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Abstract 22 

Motivation: The recent widespread application of whole-genome sequencing (WGS) for microbial 23 

disease investigations has spurred the development of new bioinformatics tools, including a notable 24 

proliferation of phylogenomics pipelines designed for infectious disease surveillance and outbreak 25 

investigation. Transitioning the use of WGS data out of the research lab and into the front lines of 26 

surveillance and outbreak response requires user-friendly, reproducible, and scalable pipelines that have 27 

been well validated. 28 

Results: SNVPhyl (Single Nucleotide Variant Phylogenomics) is a bioinformatics pipeline for identifying 29 

high-quality SNVs and constructing a whole genome phylogeny from a collection of WGS reads and a 30 

reference genome. Individual pipeline components are integrated into the Galaxy bioinformatics 31 

framework, enabling data analysis in a user-friendly, reproducible, and scalable environment. We show 32 

that SNVPhyl can detect SNVs with high sensitivity and specificity and identify and remove regions of 33 

high SNV density (indicative of recombination). SNVPhyl is able to correctly distinguish outbreak from 34 

non-outbreak isolates across a range of variant-calling settings, sequencing-coverage thresholds, or in the 35 

presence of contamination. 36 

Availability: SNVPhyl is available as a Galaxy workflow, Docker and virtual machine images, and a 37 

Unix-based command-line application. SNVPhyl is released under the Apache 2.0 license and available at 38 

http://snvphyl.readthedocs.io/ or at https://github.com/phac-nml/snvphyl-galaxy.  39 

Introduction 40 

The high-efficiency and cost-effectiveness of whole-genome sequencing (WGS) using next-generation 41 

sequencing (NGS) technologies is transforming the biomedical landscape. Entire microbial genomes can 42 

be rapidly sequenced and subsequently queried with nucleotide-level resolution, an exciting new ability 43 
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that far outstrips other traditional microbial typing methods. This powerful new ability has the potential to 44 

advance many fields, including in particular the field of infectious disease genomic epidemiology. A 45 

number of landmark studies have demonstrated the power of WGS for molecular epidemiology. One 46 

notable study is the investigation into the 2010 Haiti cholera outbreak (1-3), where WGS and 47 

epidemiological data was used in support of the hypothesis that cholera was introduced to Haiti from UN 48 

peacekeepers originally infected in Nepal. WGS has supported the investigation of outbreaks of 49 

organisms as diverse as Mycobacterium tuberculosis (4, 5), Escherichia coli (6), and Legionella 50 

pneumophila (7). These high-profile successes have motivated public health institutions and food 51 

regulatory agencies to incorporate WGS into their routine microbial infectious disease surveillance and 52 

outbreak investigation activities. The GenomeTrakr network used by the Centers for Disease Control 53 

(CDC) and the Food and Drug Administration (FDA) agencies in the United States (8), PulseNet 54 

International (http://www.cdc.gov/pulsenet/next-generation.html), Statens Serum Institut in Denmark (9), 55 

and Public Health England (10) are leading the charge in this area, and have incorporated a variety of 56 

analytical approaches to integrate WGS into their infectious disease surveillance activities. Two 57 

approaches in particular have emerged as feasible methods for bacterial genomic epidemiology: gene-by-58 

gene methods, which extend the idea of multilocus sequence typing (MLST) to encompass a given 59 

organism’s entire genome (whole-genome MLST, wgMLST) or core genome (core genome MLST, 60 

cgMLST) (11, 12); and single nucleotide variant (SNV)-based methods, which identify variants by 61 

comparing a population of target genomes against a reference (13, 14). Gene-by gene methods are 62 

promising as they are more amenable to assigning consistent sequence types using standardized MLST 63 

schemas, but these schemas must be developed and validated for each organism.  SNV-based methods are 64 

popular as they do not require development of MLST schemas, but the variability in SNV-identification 65 

methods and reference genome selection means they do not yet produce standard sequence types useful 66 

for global communication of circulating infectious disease (12, 14). Where applicable, these two methods 67 

are often combined (15).  68 
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A growing number of SNV-based pipelines have been developed (Table 1) and are distributed in 69 

the form of web services (16), command-line software (17), or both (14). Web services provide a user-70 

friendly method of running large-scale analyses but require the uploading of sequence reads and rely on 71 

third-party computing infrastructure, which may be inadequate for the analysis of typically large datasets 72 

or due to data privacy concerns. Locally installed pipelines avoid the transfer of large datasets to third-73 

party websites, offer greater control over the execution environment for reproducibility, and allow for the 74 

incorporation into pre-existing bioinformatics analysis environments. However, locally installed pipelines 75 

may require considerable expertise to operate and can have substantial computing requirements. 76 

Additionally, for many SNV-based pipelines, recombination detection and removal may require pre-77 

analysis to identify phage and genomic islands on the reference genome, or post-analysis with 78 

computationally intensive recombination-detection software such as Gubbins (18) or ClonalFrameML 79 

(19) to identify and mask possible recombinant regions. While a large choice of pipelines is available, a 80 

systematic comparison of popular SNV pipelines has demonstrated that they generate highly concordant 81 

phylogenetic trees but with variation in the particular SNVs identified (20). However, variation in the 82 

installation procedures and execution environments of these pipelines proves challenging for integration 83 

into a larger bioinformatics analysis system. 84 

Galaxy (21) is a web-based biological data analysis platform that can be accessed through a 85 

publicly available website, a locally installed instance linked to a high-performance compute cluster, or a 86 

cloud-based environment. Galaxy provides a user-friendly web interface for the construction of data 87 

analysis workflows using a mixture of built-in or community developed bioinformatics tools. 88 

