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Abstract 
Motivation: Transcriptional regulatory networks (TRNs) are hierarchies of regulatory factors that 
control the expression levels of target genes.  The signal transduction pathways of these networks are 
often determined by experimental analysis.  Computational inference of the connections between 
regulators and target genes using transcriptional assays can identify high confidence candidate 
regulator-target relationships.  Often, expression experiments designed for this purpose are performed 
in a time series. Most TRN identifying algorithms, however, do not take full advantage of that temporal 
data. We developed a new approach, ExRANGES, which utilizes both the rate of change in 
expression and the absolute expression level to identify TRN connections. 
Results: Our novel strategy, ExRANGES improves the ability to computationally infer TRN from time 
series expression data by emphasizing the comparison between regulator and target at time points 
where there is a significant change in expression.  ExRANGES combines the rate of change in 
expression with the absolute expression level and improves the ability to accurately identify known 
targets of transcriptional regulators.  We evaluated ExRANGES in four large data sets from different 
model systems and in one sparse data set using two different network construction approaches. 
ExRANGES improved the identification of experimentally validated transcription factor targets for all 
species even in unevenly spaced and sparse data sets.  This improved ability to predict known 
regulator-target relationships in model species enhances the utility of network inference approaches in 
non-model species where experimental validation is challenging.   
Availability:	 ExRANGES	 has	 been	 implemented	 as	 an	 R	 package	 and	 is	 available	
http://github.com/DohertyLab/ExRANGES	
To	install	the	package	type:	devtools::install_github("DohertyLab/ExRANGES")	
	
Contact:	colleen_doherty@ncsu.edu  
Supplementary information:	Supplementary data are	available	at	Bioinformatics	online. 

 
 
1 Introduction  
Transcriptional regulatory networks (TRN) provide a framework for 
understanding how signals propagate through a molecular network and 
result in transcriptomic changes. These regulatory networks are biologi-
cal computational modules that carry out decision-making processes and, 

in many cases, determine the ultimate response of an organism to a stim-
ulus (Balázsi et al. 2011).  Understanding the regulatory networks that 
drive responses of an organism to the environment provide access points 
to modulate these responses through breeding or genetic modifications.  
The first step in constructing such networks is to identify the primary 
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relationships between regulators such as transcription factors (TFs) and 
the target genes they control. 

Experimental approaches such as Chromatin Immunoprecipitation fol-
lowed by sequencing (ChIP-Seq) can identify direct targets of transcrip-
tional regulators.  However, ChIP-Seq must be optimized to each specif-
ic TF and specific antibodies must be used that recognize either the 
native TF or a tagged version of the protein.  This can present a technical 
challenge particularly for TFs where the tag interferes with function, for 
species that are not easily transformable, or for tissues that are limited in 
availability (Park 2009).  Since global transcript levels are comparatively 
easy to measure in most species and tissues, several approaches have 
been developed to identify connections between regulators and their 
targets by examining the changes in transcription levels across many 
samples (Qian et al. 2003; Bonneau et al. 2006; Margolin et al. 2006; 
Faith et al. 2007).  The assumption of these approaches is that the regula-
tory relationship between a regulator TF and its targets can be discerned 
from a correspondence between the RNA levels of the regulator gene 
and its targets.  If this is true, then given sufficient variation in expres-
sion, the targets of a given factor can be predicted based on associated 
changes in expression.  Initial approaches designed to do this focused on 
the correlation between regulators and targets, assuming that activators 
are positively correlated and repressors are negatively correlated with 
their target expression levels (Eisen et al. 1998).  For almost two dec-
ades, these approaches successfully identified relationships between 
regulators and targets.  Updates to this simple idea have included pre-
clustering of transcript data, modifying regression analysis, incorporating 
training classifier models, and incorporating prior biological knowledge 
or additional experimental data. Each of these has improved the ability to 
identify connections between regulators and targets, even in sparse and 
noisy data sets (Bonneau et al. 2006; Margolin et al. 2006; Faith et al. 
2007; Huynh-Thu et al. 2010; Li et al. 2011; Marbach et al. 2012; 
Wilkins et al. 2016). In 2010, the DREAM5 challenge evaluated the 
ability of different methods to identify TRN from gene expression da-
tasets (Marbach et al. 2012). One of the top performing methods was 
GENIE3 (Huynh-Thu et al. 2010). This method uses the machine learn-
ing capabilities of random forest to identify targets for selected regula-
tors (Breiman 2001; Liaw and Wiener 2002). Other successfully imple-
mented approaches include SVM (Qian et al. 2003), CLR (Faith et al. 
2007), CSI (Penfold et al. 2012, 2015), ARACNE (Margolin et al. 
2006), Inferelator (Bonneau et al. 2006), and DELDBN (Li et al. 2011).  
Common to these methods is the use of transcript abundance levels to 
evaluate the relationship between a regulator and its putative targets. 
Experiments performed in time series can provide additional kinetic 
information useful for associating regulators and targets. Many ap-
proaches have been developed that take advantage of the additional 
information available from time series data (Reviewed in Bar-Joseph et 
al., 2012; Thompson et al., 2015). However, the steady state transcript 
level as measured by most high-throughput transcriptional assays such as 
RNA-Seq is a measure of both transcriptional activity and mRNA stabil-
ity.  Therefore, correlation between expression levels alone may not 
provide a direct assessment of transcriptional regulation as it can be 
confounded by the RNA stability of the target.  Further complicating the 
identification of regulator relationships is the fact that a single gene can 

