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Abstract 

 Molecular assemblies can have highly heterogeneous dynamics within the cell, but the 

limitations of conventional fluorescence microscopy can mask nanometer-scale features. We 

have developed a novel, broadly applicable, fluorescent labeling and imaging protocol, called 

Single-molecule Recovery After Photobleaching (SRAP), which allowed us to reveal the 

heterogeneous dynamics of the eisosome, a multi-protein structure on the cytoplasmic face of 

the plasma membrane in fungi. By fluorescently labeling only a small fraction of cellular Pil1p, 

the core eisosome BAR domain protein in fission yeast, we visualized whole eisosomes and, 

after photobleaching, recorded the binding of individual Pil1p molecules with ~20 nm precision. 

Further analysis of these dynamic structures and comparison to computer simulations allowed 

us to show that Pil1p exchange is spatially heterogeneous, supporting a new model of the 

eisosome as a dynamic filament.  

 

Introduction 

 Fluorescence microscopy including methods such as FRAP (Fluorescence Recovery After 

Photobleaching) have been invaluable for characterizing cellular organization and dynamics at 

the micrometer scale. However, it has been particularly challenging to characterize spatial 

heterogeneities inside diffraction-limited zones and dynamics within individual multi-molecular 

assemblies in live cells. 

The eisosome is a multi-molecular assembly on the cytoplasmic face of the plasma 

membranes of fungi, consisting of a stable scaffold of proteins clustered on a small invagination 

of membrane (Douglas and Konopka 2014; Strádalová et al. 2009; Walther et al. 2006; Malínská 

et al. 2003), whose various functions in cell membrane regulation remain unclear (Kabeche, 

Howard, and Moseley 2015; Aguilar et al. 2010; Fröhlich et al. 2014; Kabeche et al. 2015). 

Fission yeast eisosomes are linear (50 nm wide and 1-2 µm long), while budding yeast 

eisosomes appear as diffraction-limited puncta. The main protein component of the eisosome 

in fission yeast, Pil1p, contains a Bin/Amphiphysin/Rvs (BAR) domain which facilitates its 

organization in vivo (Ziółkowska et al. 2011; Olivera-Couto et al. 2011) and its oligomerization in 
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vitro (Karotki et al. 2011; Kabeche et al. 2011), features conserved in budding yeast Pil1 and 

other BAR-domain containing proteins.  

Eisosomes are essentially immobile and exhibit no dynamics in Fluorescence Recovery 

After Photobleaching (FRAP) experiments on timescales of 10 to 20 minutes (Kabeche et al. 

2011; Walther et al. 2006), which has led to the conclusion that the eisosome is a static 

microdomain. However, recent reports suggest that eisosomes may be more dynamic than 

previously believed: in cells lacking a cell wall, eisosomes disassemble in response to increased 

turgor pressure (Kabeche, Howard, and Moseley 2015), and dynamic sub-populations of Pil1 

oligomers exist on the membrane near eisosomes (Olivera-Couto et al. 2015).  

In this report, we show that the eisosome ends are dynamic while its core is stable, as in 

an oligomeric filament. To demonstrate this result, we developed a novel fluorescence imaging 

strategy to monitor single-molecule dynamics in live cells, called Single-molecule Recovery After 

Photobleaching (SRAP). By labeling only a small fraction of Pil1p molecules, we visualized whole 

eisosomes in the first few frames of a movie, and after photobleaching we observed isolated 

Pil1p molecules re-appearing specifically at the ends of eisosomes. By comparison with 

computer simulations, we demonstrate that our data support a model of the eisosome as a 

dynamic filament.  

 

Results 

Single-molecule recovery after photobleaching of Pil1p 

To perform our single molecule experiments in live cells, we sparsely labeled Pil1p by 

fusing a SNAP-tag to the protein C-terminus and incubating cells with relatively low 

concentration (0.5 µM) of benzylguanine-conjugated silicon-rhodamine dye (SiR647) (Keppler 

et al. 2002; Lukinavičius et al. 2013). This protocol yielded sufficient density of Pil1p-SNAP 

labeled with SiR647 (referred to as Pil1p-SiR) to visualize long linear eisosomes on the cell 

membrane (Supplemental Figure S1A), similar to structures observed in cells expressing Pil1p-

mEGFP (Supplemental Figure S1B-C), and very low non-specific labeling (Supplemental Figure 

S2). 
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After about 5 seconds of imaging under low-power TIRF illumination (~20 W/cm2), the 

fluorescently-labeled eisosomes visible in the first few frames photobleached. Because TIRF 

imaging only illuminates molecules within ~500 nm above the coverslip, unbleached Pil1p-SiR 

molecules in the cytoplasm beyond the TIRF field may diffuse into the illumination field in later 

frames of the movie (Figure 1 A and B, and see Supplemental Movie 1). Since only a small 

fraction of Pil1p molecules were fluorescently labeled, fluorescence re-appeared as isolated 

diffraction-limited spots corresponding to single Pil1p-SiR molecules. Intensity traces of sites of 

recovery revealed stepwise decreases (corresponding to photobleaching or unbinding) and 

increases (corresponding to binding of single Pil1p-SiR molecules) over the time course of the 

movie (Figure 1C), characteristic of single fluorescent molecules. In addition, recovery spots 

were immobile, suggesting that they were not freely diffusing on the membrane surface and 

indeed corresponded to fluorescent Pil1p-SiR incorporated into eisosomes. This sparse labeling 

and imaging strategy, which we call Single-molecule Recovery After Photobleaching (SRAP), 

revealed that new Pil1p molecules bind at eisosomes within a few seconds after initial 

photobleaching of the labeled structure. 

We measured the lifetimes of these fluorescence recovery events and fit the 

distribution of lifetimes with an exponential curve. The disappearance rate, 2.6 + 0.2 sec-1, is 

faster than the overall rate of photobleaching in the images, 0.48 + 0.03 sec-1 (95% confidence 

intervals, see Supplemental Figure S3), suggesting that Pil1p-SiR molecules are not only 

photobleaching but also unbinding from the eisosomes.  By subtracting the photobleaching rate 

from the spots’ disappearance rate, we estimate the observed unbinding rate of Pil1p to be 

approximately 2.1 + 0.2 sec-1, consistent with the findings of Olivera-Couto et al. (2015) . We do 

not attribute these recovery events to fluorophore blinking, as SiR647 displays less blinking 

behavior compared with other derivative dyes (Uno et al. 2014) and usually requires high laser 

intensity or additives to enhance dark state switching. Therefore, we conclude that Pil1p is 

indeed undergoing fast single-molecule exchange at eisosomes, binding and unbinding even in 

the absence of large-scale eisosome remodeling.  

