E-88 
Residuals 281966.85 8363 2876257.21 8363 
WGA samples have a higher LOF variant burden with a median 201 LOF variants per WGA sample. 
Four cancer types contain samples that underwent WGA: colon adenocarcinoma (COAD) (26% 
WGA), rectum adenocarcinoma (READ) (33% WGA), OV, (92% WGA) and LAML (100% WGA) (Fig 
1). Analyzing cancer types containing both amplified and non-amplified DNA samples, we observed 
that WGA samples had a significantly higher LOF variant burden (Fig 3A), further suggesting that 
WGA rather than cancer type is the main source of bias. The cohort contains 13 individuals with both 
amplified and non-amplified DNA samples. We observed a 1.5 fold increase in LOF variant burden in 
amplified samples relative to non-amplified samples from the same individuals (p = 0.0002 by paired 
Wilcoxon Signed Rank test) (Fig 3B), suggesting that WGA prior to sequencing leads to an artificially 
inflated estimate of LOF variants. 
 
Having demonstrated that WGA is associated with increased LOF variants, we sought to characterize 
WGA samples more deeply. We observe that WGA samples have an excess of LOF indels while LOF 
SNV burden appears unaffected, as expected from the ANOVA results (S8 Fig). Interestingly, WGA 
samples had fewer variants overall, due to poor coverage over the capture regions (S8 Fig). We next 
investigated the effect of WGA on variant call discordance between repeated samples. In addition to 
the 13 individuals with paired normal WXS samples with and without amplification (denoted 
WGA:DNA), 44 individuals have paired normal WXS samples where both samples have been 
amplified (denoted as WGA:WGA) and 435 are paired samples without amplification (denoted 
DNA:DNA). We calculated variant call discordance between all repeated samples for SNVs and 
indels separately and observed a stepwise increase in discordance with amplification of one or both 
samples. This effect was most apparent in LOF indels, with a median 65.6% LOF indel discordance 
between repeated WGA:WGA samples (Fig 3C). Notably, the high discordance between repeated 
WGA samples suggests that the errors introduced by the amplification process are not consistent 
between samples and supports the hypothesis that WGA introduces random errors in the sequence 
data that manifest as LOF indels during the variant calling process. 
 
To determine whether our choice not to realign BAM files contributed to the observed WGA effect, we 
calculated LOF variant burden in our NewAlign and OldAlign cohort using the same protocol. 
Realignment of the sequence data with BWA MEM increased the number of LOF calls per individual 
but overall LOF burden was highly correlated (Pearson R2 = 0.95) (S9 Fig). WGA explained a 
significant amount of variance in LOF variant burden in both NewAlign and OldAlign samples (S9 
Fig). Thus we can conclude that realignment does not remove WGA artifacts observed in our variant 
calling pipeline.  
 
Filtering artifactual LOF variant calls 
We next sought to find an appropriate filter to remove artifactual LOF variant calls in WGA samples. 
As SNV calls were largely robust to technical artifacts, we focused on filtering indels specifically (S7 
Fig). We used two strategies available from GATK: 1) Statistical model filtering using VQSR with 
increasing stringency cutoffs (99%, 95%, 90%), and 2) Heuristic filtering (Hardfilter) based on fixed 
thresholds (QD > 2, FS < 200, ReadPosRankSum > -20)[16]. The four filtering methods varied in 
stringency, resulting in a median individual LOF indel burden ranging from 53-98 across methods (Fig 
4A and S10 Fig). All filters preserved the expected variation in LOF burden across ethnic 
backgrounds (S11 Fig). To assess technical artifacts, we performed an ANOVA analysis as described 
in Fig 2 for each filtering approach, including the initial filter (GATK VQSR 99) as a reference (Fig 4B). 
VQSR 90 and VQSR 95 reduced technical artifacts to a similar degree, whereas VQSR 99 and 
Hardfilters performed poorly (S11 Fig and S3 Table). Of note, when more stringent filtering 
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approaches are applied the variance explained by self-reported race increased, indicating that when 
artificial variation introduced by technical factors is reduced true biological variation is revealed.  
 