be regulated by different transcription factors in response to different 
stimuli.   

Here we present an approach that extends current approaches to TRN 
construction by emphasizing the relationship between regulator and 
targets at the time points where there is a significant change in the rate of 
expression.  We demonstrate that: 1) Focusing on the rate of change 
captured previously unrecognized characteristics in the data, identifying 
experimentally validated regulatory relationships not detected by the 
standard approaches.  2) Combining expression level and the rate of 
change resulted in improved identification of experimentally validated 
regulatory relationships.  

We first developed a method, RANGES (RAte Normalized in a GEne 
Specific manner) that evaluates the significance of the rate changes at 
each consecutive time point on a per-gene basis.  We then combined the 
expression level and significance of this rate change in ExRANGES 
(Expression by RANGES) to prioritize the correlation between regula-
tors and targets at time points where there is significant change in gene 
expression.  ExRANGES improved the ability to identify experimentally 
validated TF targets in microarray and RNA-Seq data sets across multi-
ple experimental designs, and in several different species.  We demon-
strate that this approach improves the identification of experimentally 
validated TF targets for GENIE3 [8] and INFERELATOR [4], and antic-
ipate that it will offer a similar benefit to when combined with other 
network inference algorithms.  

	

2 Methods 
2.1 Identifying consecutive time points with significant 
changes in expression 
The first step of ExRANGES is to identify time points where active 
regulation is observed based on changes in RNA levels.  Our method 
examines the change in expression between two consecutive time points 
on a per gene basis.  Significance is determined by comparing these 
expression changes to the bootstrapped background variance observed 
across the dataset for that gene (Supplemental Figure 1).  
For each genei, the background variance is derived from the change in 
expression of that gene at all consecutive time steps in all samples across 
all experiments from a given data set. The change in expression between 
two consecutive time points is evaluated against this background. For 
example, if we consider the mammalian circadian data set available from 
CircaDB (Pizarro et al. 2013), the data set consists of time series exper-
iments from 12 different tissues, sampled every 2 h for 48 h (288 sam-
ples).  The change in expression levels between time t and time t +1 was 
determined for each consecutive time point.  Since this data is cyclical, 
the interval between the last time point and the first time point is also 
included. For the CircaDB data set, the background of each consecutive 
time interval across the entire time series consists of 288 slopes (12 
tissues x 2 h for 48).  At each time step, t the slope between t and t + 1 
was compared to a bootstrapped version of this background generated by 
sampling 10,000 times with replacement.  For each gene the resulting p-
value, calculated by using an empirical cumulative distribution function 
from the R stats package. This p-value was transformed to the –log10 and 
the sign of the change in slope was preserved (R script provided).  This 
significance of the change at each time interval is the rate change, or 
“RANGES” value. 
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2.2 Combining EXPRESSION and Rate Change using 
ExRANGES 
RANGES identifies time points that show significant changes in expres-
sion for a given gene.  ExRANGES adjusts the expression level at each 
time point by the rate of change in the following time interval.  In doing 
this, the ExRANGES value of the time point preceding a significant 
change in expression is higher than the value of a time point when the 
following expression remains unchanged. This modified expression level 
is used in subsequent network analysis so that the time points when the 
rate is changing the most, and thus when regulators are likely to be ac-
tive, are emphasized. ExRANGES multiplies the Expression level at 
time t with the RANGES value from time t to t+1 (Supplemental Figure 
1B). This ExRANGES value was used in lieu of the expression level to 
generate a TRN using GENIE3 or INFERELATOR as described below 
(Bonneau et al. 2006; Huynh-Thu et al. 2010). 