 

Pil1p recruitment is not uniformly distributed 
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Further inspection of the recovery events suggested that eisosome ends are hotspots of 

Pil1p exchange (Figure 1D). Kymographs of lines drawn along eisosomes showed that 

fluorescence signal at eisosome ends persisted longer and recovered after photobleaching 

more frequently than along the interior (Figure 1E). To precisely calculate the distance of SRAP 

spots to the eisosome end, we determined the position of each spot with super-resolution 

localization and determined the position of each eisosome end by fitting a sigmoidal curve to 

the intensity profile traced along the eisosome end in initial frames (see Materials and Methods 

and Figure 2A). We found 92% of SRAP spots were within 250 nm from their corresponding 

eisosome end, with an average position of 97 + 119 nm (mean + S.D., N = 191 spots in 20 cells, 

Figure 2B).  

To more clearly interpret this distribution of SRAP positions, we simulated datasets 

based on hypothetical models for Pil1p recovery dynamics. In a first model (referred to as the 

“uniform model”) we assumed that binding events occur uniformly along the eisosome (Figure 

3A, blue). The simulations included noise terms to mimic the uncertainty in the localizations for 

the SRAP spots and the eisosome end (Figure 2C and Supplemental Figure S4C), and took into 

account the distribution of eisosome lengths measured experimentally (Supplemental Figure 

S1C). The distribution of the measured data was in poor agreement with the uniform model 

(Figure 3A-B). 

In a second model (referred to as the “end model”), we assumed that binding of new 

Pil1p occurred only at the eisosome ends, as in a dynamic filament. The distribution of 

simulated recovery positions followed a shape similar to our experimental data but with a 

mean of 0 + 122 nm (Figure 3A-B, dashed magenta). The slight bias of the SRAP spot 

localizations towards the interior of the eisosome (97 + 119 nm) seems in contradiction with a 

model of dynamics strictly confined to the end. This shift cannot be explained by an error in our 

spot localization precision, as the standard deviation of positions calculated for recurrent 

localizations at a given SRAP site was 27.9 + 15.9 nm (Figure 2C). We wondered if this shift 

could be explained by the accuracy of our localization of eisosome ends and if a dynamic end 

could introduce a systematic bias.  
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Localization accuracy of sparsely labeled, dynamic eisosome ends  

We evaluated the accuracy of our eisosome end localization method using simulated 

data mimicking sparsely labeled linear filaments, with densities similar to our experimental data 

(Supplemental Figure S4A). First, we found that determining the sub-diffraction-limited position 

of the end of the sparsely labeled eisosome by fitting the intensity profile with an error function 

– a model that assumes a continuous distribution of emitters – typically over-estimates the true 

position of the edge of the labeled region towards the exterior of the structure by 50 to 150 

nm, depending on the number of fluorophores contributing to the intensity trace. But, because 

the eisosomes are sparsely labeled, the distance between the true end of the eisosome and the 

fluorescently labeled Pil1p closest to the end counteracts this bias (Supplemental Figure S4A-B). 

In sum, in our simulations corresponding to 1% labeling efficiency, the average error of the 

fitted eisosome end position is only 3.2 + 119 nm (S.D., Supplemental Figure S4C).  

However, because we used intensity profiles extracted from a projection image 

averaged over a short time, if the recruitment of Pil1p is indeed localized to the eisosome end, 

then any new labeled molecules that bind during the recording time would skew the intensity 

profile towards the end (Supplemental Figure S4D). Indeed, in kymographs of sparsely labeled 

eisosomes (Figure 1E), the signal at eisosome ends persisted longer than the signal along the 

filament body. We simulated this effect by adding a single extra emitter at the true end position 

before fitting the intensity profile, resulting in a net error of 89.3 + 94 nm (Figure 2D, and 

Supplemental Figure S4E-F), mirroring the offset in our measured SRAP spot positions.   

 

Eisosome ends are specific sites of single-molecule recovery events 

When we repeated simulations of the end model for eisosome recovery incorporating 

this biased localization error for the eisosome end, the result clearly reproduced our 

experimental data (90 + 98 nm, Figure 3A-B, solid magenta, p = 0.39 by Kolmogorov-Smirnov 

test). Importantly, the only assumption of this model is that the eisosome end is the specific 

site of Pil1p binding: the bias in the eisosome end localization arises from the sparse labeling of 

the sample. 
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 As a putative alternative hypothesis, we considered a model in which Pil1p binding is 

restricted to a region near the eisosome end rather than strictly confined to the end. 

Simulations of this “hybrid model” using a 200-nm region at the eisosome end produced a 

similar distribution of positions (100 + 103 nm, Supplemental Figure S5, p = 0.32 by 

Kolmogorov-Smirnov test). However, the standard deviation of recurrent localizations at the 

same SRAP site (27.9 + 15.9 nm, Figure 2C) indicated that binding events occur at a fixed 

position on each eisosome, in contradiction with a dynamic 200-nm region. Therefore, we 

believe the most likely explanation of our experimental data is that Pil1p recruitment occurs at 

the eisosome ends but the method for determining the end positions of this sparsely labeled 

dynamic structure introduces a slight systematic bias. 

 

Discussion 

SRAP reveals heterogeneities at the nanometer scale in vivo 

The localization of single molecule exchange at the eisosome has previously been 

unobservable using fluorescent fusion proteins. Our new SRAP method, which relies on partial 

labeling and photobleaching during imaging, was critical for revealing the behavior of individual 

protein molecules in the context of the larger eisosome structure. This protocol is the first 

reported use of SNAP-tag in live fission yeast, and we expect our new SRAP method will be 

easily applicable to study single-molecule dynamics and heterogeneities in other multi-

molecular assemblies in any organism. While similar sparse fluorescence conditions might be 

achieved by partial photobleaching or photoswitchable proteins, our labeling protocol has the 

advantage of using organic fluorophores which are brighter and more photostable than 

fluorescent proteins, providing better single-molecule localization precision.   

