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Abstract 24 

Plants produce a tremendous diversity of specialized metabolites (SMs) to interact with 25 

and manage their environment. A major challenge hindering efforts to tap this seemingly 26 

boundless source of pharmacopeia is the identification of SM pathways and their 27 

constituent genes. Given the well-established observation that the genes comprising a SM 28 

pathway are co-regulated in response to specific environmental conditions, we 29 

hypothesized that genes from a given SM pathway would form tight associations 30 

(modules) with each other in gene co-expression networks, facilitating their 31 

identification. To evaluate this hypothesis, we used 10 global co-expression datasets—32 

each a meta-analysis of hundreds to thousands of expression experiments—across eight 33 

plant model organisms to identify hundreds of modules of co-expressed genes for each 34 

species. In support of our hypothesis, 15.3-52.6% of modules contained two or more 35 

known SM biosynthetic genes (e.g., cytochrome P450s, terpene synthases, and chalcone 36 

synthases), and module genes were enriched in SM functions (e.g., glucoside and 37 

flavonoid biosynthesis). Moreover, modules recovered many experimentally validated 38 

SM pathways in these plants, including all six known to form biosynthetic gene clusters 39 

(BGCs). In contrast, genes predicted based on physical proximity on a chromosome to 40 

form plant BGCs were no more co-expressed than the null distribution for neighboring 41 

genes. These results not only suggest that most predicted plant BGCs do not represent 42 

genuine SM pathways but also argue that BGCs are unlikely to be a hallmark of plant 43 

specialized metabolism. We submit that global gene co-expression is a rich, but largely 44 

untapped, data source for discovering the genetic basis and architecture of plant natural 45 

products, which can be applied even without knowledge of the genome sequence.  46 
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Introduction 47 

Plants, being sessile and therefore at the mercy of their surroundings, harbor many 48 

adaptations that facilitate their interaction with and management of their environment. 49 

One such adaptation is the ability to produce a vast array of specialized metabolites 50 

(SMs), bioactive compounds that are not essential for growth and reproduction but rather 51 

have important ecological roles to combat pathogens, herbivores, and competitors; attract 52 

pollinators and seed dispersers; and resist abiotic stress including fluctuations in 53 

temperature, salinity, and water availability1. Humans exploit the SM diversity of plants 54 

for medicines and other natural products; to this end, thousands of plant-derived SMs 55 

have been isolated and biochemically characterized2. Yet the genes responsible for the 56 

production and regulation of most SMs across the kingdom Plantae are unknown, which 57 

ultimately limits their potential utility in agricultural, pharmaceutical, and 58 

biotechnological applications3,4.  59 

 60 

 Given their biomedical and agricultural relevance, it is perhaps surprising that the 61 

constituent genes and pathways involved in biosynthesis of most plant SMs are 62 

unknown5. There are two explanations for why this is so; first, SM pathways are highly 63 

variable in the number and functions of genes they contain1,6. Second, consistent with 64 

their involvement in the production of ecologically specialized bioactive molecules, SM 65 

genes exhibit narrow taxonomic distributions, are fast evolving both in terms of sequence 66 

divergence and rate of gene family diversification, and display extensive functional 67 

divergence7-9. The consequence of this lack of evolutionary and functional conservation 68 
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is that traditional sequence homology metrics for inferring gene function10 are weak 69 

predictors of SM pathway composition and function. 70 

 71 

Network biology offers a promising alternative for identifying SM pathways and 72 

their constituent genes. Because SM pathways exist at the interface of organisms and 73 

their environments, the genes within an SM pathway share a common regulatory network 74 

that tightly controls the “where” (e.g., in what tissues) and “when” (e.g., in response to 75 

which ecological conditions) of SM production1,11,12. Therefore, gene co-expression data, 76 

as a proxy for co-regulation, have been particularly effective in identifying the 77 

constituent genes that make up many SM pathways13-21. Further, given the availability of 78 

data from hundreds to thousands of individual gene expression experiments, integrative 79 

global co-expression networks have the power to predict SM pathways and genes in a 80 

high-throughput fashion22-24. However, as measuring gene co-expression on a large scale 81 

was, until recently, a costly and labor-intensive undertaking, the hundreds (or more) of 82 

global gene expression studies in diverse conditions required for global co-expression 83 

network analyses currently exist for only a small minority of plant species25-27.  84 

