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Abstract 

Identifying regions of the genome that are depleted of mutations can reveal potentially             
deleterious variants. Short tandem repeats (STRs), also known as microsatellites, are among            
the largest contributors of de novo mutations in humans and are implicated in a variety of                
human disorders. However, because of the challenges STRs pose to bioinformatics tools,            
per-locus studies of STR mutations have been limited to highly ascertained panels of several              
dozen loci. Here, we harnessed bioinformatics tools and a novel analytical framework to             
estimate mutation parameters for each STR in the human genome by correlating STR             
genotypes with local sequence heterozygosity. We applied our method to obtain robust            
estimates of the impact of local sequence features on mutation parameters and used this to               
create a framework for measuring constraint at STRs by comparing observed vs. expected             
mutation rates. Constraint scores identified known pathogenic variants with early onset effects.            
Our constraint metrics will provide a valuable tool for prioritizing pathogenic STRs in medical              
genetics studies. 
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Introduction 

Mutations that have negative fitness consequences tend to be eliminated from the population.             

Thus, identifying regions of the genome that are depleted of mutations has proven a useful               

strategy for interpreting the significance of de novo variation in developmental disorders1,            

prioritizing rare disease variants2, and identifying genes or non-coding regions of the genome             

that are under selective constraint3,4. The key idea of these approaches is that mutations              

occurring at sites evolving under a neutral model are likely to have little effect on reproductive                

fitness, whereas mutations at intolerant sites are more likely to be involved in severe early-onset               

disorders. 

 

So far, the genetics community has developed a multitude of methods to assess genetic              

constraint. These studies have highlighted the importance of a carefully calibrated model of the              

background mutation process to establish a neutral expectation. For instance, Samocha et al.1             

determine the expected number of de novo variants per gene based on a neutral model               

obtained by counting mutations for each possible trinucleotide context in intergenic SNPs. In a              

different approach, fitCons3 aggregates non-coding regions with similar functional annotations          

and compares observed variation in those regions to an expectation obtained from presumably             

neutral flanking regions. Notably, these methods have mainly focused on single nucleotide            

polymorphisms (SNPs) and to a lesser extent on small indels. As of today, computational              

methods to analyze and assess the functional impact of repetitive elements in the genome are               

lacking. Thus, repeat variants are commonly excluded from medical genetics analyses. 

 

To expand the range of interpretation tools to repeat elements, we focused on short tandem               

repeats (STRs), also known as microsatellites, in the human genome. STRs consist of repeated              

motifs of 1-6bp and represent about 1.6 million loci 5, rendering them one of the largest repeat                

classes. STR mutations are responsible for over 30 Mendelian disorders6, many of which are              

thought to arise spontaneously from de novo mutations7,8. Emerging evidence suggests STRs            

play an important role in complex traits9 such as gene expression 10 and DNA methylation 11. In               

addition, analyses of cancer cell lines have shown that STR instability is a chief clinical sign for                 

tumor prognosis12, but the functional impact of these instabilities is largely unknown.  
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Evaluating genetic constraint requires two fundamental components: an accurate mutation          

model and a deep catalog of existing variation. Both of these have been difficult to obtain for                 

repetitive regions of the genome. Current knowledge of the STR mutation process is based on               

low-throughput studies focusing on an ascertained panel of loci that are highly polymorphic.             

These include genealogical STRs on the Y chromosome 13,14, approximately a dozen autosomal            

STRs from the CODIS (Combined DNA Index System) set used in forensics, and several              

thousand STRs historically used for linkage analysis15. These studies suggest an average            

mutation rate of approximately 10 -3 to 10 -4 mutations per generation 13–17. However, these loci             

likely have significantly higher mutation rates than most STRs. Moreover, well characterized            

STRs consist almost entirely of tetra- or di- nucleotide repeats, which may mutate with different               

rates and processes compared to other repeat classes. Finally, STR mutation rate studies have              

been based on small numbers of families and show substantial differences regarding absolute             

mutation rates and their patterns (Supplemental Table 1 ). 
 

Here, we developed a framework to measure constraint at individual STRs that benefits from a               

novel method to obtain observed and expected mutation rates at each locus. We developed a               

robust quantitative model that harnesses population-scale genomic data to estimate          

locus-specific mutation dynamics at each STR by correlating local SNP heterozygosity with STR             

variation. After extensive validation, we applied this model to estimate mutation rates at more              

than one million STRs using whole genome sequencing of 300 unrelated samples from d iverse              

populations18. Using these results, we built a model to predict mutation parameters from local              

sequence features and measured constraint at each STR locus. One caveat is that our method               

is primarily applicable to STRs that can be completely spanned by short reads, and does not                

accurately describe large expansion mutations observed in conditions such as Huntington’s           

Disease or Fragile X Syndrome. We show that our constraint metric can be used to predict                

clinical relevance of individual STRs, including those in genes with known implications in             

developmental disorders. This framework will likely enable better assessment of the role of             

STRs in human traits and will inform future work incorporating STRs into human genetics              

studies. 