 

Filament model for the eisosome 

Our results demonstrate that the eisosome exists in a dynamic steady state with 

continuous and fast exchange at its ends, even in the absence of perturbation. Models of the 

eisosome as a static membrane compartment or microdomain (Kabeche et al. 2011; Karotki et 

al. 2011; Walther et al. 2006) would predict monomer exchange to occur uniformly around its 
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edges. Instead we propose a new model for the eisosome as a membrane-bound filament of 

Pil1p with a stable core and ends in dynamic equilibrium (Figure 3C). Pil1p and other BAR-

domain-containing proteins have been observed to oligomerize and form filaments and 

membrane tubules in vitro, but it has been unclear to what extent this oligomerization exists in 

vivo or if instead BAR proteins are simply clustered in patches (Adam, Basnet, and Mizuno 2015; 

Daum et al. 2016; McDonald and Gould 2016; Suetsugu 2016). Recent in vitro studies of BAR 

proteins have proposed that rigid oligomeric scaffolds on membrane tubes can arise without 

formation of a dense lattice (Simunovic et al. 2016), but the binding dynamics of individual 

molecules within such scaffolds have not been characterized. Our results are the first 

observation of any BAR protein scaffold displaying dynamics consistent with a membrane-

bound filament in vivo. 

Our dynamic filament model is consistent with previous FRAP experiments because the 

few molecules at filament ends that undergo exchange would be virtually impossible to observe 

with bulk fluorescent imaging since they represent only a very small fraction of the total 

fluorescent signal. Our model also explains the heterogeneous binding equilibria observed by 

Olivera-Couto et al. (2015). Importantly, a filament model predicts that eisosome remodeling 

could occur in response to physical or biochemical cues by simply altering the equilibrium of 

subunits at the eisosome ends by modulating the rates of Pil1p binding or unbinding, just like 

other cytoskeletal filaments such as actin and microtubules.  

 

 

Materials and Methods 

Yeast strains and SNAP labeling 

 We tagged the pil1 gene at its C-terminus with SNAP-tag (cloned from Addgene Plasmid 

#29652 pENTR4-SNAPf, inserted into pFA6a vector with KanMX6 selection marker) or mEGFP, in 

its native locus in a wild-type S. pombe strain by homologous recombination (Bähler et al. 

1998). Cells were grown at 32o C in liquid YE5S medium to exponential phase (OD595nm between 

0.4 and 0.8), then diluted into liquid EMM5S medium and grown for 12 to 24 hours at 25o C 

before labeling with SNAP fluorophore.  
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Although the SNAP-tag has been used successfully in a variety of applications (Bosch et 

al. 2014; Stagge et al. 2013; Klein, Proppert, and Sauer 2014), labeling cellular SNAP fusion 

proteins in live yeast is difficult because the cell wall impedes entry of the fluorophore 

substrate and because multi-drug exporters prevent its accumulation in the cytoplasm 

(McMurray and Thorner 2008; Stagge et al. 2013). These issues may be avoided by 

enzymatically digesting the cell wall, deleting the multi-drug exporter genes (McMurray and 

Thorner 2008) or using electroporation to allow a large amount of dye to enter the cells (Stagge 

et al. 2013). However, such approaches may be problematic if the structure of interest is 

sensitive to cell integrity, as is the case with the eisosome. To avoid these difficulties, we used a 

minimally disruptive approach, adding a low concentration of SNAP substrate fluorophore in 

the media for a long incubation. 

To label SNAP-tag protein in live cells, 0.5 mL of cells at OD595nm 0.5 were incubated at 

25o C on a rotator in liquid EMM5S media containing 0.1, 0.5, or 2.5 µM of the silicon-

rhodamine benzylguanine derivative SNAP-SiR647 or SNAP-Alexa647 (SNAP-Cell® 647-SiR, 

SNAP-Surface® Alexa Fluor® 647, New England Biolabs) for 0.5, 5, or 15 hours. For samples 

incubated for 15 hours, the cells were initially diluted to OD595nm of 0.1 to avoid over-growing 

during the incubation time. Cells were washed three times by centrifuging at 900xg for 3 

minutes and resuspending in 0.5 mL of EMM5S, then additionally incubated at 25o C for one 

hour in 0.5 mL of EMM5S, then washed three times again by centrifuging at 900xg for 3 

minutes and resuspending in 0.5 mL of EMM5S. Cells were finally resuspended in 50 to 100 µL 

of 0.22-µm filtered EMM5S to achieve suitable cell density for imaging.  

We estimated the extent of labeling by dividing the total intensity of cells in the first 

frame by the mean pixel intensity of the late-appearing single molecule spots to determine the 

number of fluorophores per cell. We then determined the fraction of labeled Pil1p-SNAP 

molecules by dividing the number of fluorophores per cell by the total number of Pil1p 

molecules expressed in fission yeast cells (Carpy et al. 2014) as reported in PomBase (Wood et 

al. 2012; McDowall et al. 2015). Although there is significant uncertainty in this estimation, the 

samples we used for SRAP analysis consistently had labeling efficiencies between 1 and 3%. 
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Our protocol still requires use of a cell-permeable fluorophore conjugate, as incubation 

with SNAP-Alexa647 yielded poor labeling (Supplemental Figure S2, B and C). Incubation with 

2.5 µM of SiR647 for 15 hours achieved a higher density of labeled Pil1p-SiR (10% or more, 

Supplemental Figure S1A), but short incubations yielded only sparse labeling with greater cell-

to-cell variability (Supplemental Figure S2A).  

 

Microscopy 

 Live cells were imaged on 25% gelatin pads in 0.22-µm filtered EMM5S media, with 

coverslips that had been washed in ethanol for 20 minutes and plasma treated for 2 minutes to 

avoid nonspecific attachment of dyes and other auto-fluorescent particles on the surface. Cells 

were imaged with an inverted fluorescence microscope (Ti Eclipse, Nikon) equipped with a 

60x/1.49 numerical aperture objective (Nikon), illuminated with a 642 nm laser (for imaging 

SiR647 samples) or 488 nm laser (for imaging mEGFP samples) directed through the objective to 

achieve TIRF, and recorded with an electron-multiplying charge-coupled device (EMCCD) 

camera (iXon DU897, Andor). Samples labeled with SiR647 were imaged under low illumination 

intensity, approximately 20 W/cm2. Movies were recorded at a single focal plane near the cell 

base at 10 frames per second. 