 85 

Another attribute that is characteristic of SM pathways found in bacteria and fungi 86 

is that they can physically co-locate in the genome, forming biosynthetic gene clusters 87 

(BGCs)28. As expected of SM pathways, genes within these microbial BGCs are co-88 

regulated and display strong signatures of co-expression, a pattern that holds true for 89 

functionally characterized as well as for putative BGCs in these genomes29-33. As the 90 

proximity of genes on chromosomes is far easier to measure than their co-expression 91 
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across multiple experimental conditions, bioinformatic algorithms strongly rely this 92 

“clustering” of genes to predict SM pathways in microbial genomes34-36. Thus, thousands 93 

of microbial BGCs have been predicted and hundreds validated (i.e., connected to known 94 

products), suggesting that gene proximity is informative for SM pathway identification, 95 

at least in these organisms37. Nevertheless, the number of SM pathways in bacteria and 96 

fungi that do not (or only partially) form BGCs  is unknown38-40. 97 

 98 

In plants, most characterized SM pathways (e.g., glucosinolate biosynthesis) are 99 

not clustered, and their genes are distributed across the genome41. More recently, 100 

however, nearly two dozen BGCs responsible for the production of SM defensive 101 

compounds have been identified and functionally characterized from 15 plant species42, 102 

raising the possibility that gene proximity could also be used for predicting plant SM 103 

pathways43. To this end, computational searches based on gene clustering similar to those 104 

developed for fungal and bacterial genomes postulate the existence of dozens to hundreds 105 

more BGCs across a wide variety of plant genomes8,44,45. However, the vast majority of 106 

these putative plant BGCs has not been functionally validated, and the fraction of plant 107 

SM pathways that form BGCs is unclear.  108 

 109 

We hypothesized that plant SM pathways are co-expressed, independently of 110 

being organized into BGCs, in line with their ecological roles that require strong temporal 111 

and spatial co-regulation1,11,12. To test our hypothesis, we developed a gene co-expression 112 

network-based approach for plant SM pathway discovery (Figure S1) using data from 10 113 

meta-analyses of global co-expression that collectively contain 21,876 microarray or 114 
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RNA-Seq experiments across eight plant species. Doing so, we identified dozens to 115 

hundreds of modules of co-expressed genes containing SM biosynthetic genes (e.g., 116 

cytochrome P450s, terpene synthases, and chalcone synthases) in each species, including 117 

many experimentally validated SM pathways and all validated BGCs in these species. In 118 

contrast, genes predicted to be in BGCs based on their physical proximity did not exhibit 119 

significantly different co-expression patterns than their non-clustered neighbors. Our 120 

results cast doubt on the general utility of approaches for SM pathway identification 121 

based on gene proximity in the absence of functional data and suggest that global gene 122 

co-expression data, when in abundance, are very powerful in the high-throughput 123 

identification of plant SM pathways. 124 

 125 

Results  126 

Network analysis identifies small, overlapping modules of co-expressed genes in global 127 

co-expression networks. Given that SM pathway genes are often co-regulated in response 128 

to specific environmental conditions, we hypothesized that genes from a given SM 129 

pathway would form tight associations (modules) with each other in gene co-expression 130 

networks. To identify modules of co-expressed SM genes, we accessed three microarray- 131 

and seven RNAseq-based co-expression datasets from ATTED-II25 and ALCOdb46 for 132 

eight Viridiplantae species (Arabidopsis thaliana, Brassica rapa, Chlamydomonas 133 

reinhardtii, Glycine max, Oryza sativa Japonica group, Populus trichocarpa, Solanum 134 

lycopersicum, and Zea mays; Table S1). Each dataset consisted of a meta-analysis of 135 

hundreds to thousands of experiments measuring global patterns of gene expression in a 136 

wide variety of tissues, environmental conditions, and developmental stages. The number 137 
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of experiments varied in each dataset, from 172 in the C. reinhardtii RNAseq dataset46 to 138 

15,275 in the A. thaliana microarray-based set25. Pairwise measurements of gene co-139 

expression were specified as Mutual Ranks47 (MRs; calculated as the geometric mean of 140 

the rank of the Pearson’s correlation coefficient (PCC) of gene A to gene B and of the 141 