Additionally, Galaxy provides an API for automated workflow execution or other automations via 89 

external software. These features have encouraged some software developers to integrate Galaxy within 90 

larger data analysis systems.  Examples of such analysis systems include IRIDA (http://irida.ca), the 91 

Refinery Platform (http://www.refinery-platform.org/), and the Genomics Virtual Laboratory (22). 92 
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The SNVPhyl pipeline provides a reference-based SNV discovery and phylogenomic tree-93 

building pipeline along with ancillary tools integrated within the Galaxy framework. SNVPhyl can 94 

quickly analyze many genomes, identify variants and generate a maximum likelihood phylogeny, an all-95 

against-all SNV distance matrix, as well as additional quality information to help guide interpretation of 96 

the results. The pipeline has been under continuous development and refinement at Canada's National 97 

Microbiology Laboratory since 2010; it is currently being used for outbreak investigations and will be 98 

part of the validated suite of tools used by PulseNet Canada for routine foodborne disease surveillance 99 

activities. Here, we describe the overall operation of SNVPhyl, survey its advanced features such as 100 

repeat and recombination masking, and demonstrate its SNV-calling and phylogenomic tree building 101 

accuracy using simulated and real-world datasets. 102 

Methods 103 

SNVPhyl pipeline  104 

The SNVPhyl pipeline (Figure 1) consists of a set of pre-existing and custom-developed bioinformatics 105 

tools for reference mapping, variant discovery, and phylogeny construction from identified SNVs. Each 106 

stage of the pipeline is implemented as a separate Galaxy tool and the stages are joined together to 107 

construct the SNVPhyl workflow. Distribution of the dependency tools for SNVPhyl is managed through 108 

the Galaxy Toolshed (23). Scheduling of each tool is managed by Galaxy, which provides support for 109 

execution on a single machine, high-performance computing environments utilizing most major 110 

scheduling engines (e.g., Slurm, TORQUE, Open Grid Engine), or cloud-based environments. 111 

Input 112 

SNVPhyl requires as input a set of microbial WGS datasets, a reference genome, and an optional masking 113 

file defining regions on the reference genome to exclude from the analysis. The sequencing data consists 114 

of either single-end or paired-end reads. The reference genome consists of a draft or finished genome, 115 

chosen typically to have high similarity with the collection of genome sequences under analysis. The 116 
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masking file stores the sequence identifier of the reference genome and the coordinates for any regions 117 

where SNVs should be excluded from analysis. 118 

Architecture 119 

Execution of SNVPhyl begins with the “Repeat Identification” stage. This stage identifies internal repeat 120 

regions on the reference genome using MUMMer (v3.23) (24) and generates a masking file containing the 121 

locations of repetitive regions to exclude from analysis. This file is concatenated to the user-supplied 122 

masking file, if defined, and used in later analysis stages. 123 

The “Mapping/Variant Calling” stage (detailed in Figure 1.b) aligns the supplied reads to the 124 

reference genome using the appropriate mapping mode (paired-end or single-end). Reference mapping is 125 

performed using SMALT (v.0.7.5) (http://www.sanger.ac.uk/science/tools/smalt-0), which outputs a read 126 

pileup. In the “Mapping Quality” stage, SNVPhyl evaluates each pileup for the mean coverage across a 127 

user-defined proportion of the reference genome (e.g., 10X coverage across at least 80% of the genome). 128 

Any sequenced genomes that do not meet the minimum mean coverage threshold are flagged for further 129 

assessment. 130 

The variant calling stages of SNVPhyl use two independent variant callers, FreeBayes (version 131 

0.9.20) (25), and the SAMtools and BCFtools packages (26, 27).  FreeBayes is run using the haploid 132 

variant calling mode and the resulting variants are filtered to remove insertions/deletions and split 133 

complex variant calls.  SAMtools and BCFtools are run independently of FreeBayes and are used to 134 

confirm the FreeBayes variant calls and generate base calls for non-variant positions. 135 

The “Variant Consolidation” stage combines both sets of variant and non-variant calls into a 136 

merged file, flagging mismatches between variant callers. Base calls below the defined minimum read 137 

coverage are identified and flagged. The merged base calls are scanned for positions that do not pass the 138 

minimum SNV abundance ratio (ratio of reads supporting the SNV with respect to the depth of coverage 139 

at a site) and minimum mean mapping quality. These base calls are removed from the merged base calls 140 

file. The remaining base calls that pass all these criteria are defined as either a high quality SNV (hqSNV) 141 
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or a high quality non-variant base call. The hqSNVs are optionally scanned to identify high density SNV 142 

regions.  These regions are identified by passing a sliding window of a given size along the genome and 143 

counting the number of SNVs within the window that exceed a given SNV density threshold. The high-144 

density SNV regions are recorded in a tab-delimited file and used to mask potential recombinant regions. 145 