 

Image analysis and quantification 

 Image analysis was carried out in the Fiji distribution of ImageJ (Schneider, Rasband, and 

Eliceiri 2012; Schindelin et al. 2012) and further quantification was performed in Matlab 

(MathWorks, Inc.), using built-in tools as well as self-written macros and scripts (Supplemental 

Material). We measured the lengths of filaments in the Average intensity projection of frames 

1-5 (AVG1-5) of Pil1p-SiR and Pil1p-mEGFP movies by drawing a line along the full length of 

visible fluorescence for each filament. We then identified SRAP spots in the Maximum intensity 

projection of frames 50-200 (MAX50-200), after labeled eisosomes had photobleached. We first 

generated a preliminary list of SRAP spot positions from the MAX50-200 image by using the 

Find Maxima command and determining the brightness-weighted centroid of a 3-pixel diameter 

circle at each point.  
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For each point in this list, we manually traced the corresponding eisosome filament in 

the AVG1-5 image with a 3-pixel wide line spanning past the spot position to extend beyond the 

end of the filament (Figure 2A) and the intensity profile along this line was analyzed in Matlab. 

Spots which were more than 4 pixels away (280 nm) from the nearest eisosome were discarded 

(<10% of detected spots). To find the position of the end of the eisosome underlying the 

diffraction-limited image, the intensity profile was fitted with the following step-like function: 

𝐼(𝑥) =
1

2
∗ 𝐴 ∗ [1 − 𝑒𝑟𝑓 (

𝑥 − 𝑚

√2 ∗ 𝜎
)] 

This equation is equivalent to the cumulative intensity of a continuous distribution of 

Gaussian emitters, where I(x) is the intensity along the line coordinate x, A is the amplitude, 

erf() is the error function, m is the position of the underlying step corresponding to the end of 

the labeled structure, and σ is the standard deviation of the diffraction-limited Gaussian spot. 

Measured intensity profiles were fitted in Matlab using a nonlinear fitting algorithm, with A and 

m as independent variables and σ fixed to 1.85 pixels (130nm) representing the diffraction-

limited spot width.  

We used the PeakFit plugin for FIJI (University of Sussex, 

http://www.sussex.ac.uk/gdsc/intranet/microscopy/imagej/smlm_plugins) to determine super-

resolution localizations of the spots that appeared in frames 50 to 200, calibrated with the 

following parameters: pixel size 70nm, wavelength 642nm, objective NA 1.49, objective 

proportionality factor 1.4, EM Gain 37.7; resulting in an estimated point-spread function width 

of 1.837 pixels. This generated a list of localizations with precision <40 nm. From the list of 

SRAP events’ spot centroids determined in the MAX50-200 projection, we matched each SRAP 

event with all localizations within a 1-pixel radius from the SRAP spot centroid. We calculated 

the distance from each localization to the fitted eisosome end position projected along the 

filament line trace (Figure 2A(iv)), and calculated the average distance to the end of all the 

associated localizations for each SRAP event. For spot centroids that did not have any 

associated localizations spots of sufficiently high precision, we used the brightness-weighted 

centroid of the SRAP spot in the projection image to determine its distance from the eisosome 

end.  
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To determine the lifetimes of SRAP events, we measured the intensity of a 3-pixel 

diameter circle centered on the SRAP spot position through the length of the movie and 

processed these intensity time-traces in Matlab with a Chung-Kennedy filter (Reuel et al. 2012). 

We computed the lengths of time spans above a threshold intensity, then fit the distribution of 

lifetimes with a single exponential curve. To estimate the photobleaching rate we measured the 

mean intensity of an ROI containing an entire cell through the length of the movie. For each 

ROI’s intensity decay profile we subtracted the minimum baseline and normalized the 

intensities to the maximum value , then computed the average across all movies. We fit the 

average photobleaching profile with a single exponential curve, starting at frame 5 to avoid 

biasing the fit with the fast-bleaching autofluorescence component. We estimated the protein 

unbinding rate by subtracting the bulk photobleaching rate from the SRAP spot lifetime decay 

rate. 

 

Characterization of eisosome end localization 

We performed simulations to estimate the precision of our method of fitting an error 

function to the intensity traces of sparsely labeled eisosomes to localize their ends. Indeed, this 

continuum model might not find the eisosome ends accurately when the structures are only 

sparsely labeled. Based on published cryo-EM reconstructions of in vitro Pil1p filaments, we 

estimate there are approximately 80 Pil1p proteins per 100nm stretch of eisosome lattice (a 

hemicylindrical lattice with dimensions roughly as in (Karotki et al. 2011; Kabeche et al. 2011)). 

Therefore, for the 350-nm (5-pixel) region simulated above we expect 280 possible Pil1p sites, 

but with our estimated 1 to 3% labeling efficiency there are most likely fewer than 10 

fluorescently tagged Pil1p-SiR. We first simulated a number of “emitter positions” in a uniform 

distribution along a 350-nm line (equivalent to 5 pixels). For 500 simulations for each test case 

of between 1 and 10 emitters (See Figure 3B and Supplemental Figure S4), we added a Gaussian 

profile of intensity at each emitter position (mean xi, standard deviation 135 nm, peak height of 

1 AU) to mimic the point spread function of the microscope, added noise to the traces (random 

value of mean 0, standard deviation 0.1 AU at each x value), and also added signal from 

emitters outside the simulated region to account for other fluorophores on the rest of the 
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eisosome body. We fit the resulting intensity profile (10 pixels long, including the 5-pixel region 

of simulated fluorophores plus 5-pixel tail region) with the error function model described 

above. We determined the distance from the fitted end position to the true position of the last 

emitter (position x0) and calculated the distance between the position of the last fluorophore 

(position x0) and the true end of the eisosome (position 350 nm) in each simulation.  

To determine a full population average of these errors, we simulated 5,000 filaments 

with a distribution of fluorophore numbers based on a binomial distribution (280 trials, 0.01 

probability) to determine the probability of any given number of fluorophores on an eisosome. 

We used a uniform distribution of emitter positions for each filament, generated the intensity 

profile as above, and fit the error function model to determine the end position. We repeated a 

similar set of simulations with a single added fluorophore at the end position to account for the 

artifact of dynamic recovery during the imaging time (Figure 3D and Supplemental Figure S4D). 