Variant filtering is a balance between removing likely false positive signal while retaining true positive 
signal. Using VQSR 99 we observe an individual LOF variant burden similar to that reported by 
ExAC, while all other methods produce lower LOF burden than expected (S12 Fig)[23]. Therefore, 
while more stringent filtering approaches can reduce technical artifacts, they do so at the cost of 
losing likely true positive indels. Without a way to manually validate a large number of rare indel 
variant calls, it is impossible to exactly measure false positives rates for our filter approaches.  
Instead, we used the repeated samples in our cohort to identify likely true positives (indels concordant 
between repeated samples) and likely false positives (indels discordant between repeated samples).  
We assessed filter quality using three measures: the fraction of discordant indels removed by the 
filter, the fraction of concordant indels removed by the filter, and the fraction of indels overlapping the 
ExAC database. The stringency of each filter was measured as the total number of LOF indel sites 
and the median individual indel LOF burden when each filter was applied (Table 2).  
 
Table 2. Metrics of filter stringency and efficacy.   

Filter LOF indel 
sites 

Median LOF 
indel burden 

Fraction 
discordant indels 

removed 

Fraction 
concordant 

indels removed 

Indel 
overlap with 

ExAC 

VQSR 90 6212 53 0.8667 0.4514 0.7079 
VQSR 95 9177 59 0.8064 0.3760 0.6776 
Hardfilter 24212 91 0.3600 0.0210 0.3527 
VQSR 99 26134 98 0.2763 0.1100 0.5394  
By all quality measures GATK VQSR 90 performs the best, suggesting that high stringency is 
required to produce reliable indel calls.  
 
Because it is possible that the observed WGA artifacts are specific to the GATK pipeline and that an 
alternate method of variant calling would reduce or eliminate this effect, we also obtained indel calls 
for all samples using Varscan (S13 Fig)[25]. While WGA artifacts are largely absent from Varscan 
indel calls, Varscan is highly sensitive to variation in BWA version. The Varscan pipeline does not 
include preprocessing or local indel realignment like the GATK pipeline, and likely would have 
performed better on realigned BAM files. It was not feasible to group call a cohort of this size using 
Varscan, and as we desired a group-called set of variants, we discontinued further analysis of 
Varscan indel calls.  
 
Consequences of technical artifacts on genetic associations 
To determine how sensitive association results are to filtering method, we tested for association 
between germline LOF variant burden and cancer type using different filtering approaches. We took 
an ‘one vs. rest’ approach with our samples using all cancers except the cancer of interest as a 
control. Thus, we tested for enrichment of LOF germline variants in one cancer type as compared to 
other cancers, which is different than other studies that have used control cohorts[6]. Our rationale for 
using this approach was to minimize heterogeneity that would be introduced by including control 
samples collected in different studies. We chose to highlight the results only from OV for two reasons. 
First, it is established that BRCA1/2 germline variants are enriched in OV so the OV – BRCA1/2 
association can be used as a positive control, and second virtually all OV samples have been 
amplified and are confounded with WGA artifacts[6,26,27]. 
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QQ plots from logistic association tests for three indel filter methods are shown in Fig 5A. It was 
immediately apparent that our initial filtering approach (VQSR 99) produced an excess of significant 
associations even above a strict Bonferroni multiple hypothesis correction (Fig 5B). True associations 
are mixed with false associations due to WGA artifacts in LOF indel calls. Increasing the stringency of 
indel filtering reduced noise due to technical artifacts while retaining a putative true positive BRCA1/2 
association signal. Stringent filtering removes noise at the cost of reducing potential signal, as 
evidenced by the decreased number of genes that can be tested for association. This inflation in 
significant associations was only observed in WGA cancers, and persisted, albeit to a far lesser 
extent, even with the most stringent filter (Fig  5B). Supporting the idea that some of the associations 
in WGA cancer types are false is that fact that 25% of significantly associated genes were shared 
between LAML and OV. It is unlikely that two disparate cancer types would share a large percentage 
of germline associations for a biological reason. Further only two of the significant genes (BRCA1/2) 
in OV and none in LAML are genes where germline variation is known to be associated with cancer 
risk[28].  LOF indels calls are more prone to batch effects than LOF SNVs, therefore we repeated the 
association test limiting to LOF SNVs only. While this reduces the excess number of significant 
associations, the analysis was underpowered to detect the true positive BRCA1/2 – OV association 
(S14 Fig). These results demonstrate that technical artifacts can lead to spurious associations and 
highlight the difficulty of correcting for artifacts in a pan-cancer analysis when technical factors are 
highly correlated with the phenotype being tested (Fig 1). 
 