 
2.3 Network Inference using GENIE3 
To predict regulatory interaction between transcription factor and target 
gene, GENIE3 was used. The GENIE3 script was taken from 
http://www.montefiore.ulg.ac.be/~huynh-thu/software.html on June 14, 
2016 (Huynh-Thu et al. 2010). GENIE3 was modified by to be usable 
with parLapply from the R parallel package (R Core Team 2016).  We 
compared ExRANGES to the standard approach of using expression 
levels alone (hereinafter after called EXPRESSION). The EXPRESSION 
network was built by providing the expression values across all samples 
for both TFs and targets. In contrast, for ExRANGES, we used the 
ExRANGES value for both TFs and targets, to emphasize the time points 
where expression is changing.  For example, for the CircaDB data, we 
considered 1690 murine TFs as the regulators (Zhang et al. 2012a). The 
EXPRESSION network was built by providing the expression values 
across the 288 samples for each of the 1690 TFs as regulators and the 
35,556 potential target genes across the same samples. To generate the 
ExRANGES network for the CircaDB data, the ExRANGES value was 
used as the input for the 35,556 targets and the 1690 regulators.  For both 
approaches all TFs were also included in the target list to identify regula-
tory connections between TFs. 
 
To implement GENIE3, we used 2000 trees for random forest for all data 
sets except the viral data set.  For the viral data set, due to the size, we 
limited it to 100 trees.  The importance measure from the random forest 
was calculated using the mean decrease in accuracy upon random permu-
tation of individual features. In GENIE3, this measure is used as the 
prediction score for TF-Target relationships. 

 
2.4 Network Inference using INFERELATOR 
TF-target interactions were calculated from both EXPRESSION and 
ExRANGES for the Rice dataset. TF and targets labels are identical to 
those used as GENIE3 input.  Time information in the form of the time 
step between each sample was added to satisfy time course conditions as 
a parameter, default values were used for all other parameters. Only 
confidence scores of TF-target interactions greater than 0 were evaluated 
against ChIP-Seq standards. The confidence scores were used as the 
prediction score to evaluate against the targets identified for each TF 
from experimental ChIP-Seq data.  

 
2.5 ROC Calculation 
ROC values were determined by the ROCR package in R (Sing et al. 
2005). The random forest importance measures were used as the predic-
tion score and the targets from the respective experimental validation 

(ChIP-Seq, protein binding array, or DAP-Seq) were used as the metric 
to evaluate the performance function. The area under the ROC curve 
(AUC) is presented to summarize the accuracy.  
 
3 Results 
3.1 ExRANGES Improves Identification of Circadian TF 
Targets in a Circadian Data Set 
The assumption behind using correlation in gene expression to identify 
relationships between TFs and their targets is that there is a predictable 
relationship between the expression of the TF regulator and its corre-
sponding targets.  For transcriptional activators, the target will accumu-
late as the TF regulator accumulates. Conversely, targets of repressors 
will decrease in expression as the repressor TF increases. Current ap-
proaches evaluate the correspondence in expression between the regula-
tor TF and targets across all time points equally. We tested whether 
incorporating the rate of change via ExRANGES identified different 
targets than EXPRESSION alone and if ExRANGES improves the over-
all ability to identify experimentally validated regulatory relationships.  
 
To evaluate the ability of the ExRANGES or EXPRESSION approaches 
to correctly identify targets of the TFs, we applied both approaches to the 
CircaDB (Pizarro et al. 2013) data using GENIE3.  We compared the 
results of each approach to the targets identified experimentally using 
ChIP-Seq for five TFs involved in circadian regulation: PER1, CLOCK, 
NPAS2, NR1d2, and ARNTL (Koike et al. 2012; Takahashi et al. 2015).  
Targets identified by each computational approach that were also con-
sidered significant targets in these published ChIP-Seq experiments were 
scored as true positive results.  

 

We calculated the ROC AUC for the five circadian TFs to compare the 
identification of true targets attained with GENIE3 using EXPRESSION 
values to the combination of expression and p-values using ExRANGES.  
We observed that for all five TFs ExRANGES improved the identifica-
tion of ChIP-Seq validated targets (Figure 1A).   

 

Incorporation of a delay between regulator expression and target expres-
sion has previously been shown to improve the ability to identify regula-
tory networks (Huynh-Thu 2012).  A modification of GENIE3 incorpo-
rates this approach to identify transcriptional changes in the regulator 
that precedes the effects on the target by a defined time step.  We com-
pared ExRANGES to this modified implementation of GENIE3 that 
includes the time delay step (Supplemental Figure 2A).  As previously 
reported, we observe that the time step delay improved target identifica-
tion for some TFs, compared to EXPRESSION alone, although in this 
data set, target identification for CLOCK, PER1, and NR1D2 TFs did 
not improve.  However, for all five TFs, ExRANGES outperformed both 
the EXPRESSION and time-delay approaches in identifying the true 
positive targets of each TF; although for CLOCK, this improvement was 
minimal.   