PCC rank of gene B to gene A). For each dataset, we constructed five MR-based 142 

networks, each using a different co-expression threshold for assigning edge weights 143 

(connections) between nodes (genes) in the network. Networks were ordered based on 144 

size (i.e., number of nodes and edges), such that N1 and N5 indicated the smallest and 145 

largest networks, respectively.  146 

 147 

To discover co-expressed gene modules in the eight model plants, we employed 148 

the graph-clustering method ClusterONE48, which allowed genes to belong to multiple 149 

modules. This attribute is biologically realistic; many plant metabolic pathways are non-150 

linear, containing multiple branch points and alternative end products (e.g., terpenoid 151 

biosynthesis pathways49,50). Averaging across all 10 co-expression datasets, the number 152 

of genes assigned to modules ranged from 3,251 (13.4% of protein-coding genes) in the 153 

N1 networks to 4,320 (18.2%) in N5 networks (Table S2). The average number of 154 

modules per network decreased with increasing network size, from 573 modules in the 155 

N1 networks to 39 in the N5 networks (Table S2). Conversely, the average module size 156 

(i.e., number of genes within a module) increased with increasing network size (e.g., 7 157 

genes per module in N1 networks, 41 genes per module in N3 networks, and 167 genes 158 

per module in N5 networks). Given our goal to recover distinct SM pathways as modules, 159 

we focused the remaining analyses on the smaller networks (N1-N3) with average 160 
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module sizes (< 50 genes) consistent with the number of genes typically present in SM 161 

pathways.  162 

 163 

Co-expressed gene modules recover known SM pathways and predict hundreds of new 164 

SM gene associations. To evaluate the correspondence between module genes and genes 165 

present in known metabolic pathways, we focused on the 798 genes in 362 A. thaliana 166 

MetaCyc51 pathways with an experimentally validated metabolic function (Table S3). 167 

Module genes were significantly enriched in many SM-related metabolic functions. Of 168 

the 12 higher-order metabolic classes investigated, only the SECONDARY METABOLITES 169 

and CELL STRUCTURES biosynthesis classes were significantly enriched in module genes 170 

(P < 0.0005, hypergeometric tests) (Figure 1a). This pattern held true across all networks 171 

and datasets investigated (Figure S2 and Table S4). Enrichment of the CELL STRUCTURES 172 

biosynthesis class was driven by genes involved in the SECONDARY CELL WALL 173 

(specifically LIGNIN) biosynthesis subclasses (P < 0. 0005, hypergeometric tests). 174 

Enriched subclasses within the SECONDARY METABOLITES class included those for 175 

NITROGEN-CONTAINING SECONDARY COMPOUNDS and FLAVONOID biosynthesis (P < 176 

0.005, hypergeometric tests), which contain pathways for glucosinolate and anthocyanin 177 

production, respectively. MetaCyc SM pathways that were well recovered as co-178 

expressed modules included those for aliphatic and indolic glucosinolate, camalexin, 179 

flavonol, flavonoid, phenylpropanoid, spermidine, and thalianol biosynthesis (Table S5).  180 

 181 

The AMINO ACIDS, CARBOHYDRATES, and COFACTORS/PROSTHETIC 182 

GROUPS/ELECTRON CARRIERS biosynthesis classes were significantly depleted in module 183 
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genes in some, but not all, networks and datasets (P < 0.05, hypergeometric test) (Figure 184 

1a and Figure S2). None of the other metabolic classes displayed any significant variation 185 

between module and non-module genes (Figure S2 and Table S4).  186 

 187 

To estimate the number of modules that may correspond to SM pathways, we 188 

focused on those that contained two or more non-homologous genes with a significant 189 

match to a curated list of PFAM domains that are found commonly in genes from SM 190 

pathways (Table S6); as some of these “SM-like” modules share genes, we collapsed 191 

them into non-intersecting “meta-modules”. Dozens of SM-like meta-modules were 192 

identified in each species, with the green alga, C. reinhardtii, containing the fewest SM-193 

like meta-modules (27 in N1 networks, 17 in N3 networks), and the field mustard, B. 194 

rapa, containing the most (120 in N1 networks, 71 in N3 networks) (Figure 1b and Table 195 

S2).  196 

 197 

Recovery of the aliphatic glucosinolate biosynthesis pathways in Arabidopsis and 198 