We have demonstrated multiple problems that arise from including WGA samples in a pan-cancer 
cohort. Association tests revealed that despite stringent indel filtering, cancers with WGA samples 
have an excess of significant associations. The optimal indel filtering method to remove WGA 
artifactual signal removes approximately half of the expected LOF indels, and thus removes what is 
likely true signal from all samples. Finally, group calling shares information across all samples for 
both variant calling and filtering, so including samples with known artifacts may negatively affect all 
samples in the final VCF. Taken together, we decided to remove all WGA samples from future 
analysis, despite losing all LAML and samples and all but 30 OV samples. To properly remove WGA 
samples, we re-called variants beginning at the single sample gVCF stage. We compared the alleles 
found in the 9004 non-amplified DNA samples when called with the WGA samples (+WGA) and 
without (-WGA) and observed a surprising amount of discordance. This discordance was largely due 
to VQSR filtering, as the raw variant calls were highly concordant (S15 Fig). A similar magnitude of 
discordance was seen after removing a random subset of DNA samples and re-calling variants, 
indicating that this observation is not specific to WGA samples. From this we can conclude that group 
genotyping does not change dramatically with group size and membership, but VQSR is sensitive to 
group changes.  
 
Discussion 
 
We identified sources of technical variation in LOF variant calls from TCGA germline WXS data. 
Overall SNV calls were more robust to technical factors than indel calls. We found the strongest 
association between amplification of DNA prior to sequencing and an excess of LOF indel calls. Other 
factors tested were found to be significantly associated with both LOF SNV and LOF Indel burden, 
but explain little of the total variance in LOF variant burden when appropriate filters are applied (Table 
1 and Fig 4B). The factor explaining the most technical variation in total LOF variant calls after 
filtering is capture efficiency (C20X). It is likely that poor coverage over common capture regions, 
perhaps due to the different capture technologies used, decreased the ability to assign genotypes in 
some samples. Group-calling distinguishes sites with insufficient coverage to make a genotype call 
from those with adequate coverage for calling a homozygous reference genotype. Therefore, while 
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C20X is a significant factor in the simple burden analyses performed here, a more sophisticated 
burden testing approach that can accommodate missing genotype values should mitigate this 
technical artifact.  
 
Difficulty producing reliable variant calls in WGA exome samples has been previously 
reported[19,29]. Inaccurate read alignment has been identified as a main contributor to spurious calls 
in WGA samples. However, even with an alignment protocol optimized for WGA samples it is still 
estimated that 7% of variant calls in WGA samples are artifactual[19]. Artifacts introduced by WGA 
appear to be random and are therefore likely rare[19]. Previous work comparing amplified and non-
amplified DNA obtained from the same biological sample report higher variant call discordance in 
indels compared to SNVs, similar to what we observe[29].These studies conclude that overall 
concordance between amplified and non-amplified samples is satisfactory; however, neither 
examined the impact of WGA on deleterious variants. Here we have demonstrated that random errors 
introduced by WGA tend to manifest as rare frameshift indels that are difficult to distinguish from true 
rare deleterious variation.  
 