3.2 ExRANGES Improves Target Identification for TFs That 
Are Not Components of the Circadian Clock  
To evaluate the performance of ExRANGES on TFs that are not core 
components of the circadian clock, we compared the ability to identify 
targets of additional TFs validated by ChIP-Seq. We selected seven TFs 
in our regulator list with ChIP-Seq data available from at least two ex-
perimental replicates performed in epithelial cells, a tissue not included 
in the CircaDB dataset.  The seven TFs are: ESR1, STAT5A, STAT5B, 
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Figure	2:	Target	identified	by	ExRANGES	and	EXPRESSION	have	different	variation	
across	CircaDB	dataset.	Box	plot	showing	the	coefficient	of	variation	for	the	expres-
sion	levels	of	the	top	1000	targets	of	each	TF	(ARNTL,	CLOCK,	NPAS2,	NR1D2,	PER1,	
ESR1,	 POL2A,	 FOXA1,	 TFAP2A,	 CHD4)	 predicted	 by	 GENIE3	 using	 EXPRESSION	 or	
ExRANGES	and	the	experimentally	identified	targets	from	ChIP-Seq.			Experimentally	
determined	 targets	 showed	 the	 lowest	 variation.	 Targets	 identified	 using	 EXPRES-
SION	show	a	greater	variation	in	expression	across	all	 samples	compared	to	targets	
predicted	with	ExRANGES	values	(*	p-value	<	2.5e-8,	**	p-value	<	2e-16).		

POL2A, FOXA1, TFAP2A, and CHD4 (Qin et al. 2012).  Combining 
expression and rate change information using ExRANGES improved the 
AUC curve for five of the seven TFs (ESR1, POL2A, FOXA1, TFAP2A, 
and CHD4) (Figure 1B, Supplemental Figure 2B).  As we observed 
above for CLOCK, STAT5A and STAT5B performed equally well, but 
did not show significant improvement.  STAT5A and STAT5B are 
known to be activated post-transcriptionally perhaps indicating why 
evaluating the change in expression of these TFs did not lead to im-
proved identification of targets (Darnell et al. 1994; Liu et al. 1998; 
Horvath 2000; Bromberg and Chen 2001; Stark and Darnell 2012).   

3.3 ExRANGES Identified Targets have Less Variation 
Across the Time Series 
The targets identified by ExRANGES or EXPRESSION approaches 
show moderate overlap in the ranked score of predicted targets (r2= 
0.53); however, each network identifies different targets (Figure 1 and 
Supplemental Figure 3).  To understand the difference in targets identi-
fied by EXPRESSION and ExRANGES we examined the variance in 
expression for the top 1000 predicted targets of the 12 TFs identified by 
EXPRESSION or by ExRANGES across all 288 samples in the CircaDB 
data set. The targets identified by ExRANGES showed overall lower 
variation in expression across all samples compared to targets identified 
by EXPRESSION (Figure 2). The experimentally identified targets from 
ChIP-Seq showed low average variation in expression. The ability of 
ExRANGES to identify targets with lower variation than EXPRESSION 
may account for some of the improved identification of such the True 
Positive Targets.  

 

ExRANGES is a combination of rate change and expression.  To evalu-
ate the contribution of the rate change component compared to the ex-
pression values in the target identification, we generated a rate-based 
network using only the p-values of the rate change at each time step as 
our network feature. The rate change alone did not improve the overall 
identification of true positive targets (Supplemental Figure 4). However, 
the targets identified in the rate-based network did show lower overall 
variation in expression compared to the EXPRESSION identified targets.  
The CircaDB data consists of individual time series experiments from 

different tissues. Using rate change alone may enhance the identification 
of targets that have within tissue variation driven by changes across time 
compared to the larger overall variation between tissues observed in this 
dataset. In contrast expression identified targets may favor those with 
large changes in expression between tissues.  To evaluate how expres-
sion and rate identified targets compared in variation within each time 
series in a single tissue versus between tissues, we compared the between 
tissue and within tissue standard deviation for the top 1000 targets identi-
fied by using EXPRESSION or rate change.  The targets identified by 
EXPRESSION showed more variation between tissue types (Supple-
mental Figure 5A).  In contrast, the targets identified by rate change 
alone showed increased variation within each tissue time series com-
pared to the EXPRESSION identified targets (Supplemental Figure 5B). 
We also compared the mean intensity level of the top 1000 predicted 
targets of the rate change and EXPRESSION approaches.  We observed 
that the top 1000 targets of PER1 identified by EXPRESSION had high-
er intensity levels compared to the distribution of expression of all tran-
scripts on the microarray (Supplemental Figure 6A).  In contrast, the top 
1000 predicted targets of PER1 identified by rate change resembled the 
background distribution of intensity for all the transcripts on the array 
(Supplemental Figure S6B).  Likewise, the hybridization intensity of the 
genes identified as the top 1000 targets identified by EXPRESSION of 