 

Eisosome dynamics model simulations 

 We compared the distribution of our experimentally measured distances to datasets 

simulated under different hypotheses. In one model (referred to as the “uniform model”), Pil1p 

SRAP events occur uniformly along the eisosome, in a second model (referred to as the “end 

model”) events occur exclusively at the end of the filament, (Figure 2B). For all models, each 

simulation was initialized by picking one of the eisosome lengths experimentally measured in 

Pil1p-SiR cells (10,000 runs with each of N = 275 filaments, Supplemental Figure S1C). For the 

uniform model, the true SRAP spot positions were simulated by picking a number following a 

uniform distribution between zero and half the filament length; for the end model, the true 

SRAP spot position was taken as the true end position of the eisosome end (position 0) and a 

number following a Gaussian distribution (mean 0, standard deviation 25 nm) was added to 

represent the spot localization with uncertainty as measured experimentally (Figure 2B-C). For 

each simulation, we added a number following a Gaussian distribution with mean 0 and 

standard deviation 120 nm to the true position of the eisosome end (position 0) to simulate the 

localization precision of the experimental fit of the eisosome end in our image analysis (as 

described above and in Supplemental Figure S4E). The position of the eisosome ends and SRAP 
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spots were then subtracted from each other to determine the relative positions of the SRAP 

spots. In a second set of simulations to account for the fitting bias arising from a dynamic 

filament end, we used for the eisosome end position distribution a Gaussian distribution with 

mean -90 nm and standard deviation 94 nm (as in Figure 2D).  

We also simulated a third class of models (referred to as “hybrid models”) where events 

occur uniformly within a zone of defined length (e.g. 200 nm) at the eisosome end. For the 

hybrid models, the true SRAP spot position was simulated by picking a number following a 

uniform distribution between zero and the length of the end zone (e.g. 200 nm), and the end 

position and noise terms were generated with unbiased Gaussian distributions as described 

above. 

 

 

Acknowledgements 

We thank Dr. Ronan Fernandez for assistance in creating yeast strains, and members of 

the Berro lab for helpful discussions. This research was supported in part by the NIH/NIGMS 

grant R01GM115636. MML was supported by the NIH training grant T32GM008283. We also 

acknowledge support from the Raymond and Beverly Sackler Institute for Biological, Physical 

and Engineering Sciences at Yale University. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2016. ; https://doi.org/10.1101/092536doi: bioRxiv preprint 

https://doi.org/10.1101/092536
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

References  

Adam, Julia, Nirakar Basnet, and Naoko Mizuno. 2015. “Structural Insights into the Cooperative 
Remodeling of Membranes by amphiphysin/BIN1.” Scientific Reports 5 (January 4): 
15452. doi:10.1038/srep15452. 

Aguilar, Pablo S, Florian Fröhlich, Michael Rehman, Mike Shales, Igor Ulitsky, Agustina Olivera-
Couto, Hannes Braberg, et al. 2010. “A Plasma-Membrane E-MAP Reveals Links of the 
Eisosome with Sphingolipid Metabolism and Endosomal Trafficking.” Nature Structural 
& Molecular Biology 17 (7) (July 4): 901–8. doi:10.1038/nsmb.1829. 

Bosch, Peter, Ivan Corrêa, Michael Sonntag, Jenny Ibach, Luc Brunsveld, Johannes Kanger, and 
Vinod Subramaniam. 2014. “Evaluation of Fluorophores to Label SNAP-Tag Fused 
Proteins for Multicolor Single-Molecule Tracking Microscopy in Live Cells.” Biophysical 
Journal. doi:10.1016/j.bpj.2014.06.040. 

Bähler, J, J Q Wu, M S Longtine, N G Shah, A McKenzie, A B Steever, A Wach, P Philippsen, and J 
R Pringle. 1998. “Heterologous Modules for Efficient and Versatile PCR-Based Gene 
Targeting in Schizosaccharomyces Pombe.” Yeast (Chichester, England) 14 (10) (July 3): 
943–51. doi:10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y. 

Carpy, Alejandro, Karsten Krug, Sabine Graf, André Koch, Sasa Popic, Silke Hauf, and Boris 
Macek. 2014. “Absolute Proteome and Phosphoproteome Dynamics during the Cell 
Cycle of Schizosaccharomyces Pombe (Fission Yeast).” Molecular & Cellular Proteomics : 
MCP 13 (8) (August 5): 1925–36. doi:10.1074/mcp.M113.035824. 

Daum, Bertram, Andrea Auerswald, Tobias Gruber, Gerd Hause, Jochen Balbach, Werner 
Kühlbrandt, and Annette Meister. 2016. “Supramolecular Organization of the Human N-
BAR Domain in Shaping the Sarcolemma Membrane.” Journal of Structural Biology 194 
(3) (June 3): 375–82. doi:10.1016/j.jsb.2016.03.017. 

Douglas, Lois M, and James B Konopka. 2014. “Fungal Membrane Organization: The Eisosome 
Concept.” Annual Review of Microbiology 68 (January 3): 377–93. doi:10.1146/annurev-
micro-091313-103507. 

Fröhlich, Florian, Romain Christiano, Daniel Olson, Abel Alcazar-Roman, Pietro DeCamilli, and 
Tobias Walther. 2014. “A Role for Eisosomes in Maintenance of Plasma Membrane 
Phosphoinositide Levels.” Molecular Biology of the Cell. doi:10.1091/mbc.E13-11-0639. 

Kabeche, Ruth, Suzanne Baldissard, John Hammond, Louisa Howard, and James B Moseley. 
2011. “The Filament-Forming Protein Pil1 Assembles Linear Eisosomes in Fission Yeast.” 
Molecular Biology of the Cell 22 (21) (November 2): 4059–67. doi:10.1091/mbc.E11-07-
0605. 

Kabeche, Ruth, Louisa Howard, and James B Moseley. 2015. “Eisosomes Provide Membrane 
Reservoirs for Rapid Expansion of the Yeast Plasma Membrane.” Journal of Cell Science 
128 (22) (November): 4057–62. doi:10.1242/jcs.176867. 