 The “SNV Alignment Generation” stage examines the merged base calls to generate a table of 146 

identified variants and an alignment of hqSNVs and high-quality non-variant bases. The hqSNVs are 147 

evaluated and assigned a status using the base calls at the same reference genome position for every 148 

isolate. A status of “valid” is assigned when the base calls from all isolates in the same position pass the 149 

minimum criteria (hqSNVs or high-quality non-variants). These base calls are incorporated into the SNV 150 

alignment used for phylogeny generation. A status of “filtered-coverage” is assigned when one or more 151 

isolates fail the minimum coverage threshold and the failed isolates’ base calls are annotated as ‘-‘ 152 

(indicating no nucleotide or a gap). A status of “filtered-mpileup” is assigned when one or more isolates 153 

have conflicting base calls between FreeBayes and SAMtools/BCFtools and the conflicting isolates’ base 154 

calls are annotated as ‘N’ (indicating any nucleotide nonspecifically). A status of “filtered-invalid” is 155 

assigned when the identified hqSNV overlaps one of the masked locations. The hqSNVs, base calls, and 156 

assigned status are recorded in the SNV table and saved for later inspection. The SNV table can be used 157 

to re-generate the downstream SNV alignment and phylogenetic tree without re-running the 158 

computationally intensive reference mapping and variant calling steps. 159 

Output 160 

The final phylogeny is generated using the SNV alignment consisting of hqSNVs with a “valid” status. 161 

This alignment is run through PhyML (28) with the GTR+ γ model as default and tree support values 162 

estimated using PhyML’s approximate likelihood ratio test (29). The SNV alignment is also used to 163 

generate an all-against-all SNV distance matrix. This matrix lists the pair-wise distances between every 164 

isolate, using only the “valid” hqSNVs. 165 
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Additional files are provided to assist in evaluating the quality of the SNVPhyl analysis. The 166 

“SNV Filter Stats” stage summarizes the quality and counts of the identified SNVs. The “SNV Alignment 167 

Generation” stage summarizes the proportion of the reference genome passing all the necessary filters for 168 

every isolate—the (non-masked) core genome—as well as the portion of the genome failing any filter or 169 

excluded by the masking file. 170 

Simulated data 171 

We evaluated SNVPhyl’s sensitivity and specificity for SNV identification using simulated mutations 172 

derived from a reference genome. The closed and finished E. coli str. Sakai (NC_002695) along with the 173 

two plasmids (NC_002128 and NC_002127) was chosen as the reference genome (combined length of 174 

5,594,477 bp). We constructed a variant genome by randomly mutating 10,000 base locations on the 175 

reference genome. We repeated the procedure, using the same 10,000 base locations but different 176 

mutations, to generate a total of three variant genomes. We included the unmodified reference genome in 177 

the test set to serve as a positive control. The simulated variants for each genome were recorded in a table 178 

for later comparisons. The constructed genomes were run through art_illumina (version 179 

ChocolateCherryCake) (30) to generate paired-end reads with 2x250 bp length and 30X mean coverage. 180 

The resultant reads along with the reference genome were run through SNVPhyl with repeat masking 181 

enabled but with no SNV density filtering. 182 

The SNV table produced by SNVPhyl was compared to the table of simulated variants to 183 

determine their sensitivity and specificity. We define a true positive (TP) as a matching row in both 184 

variant tables where both the position as well as base calls for each simulated genome is identical. A 185 

variant detected by SNVPhyl not matching the criteria for a true positive is a false positive (FP). A true 186 

negative (TN) is defined as all non-variant positions that were excluded by SNVPhyl.  A false negative 187 

(FN) is defined as a row in the simulated variant table where either the position or a base call did not 188 

match any corresponding entry in the table of detected variants by SNVPhyl. Using these definitions, 189 

sensitivity is calculated as TP/(TP + FN) while specificity is calculated as TN/(TN + FP). 190 
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SNV density filtering evaluation 191 

We evaluated SNVPhyl’s ability to mask recombination by comparing the resultant phylogenetic trees 192 

and identified SNVs to those detected and removed by the recombination detection software package 193 

Gubbins (18). Our test data consisted of 11 Streptococcus pneumoniae genomes along with the reference 194 

genome ATCC 700669 (FM211187) that had previously been published (31) and made available as 195 

sequence reads on NCBI (Table S1) and as a whole-genome alignment (the PMEN1 dataset from 196 

https://sanger-pathogens.github.io/gubbins/).  We downloaded this alignment, appended the reference 197 

genome, and processed the resulting file through Gubbins to identify and mask recombinant SNVs. The 198 

identified SNVs were filtered to remove gaps and masked recombination (‘-’ and ‘N’ characters) and the 199 

resulting SNVs we defined as the “truth” set used to generate the true/false positive/negative values—200 

defined as for the “Simulated data” section. These Gubbins-identified SNVs were also used to construct a 201 

phylogenetic tree with PhyML and compared with SNVPhyl’s phylogenetic trees numerically using K 202 

tree scores (32) and visually using phytools (33). K tree scores allow for similarity comparisons of many 203 

phylogenetic trees against a single reference tree. Each tree is re-scaled by a factor, K, based on the 204 

reference tree size and a score is produced taking into account differences in both topology and branch 205 

lengths. Comparing the scores of all trees provides a measure of similarity to the reference tree, with more 206 

similar trees producing a score closer to 0. 207 

We downloaded sequence reads for the test dataset from NCBI, identifying and combining 208 

multiple sequencing runs for each strain to a single set of sequence reads with the help of SRAdb (34). 209 