all 1690 TFs considered as regulators was shifted higher compared to the 
background distribution levels (Supplemental Figure 6C).  The top 1000 
targets of all 1690 TFs identified by rate change reflected the back-
ground distribution of hybridization intensity (Supplemental Figure 6D). 
While hybridization intensity cannot directly be translated into expres-
sion levels, these observations suggest that there are features of the tar-
gets identified by rate change that are distinct from those identified by 
EXPRESSION.  

3.4 ExRANGES Improves Identification of TF Targets in 
Unevenly Spaced Time Series Data 

Figure	1:		ExRANGES	outperforms	EXPRESSION	in	identifying	targets	for	select	TFs.	A)	
ROC	 AUC	 for	 targets	 identified	with	GENIE3	using	 EXPRESSION	 or	 ExRANGES	 on	 five	
circadian	TFs.	The	targets	identified	computationally	were	validated	against	the	ChIP-
Seq	identified	targets	(Koike	et	al.	2012;	Takahashi	et	al.	2015).	B)	ROC	AUC	for	targets	
computationally	 identified	 by	 GENIE3	 analysis	 using	 EXPRESSION	 or	 ExRANGES	 for	
seven	TFs	not	known	to	be	components	of	the	circadian	clock.	Experimentally	validat-
ed	 targets	 for	 these	 TFs	were	 identified	 by	 ChIP-Seq	 in	 epithelial	 cells,	 a	 tissue	 not	
included	in	the	expression	data	(Qin	et	al.	2012).	
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Figure	3:	ExRANGES	Improves	Identification	of	Targets	for	most	TFs	from	Unevenly	Spaced	Time	Series	Data.	We	compared	targets	of	83	TFs	where	ChIP-Seq	data	is	available	
from	Cistrome	(Qin	et	al.	2012)	identified	using	GENIE3	with	either	EXPRESSION	or	ExRANGES	using	expression	data	from	the	viral	data	set.	A)	Box	plot	of	ROC	AUC	for	the	GENIE3	
analysis	for	all	83	TFs	using	either	EXPRESSION	or	ExRANGES	compared	to	ChIP-Seq	identified	targets.		B)	The	difference	between	the	ROC	AUC	of	ExRANGES	and	EXPRESSION	
predicted	targets	is	plotted	individually	for	each	of	the	83	TFs	tested,	in	ascending	order.		TFs	are	colored	by	TF	family.	

Circadian and diel time series experiments are a rich resource providing 
temporal variance, which can be used to identify regulatory relation-
ships.  However, most available experimental data is not collected with 
this design.  Often sample collection cannot be controlled precisely to 
attain evenly spaced time points.  For example, in human studies, the 
subject may not be available for consistent sampling.  To evaluate the 
ability of ExRANGES to identify true targets of TFs across unevenly 
spaced and heterogeneous genotypes, we analyzed expression studies of 
viral infections in various individuals (“Respiratory Viral DREAM 
Challenge - Synapse ID syn5647810”; Liu et al. 2016) using both 
ExRANGES and EXPRESSION approaches.  This data set consists of a 
series of blood samples from human patients taken over a seven to nine 
day period, depending on the specific study.  Sampling was not evenly 
spaced between time points.  Seven studies that each sampled multiple 
individuals before and after respiratory infection are included.  In total 
2372 samples were used, providing a background of 2231 consecutive 
time steps.   Overall, the variance between samples was lower for this 
study than the circadian study examined above (Supplemental Figure 7). 
The significance of a change in expression for each gene at each time 
step was compared to a background distribution of change in expression 
across all patients and time steps (2231 total slope changes).  We ob-
served an overall improvement in the detection of ChIP-Seq identified 
targets for the 83 TFs on the HGU133 Plus 2.0 microarray (Affymetrix, 
Santa Clara, CA) with ChIP-Seq data from blood tissue (Liu et al. 2011), 
(Figure 3A). The improvement varies by TF (Figure 3B). 