While group-calling is the approach recommended by GATK, with the exception of one paper from 
our lab exploring the impact of genetic background on group calling, to our knowledge there has not 
been a published systematic comparison of group calling vs. single sample calling on a gold standard 
dataset to quantify the advantages of group calling[30]. Group-calling is not without problems. Greater 
accuracy for the group as a whole comes at the cost of loss of singleton variants from any given 
sample. Another complicating factor unique to group-called samples are multi-allelic sites, or sites 
where multiple alternate alleles are found in the population genotyped. Relatively few sites in our VCF 
were multi-allelic (3%, or 30,620 sites), but these sites contain 4,947 high-confidence LOF variants 
(11% of all LOF variants), indicating the importance of correct multi-allelic site parsing. Multi-allelic 
sites additionally pose a problem when filtering reliable from unreliable variants. With current tools for 
filtering VCFs, it is only possible to filter at the site level, meaning at multi-allelic sites all alleles will 
either be included or excluded by the filter. Further, in the version of GATK used for this analysis 
(v3.5), quality annotations for a site are calculated using all alternate reads without distinguishing 
between alleles. Therefore it is possible for low quality alternate alleles to pass filter at multi-allelic 
sites if high quality alternate alleles are present at the same site.  
 
TCGA is often thought of as a single dataset, but due to differences in sample collection and 
processing across the participating sites, should be thought of as a collection of studies. While we 
focused on the germline WXS sequence data, it is likely that batch effects are present in other data 
types. This has been recognized by the Pan-Cancer TCGA effort, although it is less often 
acknowledged in papers published on one or few cancer types[10]. There is heterogeneity even 
within cancer types in terms of sample preparation, such as in COAD and READ where roughly a 
third of germline WXS samples were prepared using WGA. Batch effects present in TCGA data can 
potentially confound even single cancer type analyses if not properly addressed. In terms of pan-
cancer analysis, the correlation between certain technical factors and cancer types confounds 
analyses that use cancer type as the phenotype of interest, as we demonstrated in Fig 5. We note 
that since the initiation of our analysis, the raw TCGA sequence data has moved to the genomic data 
commons (GDC)[31]. The GDC has realigned the sequence data to the current reference genome 
(GRCh38 .d1.vd1) using a standardized pipeline to harmonize the BAM file. Although this will 
eliminate one source of variation (BWA version), it only serves to remind researchers how sensitive 
data analyses might be to non-standardized data collection protocols, especially in the context of the 
TCGA data, as our study makes clear.  
 
Methods 
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Cohort  
Approval for access to TCGA case sequence and clinical data was obtained from the database of 
Genotypes and Phenotypes (dbGaP). We selected a total of 9,618 normal tissue DNA samples with 
whole exome sequence data (S1 Table). We limited analysis to samples sequenced with Illumina 
technology and aligned to the GRCh37/hg19 reference genome.  
 
Germline Variant Calling 
Aligned sequence data for normal samples in BAM file format and the accompanying metadata was 
downloaded from CGhub[17]. Individual samples were matched with the target regions for the exome 
capture kit used to generate the sequence data, and variant calling was limited to these target regions 
+/- 100 bp. SNVs and small indels were identified using the GATK v.3.5/v.3.4 best practices pipeline 
and a group calling approach[15,16]. The GATK pipeline includes two preprocessing steps to improve 
the quality of the BAM file. Local realignment of reads is performed in regions containing indels, and 
base quality scores are recalibrated to minimize known sources of score bias. ‘HaplotypeCaller’ was 
run on individual samples in gVCF output mode, producing an intermediate single sample gVCF to be 
used for group genotyping. Running this pipeline on a single BAM from CGhub took approximately 15 
compute hours and produced a 100MB gVCF.  Individual gVCFs were combined in groups of 100 and 
the final group genotyping step was performed by chromosome on all 9,618 samples as a single 
cohort. Following this joint genotyping step, all future analysis was limited to the intersection of all 
exome kit capture regions. The intersection of the kits covered 27 MB and 97.7% of Gencode v19 
exons (S2 Table)[18]. GATK VQSR was run separately for SNVs and indels. VQSR learns from 
variant quality annotations using variants overlapping with vetted resources such as dbSNP and 1000 
genomes as a truth set. VQSR filters are defined by the percentage of truth variants that pass filter, 
termed truth sensitivity (TS). For the initial analysis, SNVs were filtered at VQSR TS 99.5% and indels 
at VQSR TS 99.0%, as suggested by GATK documentation. PCA was performed on the filtered pan-
cancer VCF using PLINK v1.90b3.29[32]. Multiallelic sites, rare variants (< 1% AF), and sites with 
missing values were excluded from the analysis, leaving 30,120 variants.  
 