Using the combined sequence reads we ran SNVPhyl under a number of scenarios. For each scenario we 210 

compared the SNVs and phylogenetic trees to the “truth” dataset described above. In the first run, we 211 

performed no SNV density filtering. For all subsequent runs we adjusted the density-filtering parameters 212 

to remove SNVs occurring at a density of 2 or more within a moving window of 20, 100, 500, 1000, and 213 

2000 bp. We evaluated an additional scenario using a combination of SNVPhyl and Gubbins for 214 

recombination masking. We ran SNVPhyl with no SNV density filtering and incorporated the identified 215 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2016. ; https://doi.org/10.1101/092940doi: bioRxiv preprint 

https://sanger-pathogens.github.io/gubbins/
https://doi.org/10.1101/092940
http://creativecommons.org/licenses/by/4.0/


 

 

variants into the reference genome to generate a whole genome alignment. The whole-genome alignment 216 

was processed with Gubbins to identify non-recombinant SNVs and to construct a phylogenetic tree. 217 

Parameter optimization 218 

We evaluated SNVPhyl’s parameter settings and resulting accuracy at differentiating outbreak isolates 219 

using a set of 59 sequenced and published Salmonella enterica serovar Heidelberg genomes (35), which 220 

were previously deposited in the NCBI Sequence Read Archive (Table S2). We chose this dataset as it 221 

contained sequence data for strains from several unrelated outbreaks—referred to as “outbreak 1”, 222 

“outbreak 2”, and “outbreak 3”—along with additional background strains, allowing us to evaluate 223 

SNVPhyl’s ability to differentiate the outbreak strains under different scenarios. Sequence read data was 224 

subsampled with seqtk (https://github.com/lh3/seqtk) such that the genome with the least amount of 225 

sequence data, SH12-006, was set to 30X mean coverage (calculated as: mean coverage = count of base 226 

pairs in all reads / length of reference genome). Other genomes were subsampled to maintain their relative 227 

proportion of mean read coverage to SH12-006. Salmonella Heidelberg str. SL476 (NC_011083) was 228 

selected as the reference genome. We optimized the SNVPhyl parameters for this dataset according to the 229 

following four scenarios: 1) adjusting the minimum base coverage parameter used to call a variant while 230 

keeping the number of reads in the dataset fixed; 2) subsampling the reads of a single WGS sample at 231 

different mean coverage levels while keeping the minimum base coverage parameter fixed; 3) adjusting 232 

the minimum SNV abundance ratio for calling a variant; and 4) adjusting the amount of contamination in 233 

the dataset to determine its effect on variant calling accuracy. 234 

In the first scenario we ran the SNVPhyl pipeline using the default parameters except for the 235 

minimum base coverage, which was adjusted to 5X, 10X, 15X, and 20X. In the second scenario we kept 236 

the minimum base coverage parameter fixed at 10X, while one of the samples (SH13-001) was 237 

subsampled to mean sequencing coverages of 30X, 20X, 15X, and 10X. In the third scenario the 238 

minimum SNV abundance ratio was adjusted to 0.25, 0.5, 0.75, and 0.9. In the fourth scenario, a sample 239 

from “outbreak 2” (SH13-001 with mean coverage 71X) was chosen as a candidate for simulating 240 
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contamination. A sample from the unrelated “outbreak 1” (SH12-001) was selected as the source of 241 

contaminant reads. The reads were subsampled and combined such that SH13-001 (“outbreak 2”) 242 

remained at 71X mean coverage but was contaminated with reads from SH12-001 (“outbreak 1”) at 5%, 243 

10%, 20%, and 30%. All samples were run through SNVPhyl for each of these contamination ratios. 244 

The phylogenetic trees produced by SNVPhyl were evaluated for concordance with the outbreak 245 

epidemiological data using the following criteria: 1) all outbreak isolates group monophyletically, and 2) 246 

the SNV distance between any two isolates within an outbreak clade is less than 5 SNVs, a number 247 

identified in the previous study (35) as the maximum SNV distance between epidemiologically related 248 

samples within these particular outbreaks. Both conditions were tested using the APE package within R 249 

(36). 250 

Results 251 

Validation against simulated data 252 

We measured SNVPhyl‘s sensitivity and specificity by introducing random mutations along the E. coli 253 

Sakai reference genome and compared these mutations with those detected by SNVPhyl (Table 2). Of the 254 

10,000 mutated positions introduced, SNVPhyl reported 9,116 true positives and 0 false positives 255 

resulting in a sensitivity and specificity of 0.91 and 1.0. 256 

Positions on the reference genome that contain a low-quality base call, or exist in repetitive 257 

regions are excluded from downstream analysis by SNVPhyl. However, lower-quality variant-containing 258 

sites along with variants in repetitive regions are saved by SNVPhyl in the variant table with a “filtered” 259 

status. Comparing the combination of low-quality and high-quality variant sites detected by SNVPhyl, we 260 

found 9,573 true positives and 51 false positives resulting in a sensitivity and specificity of 0.96 and 1.0 261 