Kabeche, Ruth, Marisa Madrid, José Cansado, and James B Moseley. 2015. “Eisosomes Regulate 
Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2) Cortical Clusters and Mitogen-
Activated Protein (MAP) Kinase Signaling upon Osmotic Stress.” The Journal of Biological 
Chemistry 290 (43) (October 5): 25960–73. doi:10.1074/jbc.M115.674192. 

Karotki, Lena, Juha T Huiskonen, Christopher J Stefan, Natasza E Ziółkowska, Robyn Roth, 
Michal A Surma, Nevan J Krogan, et al. 2011. “Eisosome Proteins Assemble into a 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2016. ; https://doi.org/10.1101/092536doi: bioRxiv preprint 

https://doi.org/10.1101/092536
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Membrane Scaffold.” The Journal of Cell Biology 195 (5) (November 1): 889–902. 
doi:10.1083/jcb.201104040. 

Keppler, Antje, Susanne Gendreizig, Thomas Gronemeyer, Horst Pick, Horst Vogel, and Kai 
Johnsson. 2002. “A General Method for the Covalent Labeling of Fusion Proteins with 
Small Molecules in Vivo.” Nature Biotechnology 21 (1): 86–89. doi:10.1038/nbt765. 

Klein, Teresa, Sven Proppert, and Markus Sauer. 2014. “Eight Years of Single-Molecule 
Localization Microscopy.” Histochemistry and Cell Biology 141 (6) (June): 561–75. 
doi:10.1007/s00418-014-1184-3. 

Lukinavičius, Gražvydas, Keitaro Umezawa, Nicolas Olivier, Alf Honigmann, Guoying Yang, 
Tilman Plass, Veronika Mueller, et al. 2013. “A near-Infrared Fluorophore for Live-Cell 
Super-Resolution Microscopy of Cellular Proteins.” Nature Chemistry 5 (2) (February 5): 
132–9. doi:10.1038/nchem.1546. 

Malínská, Katerina, Jan Malínský, Miroslava Opekarová, and Widmar Tanner. 2003. 
“Visualization of Protein Compartmentation within the Plasma Membrane of Living 
Yeast Cells.” Molecular Biology of the Cell 14 (11) (November 6): 4427–36. 
doi:10.1091/mbc.E03-04-0221. 

McDonald, Nathan A, and Kathleen L Gould. 2016. “Linking up at the BAR: Oligomerization and 
F-BAR Protein Function.” Cell Cycle (Georgetown, Tex.) 15 (15) (August 2): 1977–85. 
doi:10.1080/15384101.2016.1190893. 

McDowall, Mark D, Midori A Harris, Antonia Lock, Kim Rutherford, Daniel M Staines, Jürg 
Bähler, Paul J Kersey, Stephen G Oliver, and Valerie Wood. 2015. “PomBase 2015: 
Updates to the Fission Yeast Database.” Nucleic Acids Research 43 (Database issue) 
(January 4): D656–61. doi:10.1093/nar/gku1040. 

McMurray, Michael A, and Jeremy Thorner. 2008. “Septin Stability and Recycling during 
Dynamic Structural Transitions in Cell Division and Development.” Current Biology : CB 
18 (16) (August 2): 1203–8. doi:10.1016/j.cub.2008.07.020. 

Olivera-Couto, Agustina, Martin Graña, Laura Harispe, and Pablo S Aguilar. 2011. “The Eisosome 
Core Is Composed of BAR Domain Proteins.” Molecular Biology of the Cell 22 (13) (July 
5): 2360–72. doi:10.1091/mbc.E10-12-1021. 

Olivera-Couto, Agustina, Valentina Salzman, Milagros Mailhos, Michelle A. Digman, Enrico 
Gratton, and Pablo S. Aguilar. 2015. “Eisosomes Are Dynamic Plasma Membrane 
Domains Showing Pil1-Lsp1 Heteroligomer Binding Equilibrium.” Biophysical Journal 108 
(7): 1633–1644. doi:10.1016/j.bpj.2015.02.011. 

Reuel, Nigel F, Peter Bojo, Jingqing Zhang, Ardemis A Boghossian, Jin-Ho H Ahn, Jong-Ho H Kim, 
and Michael S Strano. 2012. “NoRSE: Noise Reduction and State Evaluator for High-
Frequency Single Event Traces.” Bioinformatics (Oxford, England) 28 (2) (January): 296–
7. doi:10.1093/bioinformatics/btr632. 

Schindelin, Johannes, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair, 
Tobias Pietzsch, Stephan Preibisch, et al. 2012. “Fiji: An Open-Source Platform for 
Biological-Image Analysis.” Nature Methods 9 (7): 676–682. doi:10.1038/nmeth.2019. 

Schneider, Caroline A, Wayne S Rasband, and Kevin W Eliceiri. 2012. “NIH Image to ImageJ: 25 
Years of Image Analysis.” Nature Methods 9 (7) (July): 671–5. 

Simunovic, Mijo, Emma Evergren, Ivan Golushko, Coline Prévost, Henri-François F Renard, 
Ludger Johannes, Harvey T McMahon, Vladimir Lorman, Gregory A Voth, and Patricia 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2016. ; https://doi.org/10.1101/092536doi: bioRxiv preprint 

https://doi.org/10.1101/092536
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Bassereau. 2016. “How Curvature-Generating Proteins Build Scaffolds on Membrane 
Nanotubes.” Proceedings of the National Academy of Sciences of the United States of 
America 113 (40) (October 2): 11226–11231. doi:10.1073/pnas.1606943113. 

Stagge, Franziska, Gyuzel Mitronova, Vladimir Belov, Christian Wurm, and Stefan Jakobs. 2013. 
“Snap-, CLIP- and Halo-Tag Labelling of Budding Yeast Cells.” PLoS ONE 8 (10). 
doi:10.1371/journal.pone.0078745. 

Strádalová, Vendula, Wiebke Stahlschmidt, Guido Grossmann, Michaela Blazíková, Reinhard 
Rachel, Widmar Tanner, and Jan Malinsky. 2009. “Furrow-like Invaginations of the Yeast 
Plasma Membrane Correspond to Membrane Compartment of Can1.” Journal of Cell 
Science 122 (Pt 16) (August 6): 2887–94. doi:10.1242/jcs.051227. 