Annotation and BAM metrics 
Putative LOF variants, defined here as stop-gained, nonsense, frameshift, and splice site disrupting, 
were identified using the LOFTEE plugin for VEP and Ensembl release 85[24]. LOFTEE assigns 
confidence to loss of function annotations based on position of variant in the transcript, proximity to 
canonical splice sites, and conservation of the putative LOF allele across primates. For our analysis 
we used default LOFTEE filter setting and only included high confidence predicted LOF variants. A 
variant was called LOF if it received a high confidence LOF prediction in any Ensembl transcript.  
 
Predicted variant effects were obtained using Annovar v.2014Jul14[33]. Annovar returns a single 
prediction for each variant position, collapsing across transcripts and reporting the most damaging 
variant prediction. 
 
Allele frequencies were obtained from ExAC v0.3.1 and used for comparison to our cohort[23].  
 
We quantified capture efficiency in this analysis as the percentage of capture target area covered by 
at least 20 X read depth (denoted C20X). Sequence depth information was obtained on BAMs 
downloaded from CGhub using GATK ‘DepthOfCoverage’ and the corresponding exon capture bed 
file to define coverage intervals. 
 
Realignment Comparison 
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To assess the effect of heterogeneous alignment protocols on variant calls, we realigned the raw 
sequence data for a subset of our cohort. We chose 345 samples to represent a large range of 
sample preparation variation present in the TCGA BAM files (S3 Fig). Reads were stripped from the 
BAM to generate a FASTQ file using samtools v.0.1.18 bam2fq[34]. The FASTQ was realigned to 
GRCh37 using BWA MEM v.0.7.12 (with parameters -t 3 -p -M) and duplicates were marked using 
Picard v.1.131[35,36]. From this point the realigned BAM file was processed through the same GATK 
pipeline described above to produce individual gVCFs. To directly compare the effect of realignment, 
we generated a VCF for the 345 realigned samples (NewAlign) and for the same 345 samples 
processed without the realignment step (OldAlign).  We were unable to run GATK indel VQSR on a 
cohort of this size, thus we filtered both VCFs with GATK SNV VQSR TS 99.5 and GATK indel 
hardfilters (settings QD > 2, FS < 200, ReadPosRankSum > -20). We calculated discordance 
between alignment pipelines as the percent discordant variant calls: 1- (intersection of variant calls/ 
union of variant calls). Variant calls were matched by position and alternate base, disregarding 
zygosity. 
 
Repeated Samples 
A subset of individuals in our cohort have multiple germline DNA WXS samples. This cohort of 9,618 
samples represents 9,099 unique individuals; 1012 of the normal WXS samples were obtained from 
493 individuals (2-5 samples per individual). The repeated samples all represent germline DNA from 
the individual, but differ in terms of sample preparation, sequencing, and processing. Percent 
discordance between repeated samples was calculated as described above. One sample (TCGA-BH-
A0BQ) was removed from future analysis due to a high discordance between two high coverage DNA 
samples. We suspect a sample label mismatch. For association testing, we selected one the sample 
with the highest coverage that was not whole genome amplified, leaving 9098 samples. 
 