 

Results 

A method to estimate local mutation parameters 
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We first sought to develop a method to estimate mutation parameters at each STR in the                

genome by fitting a model of STR evolution to population-scale data. A primary requirement of               

our method is a model of the STR mutation process that fits observed variation patterns.               

Motivated by the poor fit of the widely used generalized stepwise mutation model (GSM) to our                

data (Supplemental Note 1 ), we developed a novel length-biased version of GSM that closely              

recapitulates observed population-wide trends (Supplemental Notes 2,3; Supplemental        
Figures 1,2 ), including a saturation of the STR molecular clock over time. Our model includes               

three parameters: μ denotes the per-generation mutation rate, β describes the strength of the              

directional bias of mutation, and p describes the geometric mutation step size distribution.             

Recently, we developed a method called MUTEA that employs a similar model to precisely              

estimate individual mutation rates for Y chromosome STRs (Y-STRs) from population-scale           

sequencing panels of unrelated individuals. MUTEA models STR evolution on the underlying            

SNP-based Y phylogeny19. We found good concordance (r2=0.87) between MUTEA and           

traditional trio-based methods and high reproducibility (r2=0.92) across independent datasets.          

However, the main limitation of this approach is that it requires full knowledge of the underlying                

haplotype genealogy, which is difficult to obtain for autosomal loci. 

 

To analyze the mutation rates of autosomal STRs, we extended MUTEA to analyze pairs of               

haplotypes. The key insight of our mutation rate estimation procedure is that different classes of               

mutations provide orthogonal molecular clocks (Figure 1 ). Consider a pair of haplotypes            

consisting of an STR and surrounding sequence. The SNP heterozygosity is a function of the               

time to the most recent common ancestor (TMRCA) of the haplotypes and the SNP mutation               

rate. On the other hand, the squared difference between the numbers of repeats of the two STR                 

alleles (defined as the allele squared distance, or ASD) is a separate function of the TMRCA.                

The distribution of ASD values observed for a given TMRCA is determined by our mutation               

model. Using known parameters of the SNP mutation process, we can measure the local              

TMRCA to calibrate the STR molecular clock15. 

 

Our method takes as input unphased STR and SNP genotypes and returns maximum likelihood              

estimates of STR mutation parameters. The TMRCA is approximated by local SNP            

heterozygosity using a pairwise sequentially Markovian coalescent model 20 (Methods ). ASD is           

calculated directly from a diploid STR genotype as the squared difference in the number of               

repeats of each allele. Our maximum likelihood framework allows us to estimate parameters at a               
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single STR or jointly across many loci. A potential caveat is that haplotype pairs may have                

shared evolutionary history and thus are not statistically independent, which is not expected to              

bias our estimates but will artificially shrink standard errors. To account for this             

non-independence, we adjust standard errors by calibrating to ground truth simulated and            

capillary electrophoresis datasets (Supplemental Note 4, Supplemental Figure 3 ). 
 

Validating parameter estimates  
We first evaluated our estimation procedure on STR and SNP genotypes simulated on             

haplotype trees using a wide range of mutation parameters. To evaluate our method on              

unphased diploid data, we formed a set of 300 “diploids” by randomly selecting leaf pairs and                

recording the TMRCA and STR allele lengths. To test the effects of genotyping errors, we               

simulated “stutter” errors using the model described in Willems et al.19 and used the              

expectation-maximization framework we developed previously21 to estimate per-locus stutter         

noise and correct for STR genotyping errors.  

Our method obtained accurate per-locus estimates for μ for most biologically relevant parameter             

ranges (Figure 2A). Notably, estimates for p and β were less precise (Supplemental Figure 4 )               

and thus downstream analyses focused on mutation rates. The main limitation of our method is               

an inability to capture low mutation rates. Informative estimates could be obtained for rates              

>10 -6. This presumably stems from the low number of total mutations observed (median 1              

mutation for μ=10 -6 in 300 samples). Aggregating loci, or equivalently analyzing larger sample             

sizes, gives higher power to estimate low mutation rates due to the higher number of total                

mutations observed. By analyzing loci jointly, we could accurately estimate mutation rates down             

to 10 -6 with 30 or more loci and 10 -7 with 70 or more loci (Figure 2B). As expected, inferring and                    

modeling stutter errors correctly removed biases induced by stutter errors (Supplemental           
Figure 5 ). 