(after rounding). Of the 51 false positives, 48 were considered as false positives due to insufficient read 262 

coverage in one of the samples to call a high quality variant, thus resulting in a call of a gap (‘-‘) as 263 
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opposed to the true base call. Only 3 of the false positives were a result of miscalled bases with sufficient 264 

read coverage, and these occurred in repetitive regions of the genome. 265 

SNV density filtering evaluation 266 

We compared SNVPhyl’s density filtering against the Gubbins software for detection and removal of 267 

recombination in a collection of WGS reads from 11 Streptococcus pneumoniae genomes along with the 268 

reference genome ATCC 700669 (Table 3, Figure S1). With no SNV density filtering SNVPhyl properly 269 

identified 142 SNV-containing sites (true positives) but included 2,159 additional SNV sites (false 270 

positives). These false positives skew the resulting phylogenetic tree by increasing the length of one of 271 

the branches. The phylogenetic tree is compared with the tree produced with Gubbins, resulting in a K 272 

tree score of 0.419. 273 

We reanalyzed the dataset with high-density SNV masking enabled, using a range of variant 274 

density cutoffs.  We found the density-filtering criteria of 2 SNVs in a 500 bp window and 2 SNVs in a 275 

1000 bp window performed near-equally in producing a phylogenetic tree resembling the tree produce by 276 

Gubbins based on the K tree scores of 0.045 and 0.044, both much lower than the score of 0.419 for no 277 

SNV density filtering.  With these filtering criteria, SNVPhyl identified 133 true positives and 12 false 278 

positives (for 2 SNVs in 500 bp) and 125 true positives and 6 false positives (for 2 SNVs in 1000 bp). 279 

We also investigated the effect of generating a whole-genome alignment—by incorporating 280 

SNVPhyl-identified variants without SNV density filtering into the reference genome—for a more 281 

thorough analysis with the recombination-detection software Gubbins. We were able to identify 138 true 282 

positives in the alignment at the expense of 10 false positives and a K tree score of 0.037, a result closely 283 

matching the use SNVPhyl’s density filtering criteria. 284 

Parameter optimization 285 

We evaluated SNVPhyl’s capability to differentiate between epidemiologically related and unrelated 286 

samples using a WGS dataset consisting of 59 Salmonella enterica serovar Heidelberg genomes from 287 
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three unrelated outbreaks. We ran SNVPhyl with this data under a number of scenarios: 1) varying the 288 

minimum base coverage required by SNVPhyl to call a variant, 2) subsampling the reads of an individual 289 

bacterial sample, 3) varying the minimum SNV abundance ratio, and 4) testing the ability to generate 290 

accurate phylogenetic trees in the presence of contamination. We tested the SNVPhyl results for 291 

phylogenetic concordance to epidemiological data (Table 4, Figure S2). 292 

For the first scenario we found that as the minimum coverage threshold was increased, the 293 

percent of the reference genome identified as part of the core genome and number of SNV-containing 294 

sites was reduced (from 95% core and 317 SNVs to 54% core and 165 SNVs). At 15X minimum 295 

coverage (81% core and 262 SNVs) and lower all three outbreaks grouped into monophyletic clades. 296 

Failure occurred at a minimum coverage of 20X (54% core and 165 SNVs), where the outbreak 2 isolates 297 

failed to constitute a separate clade. 298 

For the second scenario, one of the samples was subsampled to reduce the mean coverage relative 299 

to all other samples while keeping the minimum coverage parameter of 10X in SNVPhyl fixed.  At a 300 

mean coverage of 15X (with 242 SNVs identified and 76% core) SNVPhyl grouped all three outbreaks 301 

into monophyletic clades. However, at a lower mean coverage of 10X (155 SNVs and 47% core) 302 

SNVPhyl failed to group one of the outbreaks into a monophyletic clade. Similar to the first scenario, the 303 

percentage of the reference genome considered core as well as the number of SNVs identified was 304 

reduced as the mean coverage of one of the samples was lowered. 305 

For the third scenario, the SNV abundance ratio—defining the ratio of SNV-supporting bases 306 

needed to identify a variant as high-quality—was adjusted incrementally. Each set of outbreak isolates 307 

grouped into a clade with a maximum SNV distance less than 5 SNVs above a ratio of 0.5. At a ratio of 308 

0.5 the maximum SNV distance within outbreak 2 was exactly 5 SNVs while for a ratio of 0.25 the 309 

maximum SNV distance in outbreak 2 was 44 SNVs. The percentage of the reference genome identified 310 

as part of the core genome remained the same at 92%. 311 
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For the fourth scenario, we examined the robustness of SNVPhyl to cross-contamination of 312 

closely related samples. Current methods of contamination detection often focus on taxonomic 313 

classification of genomic content (37). However, contamination by closely related isolates can go 314 

undetected. We simulated contamination for an isolate in outbreak 2 by an isolate in outbreak 1. We 315 

found that SNVPhyl was able to accurately differentiate all three outbreaks with up to 10% read 316 

contamination; however the number of SNVs dropped from 298 SNVs at 5% contamination, to 260 SNVs 317 

at 20% contamination, where the failure was due to removal of the majority of unique SNVs that 318 

differentiated outbreak 1 from the background isolates. 319 

Discussion 320 

The availability of WGS data from microbial genomes represents a tremendous opportunity for infectious 321 

disease surveillance and outbreak response. Emerging analytical methods, such as gene-by-gene or SNV-322 

based, require that bioinformatics pipelines be designed with usability by non-bioinformaticians in mind 323 

and which can be easily incorporated into existing systems. An overview of current phylogenomic 324 

methods appears in (38) and a comparison of SNVPhyl's design with that of other popular pipelines 325 

appears in Table 1 (a detailed investigation comparing the performance of SNVPhyl with other pipelines 326 

is the subject of a forthcoming manuscript). We designed SNVPhyl to be both flexible and scalable in its 327 

usage in order to meet the needs and abilities of most labs. SNVPhyl gains much of this flexibility 328 

through its implementation as a Galaxy workflow, which enables execution in environments from single 329 

machines to high-scale computer clusters, from third-party web-based environments to local installations. 330 