  

3.5 ExRANGES Improves Functional Cohesion of Identified 
Targets  
ChIP-Seq targets are one method to identify true targets of a TF.  Anoth-
er approach is to look at functional enrichment.  The true targets of a TF 
are likely to be involved in the same functional pathways and therefore 
true targets would be enriched for the same functional categories as 
measured by enrichment of GO terms.  Comparison of functional en-
richment of TF targets identified by each approach enables the evalua-

tion of how each approach performs on identifying targets for TFs with-
out available ChIP-Seq data.  We compared the functional enrichment of 
the top 1000 targets of each TF predicted by either approach using Homo 
sapiens GO slim annotation categories.  We evaluated the 930 TFs on the 
HGU133 microarray (Zhang et al. 2012a).   Of these, the targets identi-
fied by ExRANGES for the majority of the TFs (590) showed improved 
functional enrichment compared to the targets identified by EXPRES-
SION (Figure 5A and B).  Likewise, when focusing on the 83 TFs with 
available ChIP-Seq data from blood, the majority of TF targets predicted 
by ExRANGES were more functionally cohesive compared to EX-
PRESSION targets as evaluated by GO slim (Figure 4C).  We observed 
that the improvement ranking of ExRANGES over EXPRESSION varies 
between the two validation approaches.  For example, targets of the TF 
JUND identified by ExRANGES show no improvement over EXPRES-
SION when validated by ChIP-Seq identified targets, yet showed im-
proved functional cohesion (Supplemental Table ST1). 

 

3.6 ExRANGES Improves TF Target Identification from 
RNA-Seq Data and Validated by Experimental Methods 
Other Than ChIP-Seq  
The previous evaluations of ExRANGES were performed on expression 
data obtained from microarray-based studies.  To evaluate the perfor-
mance of ExRANGES compared to EXPRESSION for RNA-Seq data 
we applied each approach to an RNA-Seq data set from Saccharomyces 
cerevisiae (Vardi et al. 2014).  This data set consisted of samples col-
lected from six different genotypes every fifteen minutes for six hours 
after transfer to media lacking phosphate.  The slope background was 
calculated from 144 time steps.  To evaluate the performance of 
ExRANGES compared to EXPRESSION approaches we calculated the 
AUC for the identified targets using GENIE3 for each of the 52 TFs 
using the TF targets identified by protein binding microarray analysis as 
the gold standard (Zhu et al. 2009).  For most TFs, the AUC was im-
proved using ExRANGES compared to EXPRESSION (Figure 5A).  
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Figure	4:	ExRANGES	improves	Functional	Cohesion	of	 Identified	Targets.	Gene	Ontology	 term	enrichment	was	calculated	for	 the	top	1000	predicted	 targets	of	930	TFs	using	
GENIE3	with	either	ExRANGES	or	EXPRESSION.	Enrichment	score	is	the	sum	of	the	–log10	of	the	p-value	of	each	GO	category.		A)	Summary	of	the	enrichment	scores	for	the	top	
1000	targets	of	all	TFs	on	the	microarray.		B)	The	distribution	of	enrichments	scores	from	EXPRESSION	identified	targets	(red)	and	ExRANGES	identified	targets	(blue).		C)	Differ-
ence	in	the	enrichment	score	for	the	83	TFs	with	available	ChIP-Seq	data	 (Fig	3).		Positive	values	indicate	TF	targets	with	a	higher	enrichment	score	in	ExRANGES	compared	to	
EXPRESSION.	

Figure 5: ExRANGES improves identification of TF targets validated by different methods. A) Box plots of the ROC AUC for 

targets identified for 52 yeast TFs by ESPRESSION or ExRANGES and validated against experimentally identified targets from protein 

binding microarray data (Zhu et al. 2009). B) ROC AUC for targets identified using GENIE3 with either EXPRESSION or ExRANGES 

for five Arabidopsis TFs validated against ChIP-Seq data. C). Box plot of AUC for targets identified for 307 Arabidopsis TFs by EX-

PRESSION and ExRANGES validated against DAP-Seq identified targets (O’Malley et al. 2016). 

We next evaluated the performance of EXPRESSION and ExRANGES 
on a set of data from Arabidopsis consisting of 144 samples collected 
every four hours for two days in 12 different growth conditions (Harmer 
et al. 2000; Smith et al. 2004; Bläsing et al. 2005; Edwards et al. 2006; 
Michael et al. 2008).  Even though fewer ChIP-Seq data sets are availa-
ble to validate the predicted targets in Arabidopsis, we were able to 
evaluate the performance of the algorithms for five TFs with available 
ChIP-Seq or ChIP-Chip identified targets performed in at least two repli-
cates (Lee et al. 2007; Yant et al. 2010; Chang et al. 2013; Liu et al. 
2013; Nagel et al. 2015).  We observed that for all five TFs, ExRANGES 
showed improved identification of the ChIP-based true positive TF tar-
gets (Figure 5B).  To evaluate a larger range of targets we compared our 
predicted targets by EXPRESSION or ExRANGES to 307 TFs targets 
identified by DAP-Seq 
(O’Malley et al. 2016).  We 
observed that ExRANGES also 
showed an improved ability to 
identify targets as validated by 
DAP-Seq compared to EX-
PRESSION (Figure 5C).    