We next evaluated the ability of our method to obtain mutation rates from population-scale              

sequencing of Y-STRs whose mutation rates have been previously characterized. We analyzed            

143 males sequenced to 30-50x by the Simons Genome Diversity Project18 (SGDP) and 1,243              

males sequenced to 4-6x by the 1000 Genomes Project22. We used all pairs of haploid Y                

chromosomes as input to our maximum likelihood framework. We compared our results to two              

orthogonal mutation rate estimates: our previous MUTEA method 19 and a study that examined             

6 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2017. ; https://doi.org/10.1101/092734doi: bioRxiv preprint 

https://paperpile.com/c/fsrIDv/lXeDV
https://paperpile.com/c/fsrIDv/7ZoHr
https://paperpile.com/c/fsrIDv/dSyK3
https://paperpile.com/c/fsrIDv/7ZoHr
https://paperpile.com/c/fsrIDv/xxYFQ
https://doi.org/10.1101/092734
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

500 father-son duos13. We found that the mutation rate estimates were consistent across             

sequencing datasets (r=0.90; p=1.5×10 -18; n=48) (Supplemental Figure 6 ). Encouragingly, our          

rate estimates were similar to those reported by MUTEA on the SGDP dataset (r=0.89;              

p=5.9×10 -15; n=41) (Figure 2C). Furthermore, our estimates were significantly correlated with           

those reported by Ballantyne et al. (r=0.78; p=2.0×10 -9; n=41) (Supplemental Figure 6 ), a             

substantial improvement over results obtained using a traditional stepwise mutation model           

(r=0.37; p=0.0150; n=41), validating our choice of mutation model. 

Finally, we evaluated our method on a subset of well characterized autosomal diploid loci. We               

first analyzed the forensics CODIS markers, which have well-characterized mutation rates           

estimated across more than a million meiosis events        

(http://www.cstl.nist.gov/strbase/mutation.htm). Mutation rates were concordant with published       

CODIS rates (r=0.90, p=0.00016, n=11) (Supplemental Figure 7 ). We also compared to di-             

and tetranucleotide mutation rates previously estimated by Sun et al. by aggregating data from              

1,634 loci in 85,289 Icelanders15. Mutation rates were in strong agreement (Figure 2D;             
Supplemental Figure 8 ), which is especially encouraging given that the Sun et al. STR              

genotypes were obtained using an orthogonal method of capillary electrophoresis.  

Characterizing the STR mutation process using diverse whole genomes 
Next, we applied our mutation rate estimation method genome-wide. We analyzed 300            

individuals from diverse genetic backgrounds sequenced to 30-50x coverage by the SGDP            

Project18. We aligned reads to the hg19 reference genome using BWA-MEM23 and the resulting              

alignments were used as input into lobSTR24 (Methods ). High quality SNP genotypes were             

obtained from our previous study18. We used these as input to PSMC20 to estimate the local                

TMRCA between haplotypes of each diploid individual. For each locus, we adjusted genotypes             

for stutter errors (Supplemental Figure 9; Supplemental Table 2 , Methods ) and used            

adjusted genotypes as input to our mutation rate estimation technique. After filtering (Methods ),             

1,251,510 STR loci with an average of 249 calls/locus remai ned for analysis (Supplemental             
Dataset 1 ). Results were concordant with mutation rates predicted by extrapolating MUTEA to             

autosomal loci (r=0.71; p<10 -16; n=480,623) (Supplemental Figure 10 ), suggesting that our           

mutation rate estimation is robust even in the case of unphased genotype data from modest               

sample sizes. 
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Per-locus mutation rates for each repeat motif length varied over several orders of magnitude,              

ranging from 10 -8 to 10 -2 mutations per locus per generation (Supplemental Figure 11;             
Supplemental Table 3 ). Median mutation rates were highest for homopolymer loci (log 10μ=-5.0 )            

and decreased with the length of the repeat motif, with most pentanucleotides and             

hexanucleotides below our detection threshold. Interestingly, homopolymers also showed         

markedly higher length constraint compared to other loci, suggesting an increased pressure to             

maintain specific lengths. Step size distributions also differed by repeat motif length.            

Homopolymers (median p=1.00) and to a lesser extent repeats with motif lengths 3-6 (median              

p=0.95) almost always mutate by a single repeat unit. On the other hand, dinucleotides are               

more likely to mutate by multiple units at once, consistent with previous studies15. Overall, our               

results highlight the diverse set of influences on the STR mutation process, and suggest there is                

limited utility to citing a single set of STR mutation parameters. 

A framework for measuring STR constraint  
Encouraged by the accuracy of our per-locus autosomal parameter estimates, we sought to             

create a framework to evaluate genetic constraint at STRs by comparing observed to expected              

mutation rates. Our framework relies on generating robust predictions of per-locus mutation            

rates based on local sequence features and comparing the departure of the observed rates from               

this expectation (Figure 3A). STRs whose observed mutation rates are far lower than expected              

are assumed to be under selective constraint, and thus more likely to have negative fitness               

consequences. 