Indel Filter Methods 
To assess different indel filtering methods, indels were extracted from the raw pan-cancer VCF using 
GATK ‘SelectVariants’. Multialleleic sites containing both SNPs and indels were included in the indel 
VCF. Four filter methods were tested on the pan-cancer indel VCF: GATK VQSR TS 90.0, TS 95.0, 
TS 99.0, and GATK Hardfilter. GATK VQSR and Hardfilter filters were applied using the modules 
‘ApplyRecalibration’ and ‘VariantFiltration’ respectively (Hardfilter settings QD > 2, FS < 200, 
ReadPosRankSum > -20). Indels were additionally identified using Varscan v.2.3.9 (with parameters -
-p-value 0.1 --strand-filter 1) on BAMs downloaded directly from CGhub with no preprocessing[25]. 
Single sample indel VCFs were generated using Varscan for all 9618 samples in our cohort.  
 
Statistical Methods 
To detect contribution of technical factors to LOF variant burden Type II ANOVA was performed using 
the R “car” package[37]. To determine the percent variance explained by technical factors the sum of 
squared error for each factor was divided by the total sum of squared error. To detect association 
between germline gene LOF status and cancer type, we used an ‘one vs. rest’ approach. For each 
cancer type, a binary (‘dummy’) vector was created indicating whether each individual had the given 
cancer type (1) or another cancer type (0). For sex specific cancers, only individuals of the same 
gender were compared. LOF variants with AF < 0.05 were binned by individual by gene to generate 
on individual LOF variant count for each gene. Genes were only included in our analysis if at least 
two individuals in the cohort had germline LOF variants in the gene. For each cancer type and each 
gene we used a logistic regression to test association between germline LOF variant burden and 
cancer type. Our regression model took the form: glm( cancer type indicator ~ variant burden + race + 
age ). To discover significant gene-cancer type associations we obtained the p value of the β 
coefficient for the variant burden term and used a Bonferroni cutoff of 1.61 X 10-7 to account for 
multiple testing (31 cancer types x ~10,000 genes). 
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Fig 1. Overview of technical covariates for pan-cancer samples.  
For each covariate and cancer type, color represents the fraction of total samples. Fraction of to
samples sums to 1 for each covariate and cancer type. Red indicates higher heterogeneity. Yea
published included for context. 
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Fig 2. Individual LOF variant burden across cancer types.  
LOF variant burden includes both SNV and indels. Red line indicates expected LOF burden from 
ExAC (155). 
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Fig 3. WGA increases LOF variant burden.  
(A) Individual LOF variant burden in cancers with WGA samples plotted by WGA status. . *= Wilcoxon 
rank sum test p < 0.05, ** = Wilcoxon rank sum test p < 0.001. (B) Individual LOF variant burden in N 
= 13 samples that have both DNA and WGA samples available. ** = Wilcoxon paired rank sum test p 
< 0.001.   (C) Discordance between repeated samples of N = 493 individuals plotted by WGA status. 
DNA:DNA = all samples are DNA, WGA:DNA = at least one sample is WGA, WGA:WGA= all 
samples are WGA. Discordance was calculated separately for SNPs and indels using all variants or 
LOF predicted variants only. 
 

 

 

 

 

 

 

 

A 

C

B 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2016. ; https://doi.org/10.1101/092163doi: bioRxiv preprint 

https://doi.org/10.1101/092163
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Fig 4. A comparison of indel filtering 
strategies.  
 (A) Individual LOF indel burden for all 
indel filter methods in order of decreasing 
stringency. (B) Percent of variation in 
individual LOF indel burden explained by 
technical covariates for each filter 
method. 
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 Fig 5. Association testing between germline LOF variant burden and cancer type.  
(A) QQ plots from logistic regression association testing between germline LOF burden and ovarian 
cancer for three indel filter methods. N = number of genes tested. Red indicates associations 
significant p < 1.61 x 10-7. BRCA1/2 association highlighted. (B) Number of significant cancer type - 
gene associations in each cancer type for three indel filter methods. Color indicates cancer types with 
WGA samples. 
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