Suetsugu, Shiro. 2016. “Higher-Order Assemblies of BAR Domain Proteins for Shaping 
Membranes.” Microscopy (Oxford, England) 65 (3) (June 3): 201–10. 
doi:10.1093/jmicro/dfw002. 

Uno, Shin-Nosuke N, Mako Kamiya, Toshitada Yoshihara, Ko Sugawara, Kohki Okabe, Mehmet C 
Tarhan, Hiroyuki Fujita, et al. 2014. “A Spontaneously Blinking Fluorophore Based on 
Intramolecular Spirocyclization for Live-Cell Super-Resolution Imaging.” Nature 
Chemistry 6 (8) (August 5): 681–9. doi:10.1038/nchem.2002. 

Walther, Tobias C, Jason H Brickner, Pablo S Aguilar, Sebastián Bernales, Carlos Pantoja, and 
Peter Walter. 2006. “Eisosomes Mark Static Sites of Endocytosis.” Nature 439 (7079) 
(February 4): 998–1003. doi:10.1038/nature04472. 

Wood, Valerie, Midori A Harris, Mark D McDowall, Kim Rutherford, Brendan W Vaughan, Daniel 
M Staines, Martin Aslett, et al. 2012. “PomBase: A Comprehensive Online Resource for 
Fission Yeast.” Nucleic Acids Research 40 (Database issue) (January): D695–9. 
doi:10.1093/nar/gkr853. 

Ziółkowska, Natasza E, Lena Karotki, Michael Rehman, Juha T Huiskonen, and Tobias C Walther. 
2011. “Eisosome-Driven Plasma Membrane Organization Is Mediated by BAR Domains.” 
Nature Structural & Molecular Biology 18 (7) (July 5): 854–6. doi:10.1038/nsmb.2080. 

 
 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2016. ; https://doi.org/10.1101/092536doi: bioRxiv preprint 

https://doi.org/10.1101/092536
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figures and Legends  

Figure 1. Single-molecule recovery after photobleaching of labeled eisosomes. Cells expressing 
Pil1p-SNAP were labeled with SNAP-SiR647 at 0.5 µM for 15 hours, washed and imaged in TIRF. 
(A) Average intensity projection of the first 5 frames (0.5 seconds) of a movie reveals linear 
eisosomes. (B) Maximum intensity projection of frames 50-200 (5 to 20 sec) of the same movie 
shows single molecule recovery events. Cell outlines are drawn in orange dashed lines. Orange 
lines are the line traces used for the kymographs in E. (C) Example intensity traces of recovery 
spots show stepwise photobleaching and single-molecule recovery of Pil1p-SiR. The intensity of 
a 3-pixel diameter circle was measured across all frames of the movie after subtracting the 
median-filter background. Intensity traces were processed with a Chung-Kennedy filter to 
highlight discrete intensity steps. (D) The positions of single-molecule recovery events (magenta 
spots, maxima detected in image B) are mapped on the eisosomes (same image as A). (E) 
Kymographs of line traces along eisosomes as labeled in A and B, with bars indicating the time 
spans for the projection images. A, B, D scale bar: 5 µm. 
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Figure 2. Image analysis for localization of SRAP spots at eisosomes. (A) Schematic of the 
measurement of distance to eisosome end: (i) The end of an eisosome is traced in the average 
projection of the first 5 frames (0-0.5 sec); (ii) the line intensity profile of the eisosome end is 
fitted to determine the position of the diffraction-limited end (red line); (iii) a SRAP spot 
position is determined with the PeakFit plugin for ImageJ in the movie frame when it appeared, 
and super-resolution localizations from multiple frames are averaged to calculate the position 
of the SRAP event; (iv) the distance d is calculated from the SRAP spot along the eisosome line 
trace to the end; in (i, iii, iv), one image pixel is 70 nm. (B) measured SRAP spot positions 
relative to the eisosome end, average 97 + 119 nm S.D. (N = 191 spot/filament pairs across 20 
cells). (C) Standard deviation calculated for each SRAP spot that included multiple localizations, 
average 27.9 + 15.9 nm S.D. (N = 73 sets). (D) Simulated errors of the fitting of sparsely labeled, 
dynamic eisosome ends. Mock eisosome end intensity profiles (as in A.ii) were generated 
according to a 1% labeling efficiency, with a single extra emitter added to the end position and 
fitted as described in Materials and Methods. Average difference between the fitted end 
position and the simulated true end is 89.3 + 94 nm S.D. (N = 5000 simulations). 
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Figure 3. Single-molecule recovery of Pil1p-SiR occurs at eisosome filament ends. (A) Probability 
distributions of measured distances (black squares, N = 191 spot/filament pairs across 20 cells) 
and simulation results (uniform dynamics model, blue; end dynamics model, magenta, N = 
275,000 runs for each tested model). The simulation models are illustrated in schematic form, 
the “uniform model” where recovery events are distributed uniformly along the eisosome 
length (blue), or the “end model” where recovery events are confined to eisosome ends 
(magenta). For the end model simulations, the dashed line represents simulations using an 
unbiased Gaussian noise distribution for eisosome end localizations (as in Supplemental Figure 
S4E), and the solid line represents simulations using the noise predicted from a dynamic end (as 
in Figure 2D). (B) Table of mean and standard deviation of distributions for simulated datasets 
and measured SRAP spots. The difference between the measured data and the end model with 
dynamic end noise is not statistically significant, by two-sample Kolmogorov-Smirnov test (p = 
0.39). (C) Model of the eisosome as a dynamic filament: Pil1p subunits assembled into a 
filament on the cytoplasmic surface of the plasma membrane are free to associate and 
dissociate at the ends but not at the interior. 
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Supplemental Figures 