 

We began by evaluating whether local sequence features can accurately predict STR mutation             

rates. We examined the relationship between STR mutation rate and a variety of features,              

including total STR length, motif length, replication timing, and motif sequence (Supplemental            
Figure 12 ). While all features were correlated with mutation rate (Supplemental Table 4 ), total              

uninterrupted repeat sequence length and motif length were by far the strongest predictors, as              

has been previously reported by many studies19,25. These features were combined into a linear              

regression model to predict per-locus mutation rates. We stringently filtered the training data to              

consist of presumably neutral (intergenic) loci with the best model performance. Analysis was             

restricted to STRs with motif lengths of 2-4bp with reference length ≥20bp and small standard               

errors (Methods ), since this subset showed mutation rates primarily in the range that our model               
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can detect. Using this filtered set of markers, a linear model exp lained 65% of variation in                

mutation rates in an independent validation set (Figure 3B).  

 

We next developed a metric to quantify constraint at each STR by comparing observed to               

expected mutation rates (Supplemental Dataset 1 ). Our constraint metric is calculated as a             

Z-score, taking into account errors in both the predicted and observed values (Methods ).             

Negative Z-scores denote loci that are more constrained than expected, and vice versa.             

Constraint scores for loci with detectable mutation rates followed the expected standard normal             

distribution (Supplemental Figure 13 ). However, loci with mutation rates below our detection            

threshold of 10 -6 do not have reliable standard error estimates and had downward biased              

scores. Nevertheless, these loci are informative of a constraint signal for instances where the              

predicted mutation rate is high but the observed rate is below our detection threshold. Thus,               

rather than analyzing distributions of raw constraint scores, we binned scores by deciles and              

examined enrichments for functional annotations in each bin. For comparison, we also            

calculated mutation rates and constraint scores assuming a generalized stepwise model           

(Methods ) and found that mutation rates and constraint scores were similar (r=0.88 and r=0.56              

for mutation rates and constraint scores, respectively). All constraint scores analyzed below            

were calculated using the length-constrained model. 

 

STR constraint scores give insights into human phenotypes 
Observed Z-scores are concordant with biological expectations across genomic features.          

Introns, intergenic, and 3’-UTR regions closely matched neutral expectation (Figure 3C). On the             

other hand, STRs in coding exons showed significantly reduced mutation rates compared to the              

null model. These trends were recapitulated in the expected mutation rates (Figure 3D),             

suggesting that STRs under constraint are also under evolutionary pressure to maintain            

sequence features contributing to lower mutability. Additional analysis of STR constraint in            

coding regions is given in Supplemental Note 5 and Supplemental Figure 14 . In contrast to               

strong levels of constraint in coding exons, the STRs that we had previously identified to act as                 

expression quantitative trait loci (eQTLs)10 showed a marked lack of constraint, consistent with             

previous observations in the Exome Aggregation Consortium (ExAC) dataset26 showing highly           

constrained genes are depleted for eQTLs.  
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Constraint can provide a useful metric to prioritize potential pathogenic variants and interpret the              

role of individual loci in human conditions. Notably, this metric is most sensitive to early-onset               

disorders, as mutations involved in later onset disorders generally do not affect fitness and are               

thus expected to follow neutral patterns. Additionally, constraint is most sensitive to deleterious             

mutations following dominant inheritance patterns, since recessive mutations are eliminated at           

much slower rates. Consistent with this theory, STRs implicated in early onset dominant             

diseases show significantly higher constraint than expected (Figure 4 ). We focused on STRs             

that can be genotyped from high throughput sequencing data and are involved in congenital              

disorders. Notably, this excludes most large repeat expansions such as those involved in             

Huntington’s Disease or Fragile X Syndrome. First, we examined polyalanine and polyglutamine            

tracts in RUNX2. Even mild expansion of four glutamine residues has been shown to result in                

congenital cleidocranial dysplasia (OMIM: 119600)27,28. Both repeats showed constrained         

mutation rates, with the polyglutamine repeat in the most constrained bin (Z=-11.3). Next, we              

tested a polyalanine expansion in HOXD13, which causes a severe form of synpolydactyly             

(OMIM: 186000). Again, a mild expansion (7 additional residues) has been shown to be              

pathogenic29. This repeat was on the boundary of the most severe constraint bin (Z=-10.9). As a                

negative control, we also tested constraint at the CODIS loci used in forensics, which have been                

specifically ascertained for their high polymorphism rates and are likely neutral. As expected,             

the CODIS markers have weak constraint scores, and exhibit slightly higher mutation rates than              

expected (Z>0) (Figure 4 ).  
 

More broadly, we found STRs are highly enriched in genes that are involved in developmental               

processes (p=9.78×10 -38). Consistent with this result, three of the ten most highly constrained             

coding STRs in our dataset are in genes with previously reported developmental disorders             

following autosomal dominant inheritance patterns that have yet to be associated with            

pathogenic STRs: GATA6 (congenital heart defects, OMIM: 600001), SOX11 (mental          

retardation, OMIM: 615866), and BCL11B (Immunodeficiency 49, OMIM: 617237)         

(Supplemental Table 5 ). On the other hand, we found that pathogenic STRs of late onset STR                

expansions disorders such as cerebellar ataxias were not highly constrained, and showed            

mutation rates very close to predicted values (Figure 4 ). These disorders often do not occur               

until the fourth or fifth decade of life 30, and thus are not expected to be under strong purifying                  

selection. Taken together, these results suggest STR constraint scores will provide a useful             
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metric by which to prioritize rare pathogenic variants involved in severe developmental            

disorders. 