3.7 Application of 
ExRANGES to Smaller 
Data Sets with Limited 
Validation Resources 
Time series data offers several 
advantages; however, it also 
increases the experimental 
costs.  We have shown that using 
ExRANGES improves perfor-
mance of GENIE3 on large data 
sets as validated by ChIP-Seq 

(228 samples in mouse, 2372 in human, and 144 in arabidopsis) (Figure 
6). Since our interest is to develop a tool that can assist with the identifi-
cation of regulatory networks in non-model species, we wanted to de-
termine if ExRANGES could also improve identification of TF targets in 
more sparsely sampled data sets where there is only limited validation 
data available. 

To determine the effectiveness of the ExRANGES approach for experi-
ments with limited time steps, we evaluated the targets identified by 
ExRANGES and EXPRESSION for a single unpublished time series 
consisting of 32 samples from eight unevenly sampled time points of 
field grown rice panicles. ChIP-Seq with replicates has only been per-
formed for one transcription factor in rice, OsMADS1 (Khanday et al. 
2016).  Therefore, we compared the ability of ExRANGES and EX-
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PRESSION to identify the OsMADS1 targets identified by L. Khanday 
et al. Of the 3112 OsMADS1 targets identified by ChIP-Seq, ExRANG-
ES showed an improved ability to identify these targets (Figure 7) com-
pared to EXPRESSION alone. 

 

4   Discussion 
Computational approaches that identify candidate targets of regulators 
can advance research.  Many approaches have been developed to identify 
regulator targets, but most of these use expression values.  We have 
demonstrated that combining the expression levels and rate of change 
improves the ability to predict true targets of TFs across a range of spe-
cies and experimental designs.  This approach improves the identifica-
tion of targets as determined by ChIP-Seq and protein binding microar-
ray across many different collections of time series data including exper-
iments with replicates and without, with time series that have unevenly 
sampled time points, and even for time series with limited number of 
samples.  ExRANGES provides improvement in TF target identification 
over EXPRESSION values alone for time series performed with both 
microarray and RNA-Seq measurements of expression. 

Expression analysis performed in time series, such as experiments evalu-
ating the transcriptional changes throughout a circadian cycle, provide 
rich resources for identifying relationships between individual tran-
scripts.  Since in many species the majority of transcripts show variation 
in expression levels throughout the day (Michael et al. 2008; Doherty 
and Kay 2011; Pizarro et al. 2013) circadian and diel data sets provide a 
snapshot of the potential ranges in expression that a regulator can attain.  
The associated changes in target expression levels can be analyzed to 
identify potential regulatory relationships that may be enhanced in re-
sponse to other perturbations such as stress.  However, for some targets, 
the daily variation in expression may be dwarfed by the large variation in 
expression between tissues.  Here, we show that using ExRANGES, data 
sets that combine circadian time series in multiple tissues can be a pow-
erful resource for identifying regulatory relationships between TFs and 

their targets not just for circadian regulators, but also for regulators that 
are not components of the circadian clock. Targets identified using EX-
PRESSION as the features showed large variance between tissues, while 
targets identified using rate change showed larger variance within each 
time series (Figure 2, and Supplemental Figure 5).  ExRANGES takes 
advantage of both sources of variation and improves the identification of 
TF targets for most regulators tested, including for TF-target relation-
ships in tissues not included in the transcriptional analysis.  Additionally, 
ExRANGES simplifies incorporation of replicate samples. 

As implemented, ExRANGES improves the ability to identify regulator 
targets, however, there are many aspects that could be further optimized.  
For example, we tested ExRANGES with the network inference algo-
rithms GENIE3 and INFERELATOR demonstrating that it improves the 
performance of these algorithms.  The ExRANGES method can be ap-

Figure 6: Summary of ExRANGES improvement across three data sets from different species.  ROC and Precision recall (PR) curves for targets of all ChIP-Seq validated TFs 

as identified using GENIE3 with either EXPRESSION (solid) or ExRANGES (dotted) for A) CircaDB dataset from mouse tissues B) Human viral data set C) Arabidopsis circadian 

dataset across different environmental variables. 