Galaxy provides a user-friendly interface but also provides an API, which is used to implement a 331 

command-line interface for SNVPhyl. The SNVPhyl pipeline is also integrated within the IRIDA 332 

platform (http://irida.ca), which provides an integrated “push-button” system for genomic epidemiology. 333 

However, implementing SNVPhyl through Galaxy has some disadvantages. Notably, Galaxy is more 334 

complex and so more cumbersome to install than a simpler command-line based pipeline. To address this 335 
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we have made SNVPhyl available as simple to install virtual machine and Docker images, although these 336 

options cannot be straightforwardly implemented in a high performance computing environment. 337 

Several factors can influence the ability to accurately call SNVs when using a reference mapping 338 

approach (39). As well, there are aspects of the datasets—such as recombination and population 339 

diversity—that can influence the phylogenetic analysis of identified SNVs. To assist in selecting proper 340 

parameters for SNVPhyl and gauging performance on different datasets we have assessed SNVPhyl under 341 

a variety of situations: SNV calling accuracy with simulated data, recombination masking, and the ability 342 

to differentiate outbreak isolates from non-outbreak isolates under differing parameters and data qualities. 343 

Our assessment of SNV calling accuracy shows that SNVPhyl can detect SNVs and produce a 344 

SNV alignment with high sensitivity and specificity (Table 2). Of the variants that went undetected by 345 

SNVPhyl a large proportion were due to the quality thresholds and masking procedures implemented by 346 

SNVPhyl to remove incorrectly called or problematic SNVs (e.g., SNVs in internal repeats on the 347 

reference genome). While these quality procedures generate many false negatives they also eliminate 348 

many false positive variants—a reduction of 51 to 0 false positives at a cost of an additional 457 false 349 

negatives in the simulated dataset. However, all detected variation across all genomes is recorded in a 350 

table produced by SNVPhyl and additional software is provided for more detailed analysis of these 351 

variants. 352 

Phylogenetics assumes descent with modification, but recombination (horizontal gene transfer) 353 

violates this assumption and its presence can confound the resulting phylogeny leading to 354 

misinterpretations on the clonal relationship of isolates (40). Recombination detection software exists and 355 

can be used for the construction of phylogenetic trees based on vertically inherited information (18, 19, 356 

41). However, these programs require the pre-construction of whole genome alignments and can only be 357 

run on a single machine, which limits their utility for routine application to large collections of WGS 358 

reads. 359 
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SNVPhyl implements a basic but rapid method for detection and masking of recombinant sites by 360 

searching for SNV-dense regions above a defined density in a sliding window. We evaluated SNVPhyl’s 361 

recombination-masking method in comparison to the Gubbins software package which was run on a 362 

previously generated whole-genome alignment (Table 3, Figure S1). We found that SNVPhyl removes 363 

the majority of recombinant SNVs (from 2,159 SNVs with no recombination masking to 6 SNVs when 364 

masking regions with 2 SNVs in a 1000 bp window). However, SNVPhyl also removes some non-365 

recombinant SNVs (reduced from 142 SNVs with no masking to 125 SNVs with 2 SNVs in 1000 bp). 366 

Removal of a greater number of recombinant SNVs is possible by increasing the window size, but this 367 

removes additional non-recombinant SNVs and reduces the information available in the phylogenetic tree 368 

and so concordance with other recombination-masking procedures (based on K tree scores). 369 

SNVPhyl’s method of detecting high-density SNV regions can be executed independently for 370 

each genome. Independent execution is easily distributed across multiple nodes within a compute cluster, 371 

enhancing the scalability over large datasets. However, SNVPhyl requires the SNV density to be set a 372 

priori and may not be appropriate for organisms with complex evolutionary dynamics or for genome 373 

sequences from organisms spanning a large phylogenetic distance. We suspect that the optimal 374 

parameters will vary based on the particular organism under study and we would caution against relying 375 

on default settings without further evaluation. SNVPhyl does not aim to be a rigorous recombination 376 

detection and removal software package. However, SNVPhyl provides output files recording all the SNVs 377 

detected, which can be used for further analysis if needed. In particular, additional tools are provided that 378 

can produce a whole genome alignment correctly formatted for input into software such as Gubbins for a 379 

thorough detection of recombination and construction of a phylogenetic tree from non-recombinant 380 

SNVs. 381 

A proper interpretation of the produced phylogenetic trees and SNV distances for associating 382 

closely-related isolates requires knowledge of when to trust the results and when additional parameter or 383 

data adjustments are necessary. To assist in defining these criteria we evaluated the performance of 384 
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SNVPhyl at clearly delineating different outbreak clades across four different scenarios (Table 4, Figure 385 