 

To facilitate use by the genomics community, genome-wide results of our mutational constraint             

analysis are provided in Supplemental Dataset 1 , which can be analyzed with standard             

genomics tools such as BEDtools31. 

Discussion 

Metrics for quantifying genetic constraint by comparing observed to expected variation have            

provided a valuable lens to interpret the impact of de novo SNP variants. These have been                

widely used for applications including quantifying the burden of de novo variation in             

neurodevelopmental disorders1,32, identifying individual genes constrained for missense or loss          

of function variation 26, and more recently to measure constraint in non-coding elements4,33.            

However, the mutation rate at SNPs is sufficiently low that any given nucleotide has a low                

probability of being covered by a polymorphism even in very large datasets of human variation               

(e.g. a dataset of more than 60,000 exomes contained about 1 polymorphism per 8              

nucleotides26). Thus, the information provided by SNP variation is never sufficient to provide a              

direct measurement of the likely evolutionary constraint on a particular mutation. In contrast, the              

much higher mutation rate in STRs makes it possible to precisely measure constraint on a               

per-site basis even with as few as 300 whole genomes. 

 

We combined a deep catalog of STR variation 18 with a novel model of the STR mutation                

process to develop an accurate method for measuring per-locus STR mutation parameters by             

correlating STR variation with local sequence heterozygosity across haplotype pairs. We used            

this method to estimate mutation rates at more than 1 million individual STRs in the genome.                

Observed STR mutation rates vary over several orders of magnitude, suggesting it is not useful               

to cite a single mutation rate for all STRs. Median genome-wide mutation rates were far lower                

than previously reported 16,17,25,34. This is consistent with the fact that most well studied STR              

panels were specifically ascertained for their high heterozygosity, needed for traditional STR            

applications such as forensics or genetic linkage analysis. Our estimates confirm many known             

trends in STR mutation, such as the dependence of mutation rate on total STR length and the                 

tendency of dinucleotide repeats to mutate in larger units than tetranucleotides25. Moreover, this             
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large dataset allows us to exclude the possibility that certain sequence features such as local               

GC content play a strong role in determining STR mutation rates.  

 

We showed that by comparing observed to expected mutation rates, we can measure genetic              

constraint at individual loci and use our constraint metric to prioritize potentially pathogenic             

variants. Importantly, our approach provides a biologically agnostic approach to assessing the            

importance of individual loci, as it relies entirely on observed genetic variation. While our              

analyses focused on STRs, the framework developed here can be easily extended to any class               

of repetitive variation for which accurate genotype panels are available. In future studies, we              

envision this work will provide a much needed framework to interpret the dozens of de novo                

variants at STRs and other repeats arising in each individual, especially in the context of severe                

early onset disorders. Beyond analyzing de novo variation, accurate models of STR mutation             

will allow scanning for STRs under selection 35, identifying rapidly mutating markers for forensics             

or genetic genealogy19,36, and enabling improved statistical methods for incorporating STRs into            

quantitative genetics studies. 

 

Our mutation rate estimation method and constraint metric face several limitations. First,            

estimating mutation rates in several hundred samples is only accurate for mutation rates down              

to approximately 10 -6. Loci with slower mutation rates produce biased results, limiting our ability              

to predict and measure mutation rates at a large number of loci, including the majority of protein                 

coding STRs. While we can detect general signals of constraint for slowly mutating STRs, larger               

sample sizes will allow for more accurate constraint scores and thus more informative             

prioritization. Second, our method analyzes pairs of haplotypes rather than the entire            

evolutionary history of a locus. While this has the advantage of allowing estimation across              

unphased data, it discards valuable information present in the full haplotype tree, and thus limits               

the scope of models that can be considered. For example, it precludes modeling allele              

length-specific mutation rates, which requires estimating ancestral states on the full haplotype            

tree. Finally, there are additional aspects of the STR mutation process not modeled here. Our               

method focus on short stepwise mutations occurring at relatively stable STRs. Unstable            

expansions, such as those occurring in trinucleotide repeat disorders, likely mutate by different             

models. Our model also ignores the effect of sequence interruptions and interaction between             

alleles, both of which have been hypothesized to influence STR mutation patterns19,35,37. 
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Future bioinformatic advances will likely overcome many of these issues and improve the             

precision of our estimates. In particular, while our method works on unphased data, phased              