Figure	 7:	 	 ExRANGES	 Retains	 Performance	 Improvement	 over	 EXPRESSION	 on	
Small	Data	Sets.	 	A)	ROC	AUC	 for	the	 top	1000	targets	of	OsMADS1	 identified	by	
GENIE3	using	EXPRESSION	or	ExRANGES	and	validated	against	the	OsMADS1	ChIP-
Seq	data	(Khanday	et	al.	2016).	B)	Comparison	of	targets	identified	by	EXPRESSION	
and	 ExRANGES	 using	 INFERELATOR.	 ExRANGES	 scores	 higher	 in	 the	 ratio	 of	 True	
Positive	 (TP)	 to	 False	 Positives	 (FP).	 	 C)	 Interactions	 predicted	 by	 ExRANGES	 of	
OsMADS1	(center,	green)	with	other	MADS	TFs.	Orange	arrows	indicate	ExRANGES	
predicted	targets	of	OsMADS1.	ExRANGES	predicts	that	OsMADS15	(red)	regulates	
OsMADS1	 (green	 arrow).	 	 Interactions	 between	 other	 MADS	 TFs	 predicted	 by	
ExRANGES	are	indicated	by	black	arrows.		
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plied to most other machine learning applications such as Bayesian net-
works, mutual information networks, or even supervised machine learn-
ing tools.  In addition, we showed that ExRANGES outperformed a one-
step time delay.  Conceptually, our method essentially increases the 
weight of the time point before a major change in expression level.  
ExRANGES could be further modified to adjust where that weight is 
placed, a step or more in advance, depending on the time series data. 
Such incorporation of a time delay optimization into the ExRANGES 
approach could lead to further improvement for identification of some 
TF targets, although it would increase the computational cost.  

Here, we compared ExRANGES based features to EXPRESSION based 
features by validating against TF targets identified by ChIP-Seq and 
ChIP-Chip.  While these experimental approaches identify potential TF 
targets in a genome-wide manner, systemic bias in ChIP could bias the 
comparisons (Teytelman et al. 2013).  For example, we observed that 
ChIP-seq identified targets in the CircaDB dataset showed lower varia-
tion in expression than computationally identified targets (Figure 2).  
The use of ExRANGES as a network input also outperformed the use of 
EXPRESSION alone when validated against DAP-Seq, and protein 
binding microarray. Although ChIP-Seq may not be an ideal gold stand-
ard, it is the most available experimental resource for benchmarking 
computational approaches to identifying TF targets.  Unfortunately, high 
quality ChIP-Seq data is not available in most organisms for more than a 
handful of TFs.  For example, validation of this approach in rice was 
limited to one recently published ChIP-Seq dataset.  This lack of experi-
mentally identified targets is a severe hindrance to advancing research in 
these species.  New experimental approaches such as DAP-Seq may 
provide alternatives for TF target identification in species recalcitrant to 
ChIP-Seq analysis (O’Malley et al. 2016).  Additionally, O’Malley et al. 
improved their recall of ChIP-Seq identified targets by selecting targets 
that were also supported by DNase-Seq sensitivity assays (Zhang et al. 
2012b; Sullivan et al. 2014).  Likewise, distinguishing between direct 
and indirect targets predicted computationally could be enhanced by 
incorporation of DNase-Seq or motif occurrence information for the 
targets.  Incorporation of such a priori information on regions of open 
chromatin and occurrence of cis-regulatory elements leads to improved 
network reconstruction (Greenfield et al. 2013; Wilkins et al. 2016).  
Use of ExRANGES could lead to improvement for these integrated 
approaches.  Although approaches such as DAP-Seq are more global in 
analyses than individual ChIP-Seq assays, these genome-wide approach-
es still require a significant investment from the community in the devel-
opment of an expressed TF library collection.  For non-model systems, 
computational identification of TF targets can provide an economical 
first pass that can be followed up by experimental analysis of predicted 
targets, accepting the fact that there will be false positives in the valida-
tion pipeline.  In this strategy, a small improvement in the ability to 
identify true targets of a given TF can translate into a reduced number of 
candidates to test and fewer experiments that must be performed.  We 
hope that the improvements to regulatory network algorithms provided 
by the ExRANGES approach can facilitate research in species where 
identification of TF targets is experimentally challenging.  Additionally, 
we hope that our finding of how gene expression values are incorporated 
in a network has a significant effect on the ability to identify regulatory 
relationships will stimulate evaluation of new approaches that use alter-
native methods to incorporate time signals into regulatory network anal-
ysis.   

In summary, we demonstrate that consideration of how expression data 
is incorporated can contribute to the success of TRN reconstruction. 
ExRANGES is a first step at evaluating different approaches for how 

features are supplied to regulatory network inference algorithms.  We 
anticipate that further optimization and other novel methods for integrat-
ing expression information will lead to improvements in network recon-
struction that ultimately will accelerate biological discovery. 
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