S2). 386 

In both the first and second scenarios we examined the effect of sequencing coverage on 387 

identifying enough SNVs to properly differentiate outbreak isolates. In the first scenario, we adjusted the 388 

minimum base coverage required to call a SNV from 5X to 20X without any additional subsampling of 389 

reads. We found that SNVPhyl succeeded in differentiating outbreak isolates at coverages up to 15X, but 390 

at a minimum coverage of 20X SNVPhyl failed to differentiate the outbreak isolates due to removal of 391 

too many SNVs (from 317 SNVs to 165 SNVs). In the second scenario, we subsampled one of the 392 

isolates along the mean read coverage values from 30X to 10X while keeping the minimum base coverage 393 

parameter in SNVPhyl fixed at 10X. We found SNVPhyl succeeded in differentiating outbreak isolates at 394 

a mean coverage of 15X and above, but failed to differentiate outbreak isolates at a mean coverage of 395 

10X due to removal of too many SNVs (reduced from 299 SNVs to 155 SNVs). Both cases show that a 396 

high base coverage threshold for variant calling relative to the mean coverage of the lowest sample leads 397 

to falsely identifying samples as being related due to removal of too many SNVs (20X minimum 398 

coverage / 30X lowest sample mean coverage for failure in the first scenario, and 10X minimum coverage 399 

/ 10X lowest sample mean coverage for failure in the second scenario). However, a high minimum base 400 

coverage threshold or too little sequencing data can be detected by examining the percentage of the 401 

reference genome considered as part of the core genome by SNVPhyl. A low value can indicate either a 402 

poorly related reference genome, or that large portions of the genomes are removed from the analysis 403 

(drop from 95% to 54% in the first scenario and 92% to 47% in the second scenario). We would 404 

recommend searching for such low values in the percent core to gauge whether or not base coverage (or 405 

possibly reference genome selection) is an issue for the SNVPhyl results. 406 

In the third scenario (Table 4, Figure S2.c) we adjusted the SNV abundance ratio among values 407 

from 0.25 to 0.9. We found that SNVPhyl successfully differentiated outbreak isolates above a ratio of 408 

0.5, but at a ratio of 0.5 the maximum SNV distance between isolates within an outbreak exceeded our 409 
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threshold of less than 5 SNVs. However, unlike the minimum base coverage value, the percent of the 410 

reference genome identified as the core genome remained the same (92%).  We recommend keeping this 411 

setting fixed at a higher value, with the default set at 0.75. 412 

In the fourth scenario we simulated contamination between two closely-related isolates from two 413 

different outbreaks by mixing reads at differing proportions (Table 4, Figure S2.d). Our findings indicate 414 

that SNVPhyl is able to handle low amounts of mixed sample contamination (up to 10%). A higher 415 

proportion of contaminated reads can lead to removal of SNVs due to not meeting quality thresholds 416 

(from 298 SNVs with 5% contamination to 260 SNVs at 20% contamination where failure occurred) and 417 

so incorrectly implying relatedness between samples. Similar to the third scenario, the percentage of the 418 

reference genome identified as the core genome remained fixed at 92%. While SNVPhyl is able to 419 

differentiate outbreak isolates at low levels of contamination SNVPhyl cannot be used to evaluate the 420 

degree of contamination. Thus, we would not recommend the straightforward application of SNVPhyl to 421 

contaminated datasets without further assessment of the degree of contamination, either through 422 

taxonomic identification software such as Kraken (42); or, for closely-related isolates, through inspection 423 

of the variant calling and read pileup information provided by SNVPhyl. 424 

Our analysis suggests that great care must be taken to reduce sources of noise in genome-wide 425 

SNV analysis. Some of this noise relates to quality thresholds for calling high quality SNVs, of which a 426 

careful balance is required to eliminate false positives without removal of too many true variants. Other 427 

sources include aspects of the WGS datasets or organisms under study such as the presence of 428 

contamination or recombination. The studied cases highlight how SNVPhyl is able to produce accurate 429 

phylogenetic trees under a wide variety of data qualities, and demonstrate how to detect inaccurate trees 430 

using additional information generated by SNVPhyl.  431 
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Conclusion 432 

SNVPhyl provides an easy-to-use pipeline for processing whole genome sequence reads to identify SNVs 433 

and produce a phylogenetic tree. We have shown that SNVPhyl is capable of producing accurate results 434 

on even very closely related bacterial isolates under a wide variety of parameter settings and sequencing 435 

data qualities. SNVPhyl is distributed as a pipeline within Galaxy and is integrated within the IRIDA 436 

platform, providing a “push button” system for generating whole genome phylogenies within a larger 437 

WGS data management and genomic epidemiology system designed for use in clinical, public health, and 438 

food regulatory environments. 439 
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  566 

Figures 567 

Figure 1. a) Overview of the SNVPhyl pipeline. Input to the pipeline is provided as a reference genome, 568 

set of sequence reads for each isolate, and an optional list of positions to mask from the final results.  569 

Repeat regions are identified on the reference genome and reference mapping followed by variant calling 570 

is performed on the sequence reads.  The resulting files are compiled together to construct a SNV 571 

alignment and list of identified SNVs, which are further processed to construct a SNV distance matrix, 572 

maximum likelihood phylogeny, and a summary of the identified SNVs.  Individual software or scripts 573 

are given in the parenthesis below each stage. b) An overview of the “Mapping/Variant Calling” stage of 574 