 
Supplemental Figure S1. SNAP labeling of Pil1p in live fission yeast cells. (A) S. pombe cells 
expressing Pil1p-SNAP were incubated with SNAP-SiR647 at indicated concentrations in EMM5S 
media for various times, washed and imaged in TIRF. The boxed panel highlights the sample 
condition used for further imaging and analysis, 15 hours at 0.5 µM SNAP-SiR647. (B) Cells 
expressing Pil1p-mEGFP imaged in TIRF. All image panels are at the same length scale with scale 
bar 5 µm, and same brightness scale (except for B). (C) Histograms of eisosome lengths 
measured in cells with Pil1p-SiR (grey, 1240 + 580 nm for N = 275 eisosomes measured in 20 
cells) or Pil1p-mEGFP (black, 1250 + 650 nm for N = 304 eisosomes measured in 22 cells) show 
no significant difference by two-sample Kolmogorov-Smirnov test (p = 0.33). 
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Supplemental Figure S2. Comparison of SNAP labeling and nonspecific binding. (A) Wild-type 
cells were incubated with SNAP-SiR647, washed, and imaged in TIRF as described in the text. (B 
and C) Cells expressing Pil1p-SNAP (B) or wild-type cells (C) were incubated with SNAP-
Alexa647, washed, and imaged as described. Images shown are inverted contrast, Maximum 
intensity projections of 20-sec movies with median-filter background subtracted. Cell outlines 
are drawn in orange dash; all image panels are at same scale with scale bar 5 µm.   
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Supplemental Figure S3. Comparison of photobleaching rate and SRAP event lifetimes. (A) 
Photobleaching was measured as fluorescence intensity of ROIs drawn around cells throughout 
the movie stack. For each curve the baseline was subtracted and curves were normalized to 
their initial value, then all ten curves were averaged (black squares, gray lines +/- standard 
deviation). The average curve (starting at frame 5) was fit with a single exponential (red curve) 
to determine the decay rate of -0.48+0.03 sec-1. Inset: schematic of ROI measured through 
movie stack. (B) Distribution of lifetimes of fluorescence events at SRAP spots. The distribution 
(N=558 events, 433 longer than 2 frames) was fitted with a single exponential (red curve) to 
determine the off-rate of -2.62+0.22 sec-1. Inset: schematic showing an example fluorescence 
intensity trace with multiple events. 
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Supplemental Figure S4. Characterization of errors in simulated eisosome end localizations due 
to sparse labeling. (A) Schematic of errors in fitting: mock fluorescence intensity traces (blue) 
were generated by simulating discrete numbers of emitters in a 350-nm region (5 pixels) and 
then fit with the error function model (red). Legend: Δlabel, distance between the last emitter 
(closest to the eisosome end) and the eisosome end; Δfit, distance between the eisosome end 
position estimated by fitting the fluorescence intensity and the last emitter; Δnet, difference 
between the eisosome end position estimated by fitting the fluorescence intensity and the true 
end position. (B) Difference between the fitted end position and the true end of the simulated 
eisosome (Δnet), calculated for discrete numbers of emitters (N=500 simulations for each n 
Emitters). (C) Distribution of the differences between the fitted end and the true end (Δnet) for a 
population of eisosome traces simulated according to 1% labeling. Δfit and Δlabel nearly balance 
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each other, with Δnet average 3.2 + 119 nm S.D. (N = 5,000 simulations). (D) To determine the 
effect of recruiting new fluorescent molecules only at the filament ends, mock fluorescence 
intensity traces (blue) were generated by simulating a discrete number of emitters in a 350-nm 
region with one additional emitter at the eisosome end, and then fit with the error function 
model (red). The intensity profile is skewed beyond the true eisosome end position and Δlabel is 
reduced to zero. (E) Difference between the fitted end position and the true end of the 
simulated eisosome filament (Δnet), calculated for discrete numbers of emitters with an 
additional emitter at the eisosome end (N = 500 simulations for each n Emitters). (F) 
Distribution of the differences between the fitted end and the true end (Δnet) for a population 
of eisosome traces simulated according to 1% labeling with a single extra emitter added to the 
eisosome end, Δnet average 89.3 + 94 nm S.D. (N=5,000 simulations). Box plots show median 
(red line), 25th and 75th percentile (blue box), and farthest outliers (whiskers). In all plots, the 
sign of Δ is given as the effect on the calculated spot position (i.e. estimating the end to be past 
the structure causes the calculated SRAP spot position to be shifted toward the filament 
interior, a positive value). 
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Supplemental Figure S5. Alternate model for eisosome recovery dynamics. Probability 
distributions of measured distances (black squares, N = 191 spot/filament pairs across 20 cells) 
and simulation results (similar to Figure 3, N = 275,000 runs for each tested model). An 
additional “hybrid” model is shown (red), where simulations used simple Gaussian noise for the 
eisosome end position and calculated spot positions uniformly distributed within a 200-nm 
zone at the eisosome end. Simulated end model with biased (solid magenta) and unbiased 
(dashed magenta) end noise, uniform model (blue), and measured dataset (black) are as shown 
in Figure 3. The hybrid model average position is 100 + 103 nm. The difference between 
measured data (97 + 119 nm) and the simulated hybrid model is not statistically significant, by 
two-sample Kolmogorov-Smirnov test (p = 0.32). 
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Table S1: S. pombe strains used in this study 
Strain Genotype Source 

FY527 h- ade6-M216 his3-D1 leu1-32 ura4-D18  S. Forsburg 

JB198 h- ade6-M216 his3-D1 leu1-32 ura4-D18 pil1-SNAP-kanMX6 This study 

JB204 h- ade6-M216 his3-D1 leu1-32 ura4-D18 pil1-mEGFP-kanMX6 This study 

 
 
 
 
 
 
Supplemental Movie S1 
Cells expressing Pil1p-SNAP were labeled with SNAP-SiR647 at 0.5 µM for 15 hours, washed and 
imaged in TIRF. Movie was recorded at a single focal plane near the cell base at 10 frames per 
second. This movie file was used to generate parts of Figure 1 and Supplemental Figure S1. 
Scale bar 5 µm. 
 
 
 
 
 
Scripts for image analysis and quantification 
File 1: ImageJ Macro for finding, measuring recovery events and tracing eisosome ends: 
Supplement_script_ij.txt 
 
File 2: Matlab script for fitting of eisosome filament ends, calculation of distance from SRAP 
spots to eisosome ends, simulations of eisosome end intensity profiles, and simulations of 
eisosome dynamics models: Supplement_script_matlab.txt 
 
The results tables saved from ImageJ macro analysis can be opened in Excel to edit columns and 
clean to remove headings. The results tables for each movie file are copied into a separate 
Matlab file that loads the results tables as multidimensional arrays, called f[] and c[], and 
the results of the GDSC SMLM PeakFit plugin, called smlm[]. 
A separate results file is needed containing line measurements of eisosome lengths, manually 
drawn in AVG1-5 projections from all movies, total[]. 
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