STR and SNP haplotypes would allow analysis of the entire haplotype tree at a given locus as is                  

done by MUTEA, improving our accuracy and allowing us to consider a broader range of               

mutation models. Additionally, our current tools are limited to STRs that can be spanned by               

short reads, and thus exclude many well known pathogenic loci such as those involved in               

trinucleotide repeat expansion disorders. We envision that long read and synthetic long read             

technologies will both enable analysis of a broader class of repeats and provide an additional               

layer of phase information. Finally, larger sample sizes will allow more accurate analysis of              

constraint for slow-mutating loci. Taken together, these advances will provide a valuable            

framework for interpreting mutation and selection at hundreds of thousands of STRs in the              

genome and will help prioritize STR mutations in clinical studies. 
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Methods 
STR mutation model 
We model STR mutation using a discrete version of the Ornstein-Uhlenbeck process described             

in detail in Supplemental Note 2 . Our model assumes STR mutations occur at a rate of                μ  

mutations per locus per generation according to a step-size distribution with first and second              

moments: 

[(a )| a ] aE i+1 − ai i =  − β i  
[(a ) | a ] σE i+1 − ai

2
i =  2  

where is the length of the STR allele after mutation and is the length after mutation ai           i   ai+1       

. This implies that long alleles (>0) tend to decrease back toward 0 and short alleles (<0)i + 1                  

tend to increase toward 0. For all analyses, all alleles are assumed to be relative to the major                  

allele, which is set to 0. 

 

Mutation parameter estimation 
We extended the MUTEA framework to estimate parameters at diploid loci for which the              

underlying haplotype tree is unknown. For each sample genotyped at locus j, we obtain tij , the                

TMRCA between the two haplotypes of sample i, and a distribution Gij , where Gij (a,b) gives the                

posterior probability that sample i has genotype (a,b). We initially assume that haplotype pairs              

are independent and maximize the following likelihood function at locus j: 

(Θ |D ) Π  P (G |Θ, )Lj  j =  i ij tij  

(G |Θ, ) G (a, ) A((a ) | t )P ij tij = Σ(a,b) ij b − b 2
ij  

Where , , and gives the probability of {μ, β, p}Θ =     (G , ), (G , ) ...(G , t )}Dj = { 1j t1j  2j t2j nj  nj   (x|t)A     

observing a squared distance of x between alleles on haplotypes with a TMRCA of t. We used                 

the Nelder-Mead algorithm to minimize the negative of the log-likelihood and imposed            

boundaries of .10 , .05], β 0, .9], p 0.7, 1.0]μ ∈ [ −8 0  ∈ [ 0  ∈ [   

 

To compute the function , we first build a transition matrix of size , where is the    A        M     L × L    L   

number of allowed alleles. gives the probability that allele a mutates to allele b in a    [a, ]M b              

single generation. Step sizes were set based on the model described in Supplemental Note 2 : 

[a , a ]   μ(u p(1 ) )   k  M t  t + k =  t − p k−1 > 0  
[a , a ]  μ( d p(1 ) )   k  M t  t + k =  t − p −k−1 < 0  

[a , a ]  (1 )   k  M t  t + k =  − μ = 0  
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where  and .ut = 2
1−βp at dt = 2

1+βp at   

M represents a stochastic process, and thus gives transition probabilities along a branch T       MT         

generations long. A single row gives the expected allele frequency spectrum of a locus    [a, ]MT :          

for which the ancestral allele was a and the MRCA was T generations ago. We can use this to                   

derive the probability of observing a given squared distance between two alleles separated by T               

generations:  

(x|t, ) Σ M [a, ]M [a, ]A a =  
i=1..L−√(x)

  t i t i + √x  

In our data, we do not know the ancestral allele a for each pair of haplotypes. However, under                  

our model of STR evolution, does not depend on the ancestral allele and so we assume 0 as     A              

the ancestral allele for simplicity. Notably, we have assumed haplotype pairs are statistically             

independent. While this does not bias our results, standard errors must be adjusted as              

described in Supplemental Note 4 . 
 

Estimating mutation parameters using a generalized stepwise model 
Under a generalized stepwise model (GSM), the ASD should be linearly related to the TMRCA               

between a pair of haplotypes38: 

a ) 2μ t( i − aj
2 =  ef f ij  

Where a i  and a j  are the length of STR alleles on two haplotypes i and j, tij  is the TMRCA 

between that pair of haplotypes, and is the effective mutation rate. Effective mutation rate isμef f  

defined as , where is the per-generation mutation rate of the locus and step sizesμσμef f =  2
m  μ  

are drawn from a distribution with mean 0 and variance .σ2
m  

 

For each locus, we calculated by regressing ASD on TMRCA and dividing the resulting     μef f          

slope by 2. 