SNVPhyl.  Variants are called using two separate software packages and compiled together in the 575 

“Variant Consolidation” stage.  As output, a list of the validated variant calls, regions with high-density 576 

SNVs, as well as quality information on the mean mapping coverage are produced and sent to further 577 

stages. 578 
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 579 

Tables 580 

Table 1. A comparison of whole-genome phylogenetic software. 581 

Name Input1 Parallel 

Computing2 

Distribution3 Interface4 Reference 

CFSAN SNP Pipeline sr mn,mt local cl (17) 

CSIPhylogeny sr,ag n/a web gui (16) 

kSNP sr,ag mt local cl (43) 

Lyve-SET sr,ag* mn,mt local cl https://github.com/lskatz/lyve-SET  

NASP sr,ag mn,mt local cl (20) 

Parsnp ag mt local cl (44) 

PhaME sr,ag mt local cl (45) 

REALPHY sr,ag mt web,local gui,cl (14) 

Snippy sr,ag* mt local cl https://github.com/tseemann/snippy  

SNVPhyl sr mn,mt local gui,cl http://snvphyl.readthedocs.io/ 

a)

b)

Reference 

Genome

Masking 

File

…

Mapping/

Variant 

Calling

Sequence 

Reads

Mapping/

Variant 

Calling

Sequence 

Reads

Repeat 

Identification
(find-repeats.pl)

SNV Alignment 

Generation
(vcf2snv_alignment.pl)

Concatenate 

Masked 

Locations

SNV Distance 

Matrix
(snv_matrix.pl)

Phylogeny
(PhyML)

SNV Filter 

Stats
(filter-stats.pl)

Reference 

Mapping
(SMALT)

Variant/Non-

variant calls

(SAMtools/BCFtools)

Variant Calls

(FreeBayes)

Variant 

Consolidation

(consolidate_vcfs.pl) Merged 

Variant 

Calls

SNV-

dense 

regions

To Concatenate Masked Locations

To SNV Alignment Generation

Mapping 

Quality

Mapping Quality

(verify_mapping_quality.pl)
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1
sr = sequence reads, ag = assembled genome, ag* = assembled genome supported by generating 582 

simulated reads 583 

2
mn (multi-node) = provides capability to execute across multiple compute nodes, mt (multi-thread) = 584 

provides multi-threading capability, n/a = not applicable (not locally installable) 585 

3
local = locally distributed and installable software, web = software provided as a web service 586 

4
cl = command-line interface, gui = graphical user interface 587 

Table 2. SNV simulation results. 588 

Comparison Variant columns 

simulated 

Non-variant 

columns 

True 

positives 

False 

positives 

True 

negatives 

False 

negatives 

Specificity Sensitivity 

Valid SNVs1 10000 5584477 9116 0 5575361 884 1.0 0.91 

All SNVs2 10000 5584477 9573 51 5574853 427 1.0 0.96 

1
Valid SNVs: The number of SNV-containing sites detected that passed all thresholds to be considered 589 

high quality for every isolate. 590 

2
All SNVs:  All the SNV-containing sites identified by SNVPhyl, including those where at least one 591 

isolate did not have a high-quality base call or sites that were masked by the pipeline. 592 

Table 3. A comparison of the SNVPhyl variant density filtering algorithm to the Gubbins system for 593 

recombination detection. 594 

Case True 

Positives 

False 

Positives 

True 

Negatives 

False 

Negatives 

Sensitivity Specificity K tree 

score 

No DF1 142 2159 2218849 23 0.861 0.999 0.419 

2 in 202 142 565 2220443 23 0.861 1.000 0.425 

2 in 1002 142 155 2220853 23 0.861 1.000 0.377 

2 in 5002 133 12 2221005 32 0.806 1.000 0.045 

2 in 10002 125 6 2221019 40 0.758 1.000 0.044 

2 in 20002 111 3 2221036 54 0.673 1.000 0.063 

Gubbins/SNVPhyl3 138 10 2221002 27 0.836 1.000 0.037 

1
No DF=A case of no SNV density filtering by SNVPhyl,  595 

2
X in Y = Masking regions with a density of X variants in Y bases. 596 
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3
Gubbins/SNVPhyl = A whole genome alignment generated from SNVs identified by SNVPhyl and run 597 

through Gubbins. 598 

      

Table 4. A comparison of the performance of SNVPhyl across a range of parameters and analysis 599 

scenarios.  600 

# Scenario Parameters/Conditions hqSNVs % Core Differentiated 

Outbreaks 

1 Minimum 

Coverage 

5X 317 95 Yes 

10X 301 92 Yes 

15X 262 81 Yes 

20X 165 54 No 

2 Subsample 

Coverage Level 

10X
1 

155 47 No 

15X
1
 242 76 Yes 

20X
1
 276 88 Yes 

30X
1
 299 92 Yes 

3 SNV 

Abundance 

Ratio 

0.25 351 92 No 

0.5 307 92 No 

0.75 301 92 Yes 

0.9 291 92 Yes 

4 Contamination 5% 298 92 Yes 

10% 292 92 Yes 

20% 260 92 No 

30% 231 92 No 
1
These represent the mean coverage of one sample after subsampling reads and not the minimum 601 

coverage parameter of SNVPhyl (which is fixed at 10X). 602 

Supplementary Materials 603 

Supplementary materials are available in a separate file. 604 
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