 

Joint estimation of mutation parameters across multiple loci 
The MUTEA approach can be easily extended to estimate mutation parameters in aggregate by              

jointly maximizing the likelihood across multiple loci at once: 

(Θ |D ) Π L(Θ|D )L   =  j j  

To minimize computation and because and p tended to be less consistent across loci, we first     β            

perform per-locus analyses to obtain individual estimates for and p. We then hold these        β       
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parameters constant at the mean value across all loci and only maximize the joint likelihood               

across .μ  

 
Simulating SNP-STR haplotypes 
We used fastsimcoal 39 to simulate coalescent trees for 600 haplotypes using an effective             

population size of 100,000. We then forward-simulated a single STR starting with a root allele               

of 0 using specified values of , , and . Mutations were generated according to a      μ  β    σ2 = p2
2−p        

Poisson process with rate and following the model described above. We chose 300    /μλ = 1           

random pairs of haplotypes to form “diploid” individuals to use as input to our estimation               

method. We simulated reads for each locus assuming 5x sequencing coverage, with each read              

equally likely to originate from each allele. Stutter errors were simulated using the model              

described in Willems et al.19 with , , and . This indicates that stutter noise      .1u = 0  .05d = 0   .9ρs = 0       

causes the true allele to expand or contract with 10% or 5% frequency, respectively, and that                

error sizes are geometrically distributed with 10% chance of mutating by more than one repeat               

unit. For estimating per-locus parameters, we performed 10 simulations with each set of             

parameters.  

 
Datasets 
 
Previously published mutation rate estimates 

MUTEA mutation rate and length bias estimates for the 1000 Genomes dataset were obtained              

from Table S1 in Willems et al.19 De novo Y-STR mutation rate estimates were obtained from                

Table S1 of Ballantyne et al.13 CODIS mutation rates were obtained from            

http://www.cstl.nist.gov/strbase/mutation.htm.  

 

Annotations 

Local GC content and sequence entropy were obtained from the “strinfo” file included in the               

lobSTR hg19 reference bundle. Missense constraint scores were downloaded from the ExAC            

website http://exac.broadinstitute.org/downloads.  

 

STR genotyping 
 
Profiling STRs from short reads 
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Raw sequencing reads for the SGDP dataset were aligned using BWA-MEM. Alignments were             

used as input to the allelotype tool packaged with lobSTR24 version 4.0.2 with non-default flags               

“—filter-mapq0 –filter-clipped –max-repeats-in-ends 3 –min-read-end-match 10 –dont-include-pl       

–min-het-freq 0.2 –noweb”. STR genotypes are available on dbVar under accession nstd128 .            

Y-STRs for the 1000 Genomes data were previously profiled 24 and were preprocessed as             

described in 19. 
 
Filtering to obtain high quality STR calls 

Y-STR calls for SGDP were filtered using the lobSTR_filter_vcf.py script available in the lobSTR              

download with arguments “--loc-max-ref-length 80 --loc-call-rate 0.8 --loc-log-score 0.8 --loc-cov          

3 --call-cov 3 --call-dist-end 20 --call-log-score 0.8” and ignoring female samples. Autosomal            

samples were filtered using “--loc-max-ref-length 80 --loc-call-rate 0.8 --loc-log-score 0.8          

--loc-cov 5 --call-cov 5 --call-dist-end 20 --call-log-score 0.8”. 

 
Calculating local TMRCA 
As described in 18, we used the pairwise sequential Markovian coalescent (PSMC)20 to infer local              

TMRCAs across the genome in each sample. For each region overlapping an STR, we              

calculated the geometric mean of the upper and lower heterozygosity estimates returned by             

PSMC. We scaled heterozygosity to TMRCA based on the genome-wide average PSMC            

estimate (0.00057) of a French sample with a previously estimated genome-wide average            

TMRCA of 21,000 generations25. To accommodate errors in this scaling process, final mutation             

rate estimates were scaled to match the mean values of published de novo rates (see below).  

 

Pairwise Y chromosome analysis 
TMRCAs for each pair of SGDP Y-chromosomes was calculated using pairwise sequence            

heterozygosity. We scaled this to TMRCA using the relationship , where is the         /(2μ )hi Y SNP   hi    

heterozygosity of pair and is the Y-chromosome SNP mutation rate. was set to   i   μY SNP        μY SNP     

2.1775×10 -8 as reported by Helgason et al.40 For the 1000 Genomes set, we obtained a               

Y-phylogeny that was built by the 1000Y analysis group 41. We scaled the tree using the method                

described previously19. For each dataset, we used pairwise TMRCA and allele squared distance             

estimates as input to our maximum likelihood procedure. 
 
Scaling mutation parameters 
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Our TMRCA estimates, and thus mutation rate estimates, scale linearly with the choice of SNP               

mutation rate. To account for this and to compare estimates between datasets, we scaled our               

mutation rates by a constant factor such that the mean STR mutation rates between datasets               

were identical. Genome-wide estimates are scaled based on the comparison with CODIS rates. 
 

Measuring STR constraint 
Predicting mutation rates from local sequence features 

We trained a linear model to predict log 10 mutation rates from local sequence features including               

GC content, replication timing, sequence entropy, motif sequence, motif length, total STR            

length, and uninterrupted STR length. The model was built using presumably neutral intergenic             

loci, with 75% of the loci reserved for training and 25% for testing. While all features were                 

correlated with mutation rates, the best test performance was achieved using only motif length              

and uninterrupted STR length. Models were built using the python statsmodels package            

(http://www.statsmodels.org/). 

 

Model training was restricted to STRs whose mutation rates could be reliably estimated. We              

filtered STRs with total length <20bp, since the majority of shorter STRs returned biased              

mutation rates at the optimization boundary of 10 -8. We further filtered STRs with standard              

errors equal to 0, >0.1, or undefined (usually indicating the lower optimization boundary of 10 -8               

was reached). However, these loci were included in testing and in downstream analysis as the               

majority of coding STRs fell into this category.  

 

Calculating Z-scores   

Constraint scores are calculated for each locus i as: 

 Z i =  μ − E[μ ]i i

  √SE[μ ] /2 + V ar[μ ]/2i
2

i

 

Where is the observed mutation rate, is the standard error of the observed mutation μi       E[μ ]S i         

rate, is the predicted mutation rate, and is the variance of the prediction. In all [μ ]E i       ar[μ ]V i         

cases,  refers to the log 10
 mutation rate, with the log 10 notation omitted for simplicity.μi  

 

Constraint score analysis 

GO analysis was performed using goatools (https://github.com/tanghaibao/goatools). OMIM        

disease annotations were accessed on December 8, 2016.  
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Data availability 
Supplemental Dataset 1 is available at      

https://s3-us-west-2.amazonaws.com/strconstraint/Gymrek_etal_SupplementalData1_v2.bed.gz

.  
 

Code availability 
Code used in this study is available at https://github.com/gymreklab/mutea-autosomal .  
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Figure legends 
Figure 1: Estimating STR mutation parameters from diploid data. (A) SNPs and STRs give              
orthogonal molecular clocks. The tree represents an example evolutionary history of an STR             
locus. Red dots denote STR mutation events. Blue dots represent SNP mutation events. Black              
branches denote an observed diploid locus, consisting of two haplotypes from the tree. (B)              
Correlating local TMRCA with STR genotypes allows per-locus mutation rate estimation.           
For each diploid STR call, we use SNP heterozygosity to extract the TMRCA (blue) of the                
surrounding region and the squared length difference between STR alleles (ASD, in red). Our              
STR mutation model describes the expected ASD for a given TMRCA (solid black line). Gray               
dots give data points for each sample, red dots represent three example samples, and the               
dashed black line gives the sliding window mean. 
 
Figure 2: Accurate estimation of STR mutation parameters from simulated data. (A)            
Per-locus estimates of mutation rate. Solid black lines give simulated values. Blue dots give              
per-locus estimates. Dashed gray lines give boundaries enforced during numerical optimization.           
(B) Jointly estimating parameters across loci allows inference of slow mutation rates.            
Black lines give joint estimates for different simulated mutation rates (circles=10 -8,           
triangles=10 -7, diamonds=10 -6, squares=10 -5). Dashed gray lines give simulated values. (C)          
Y-STR mutation rate parameters are concordant across estimation methods. Mutation rate           
estimates from this study compared to those returned by MUTEA. Gray dashed lines denote the               
diagonal. (D) Autosomal mutation rate estimates are concordant with de novo studies.            
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Dashed lines give median estimate across loci. Solid lines give empirical mutation rate from trio               
data analyzed by Sun et al. Red=dinucleotides; blue=tetranucleotides. 
 
Figure 3: A framework for measuring STR constraint. (A) Schematic of constraint            
framework. In the model training phase, a linear model is trained to predict mutation rates from                
local sequence features. In the estimation phase, constraint is measured by comparing            
predicted mutation rates to observed rates. (B) Sequence features are predictive of mutation             
rate . Comparison of predicted vs. observed mutation rates for a held out test set of intergenic                
loci. Gray dots denote loci with high or undefined standard errors that were excluded from               
model training. (C) Enrichment of gene annotations by constraint bin. X-axis gives bins             
defined by Z-score deciles. Y-axis gives the fold enrichment of each annotation in each bin. The                
dashed line gives the boundary between constrained (Z<0) and non-constrained (Z>=0) scores.            
(D) Predicted mutation rates by annotation. For (C) and (D), constrained denotes genes with              
missense constraint score >3 as reported by ExAC. 
 
Figure 4: Constraint scores can be used for STR prioritization. (A) Z-scores for example              
loci. Black gives CODIS forensics markers. Blue give known pathogenic STRs. For each STR,              
the CODIS marker or gene name is given, and the chromosomal location (hg19) is indicated in                
parentheses. (B) Example distributions of observed vs. expected mutation rates. The left            
panel shows a CODIS STR (D19S433), a presumably neutral STR. The middle panel shows a               
highly constrained polyglutamine repeat in RUNX2 for which a mild expansion is implicated in              
an early onset disorder. The right panel shows a polyglutamine repeat in ATXN7, implicated in a                
late onset disorder and accordingly not highly constrained. White bars=expected mutation rate            
distribution. Solid bars=observed mutation rate distribution. 
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