Brassica from global co-expression data. To illustrate the utility and power of our 199 

approach for identifying entire SM pathways, we next focused on examining the 200 

correspondence between genes involved in the methionine-derived aliphatic glucosinolate 201 

(metGSL) biosynthesis pathway and genes that comprise co-expression modules 202 

identified by our analyses (Table S7). In A. thaliana, the species with the majority of 203 

functional data52, co-expression modules recover genes for every biochemical step in this 204 

pathway, from methionine chain elongation to side-chain modification of the 205 

glucosinolate chemical backbone, as well as a pathway-specific transporter and three 206 
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transcription factors (Figure 2a). For example, in the smallest network N1, 14 / 34 207 

enzymatic genes in the metGSL pathway are recovered in a single 17-gene module; only 208 

3 / 17 genes in this module have not been functionally characterized as involved in 209 

metGSL biosynthesis (Figure 2b). Maximum recovery of the metGSL pathway increased 210 

to 56.3% and 71.9% in the 22-gene and 43-gene modules recovered from networks N2 211 

and N3, respectively (Figure S3 and Table S8). Although the numbers of genes not 212 

known to be involved in metGSL biosynthesis also increased in these modules, several of 213 

the genes that are co-expressed with members of the metGSL pathway perform 214 

associated biochemical processes (Figure 2a). For example, the two adenosine-5’-215 

phosphosulfate kinase genes, APK1 and APK2, are responsible for activating inorganic 216 

sulfate for use in the metGSL pathway and polymorphisms in these genes alter 217 

glucosinolate accumulation53. Similarly, the cytochrome P450 genes, CYP79B2 and 218 

CYP79B3, and the glutathione S-transferase gene, GSTF9, are involved in the parallel 219 

pathway for biosynthesis of glucosinolates from tryptophan instead of methionine 220 

(MetaCyc PWY-601)52.  221 

  222 

Notably, some genes implicated in metGSL biosynthesis were never recovered in 223 

co-expressed modules, including GGP1, which encodes a class I glutamine 224 

amidotransferase-like protein. Microarray-based co-expression data weakly associate 225 

GGP1 with metGSL biosynthesis in A. thaliana, and GGP1 has been shown to increase 226 

glucosinolate production when heterologously expressed in Nicotiana benthamiana54. 227 

However, our metGSL-containing modules across all RNAseq-based networks showed 228 

that a different class I glutamine amidotransferase-like gene, DJ1F, is more highly co-229 
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expressed with metGSL biosynthetic genes (Figure 2). Importantly, DJ1F is not 230 

represented on the A. thaliana Affymetrix GeneChip, explaining why GGP1 and not this 231 

gene was identified as the most correlated one in earlier analyses. However, the 232 

postulated role of both DJ1F and GGP1 in metGSL biosynthesis remains to be confirmed 233 

in planta.  234 

 235 

The remaining genes in the metGSL pathway that were never recovered in co-236 

expressed modules all encode secondary enzymes responsible for terminal modifications 237 

to the backbone glucosinolate product41. One of these, AOP2, encoding a 2-oxoglutarate-238 

dependent dioxygenase, has been pseudogenized in the A. thaliana (ecotype: Columbia) 239 

reference genome55. The high level of natural variation present in these terminal 240 

metabolic branches is responsible for the diverse glucosinolates present in different 241 

ecotypes56,57 but likely also makes it more challenging to connect them to the rest of the 242 

metGSL pathway using global co-expression data (Figure S4).  243 

 244 

Brassicas also produce aliphatic glucosinolates, but a whole genome triplication 245 

event subsequent to their divergence from A. thaliana58 has complicated identification of 246 

functional metGSL genes in these species. To gain insight into the metGSL pathway in B. 247 

rapa, we cross-referenced our co-expression modules with 59 candidate metGSL genes 248 

identified based on orthology to A. thaliana metGSL genes59. As in A. thaliana, modules 249 

recovered every biochemical step of the B. rapa metGSL pathway as well as pathway-250 

specific transporters and transcription factors (Figure 3, Table S7, and Table S8).  Also as 251 

in A. thaliana, DJ1F rather than GGP1 is co-expressed with other metGSL genes, 252 
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providing further evidence that the DJ1F enzyme may be the more likely candidate for 253 

the γ-glutamyl peptidase activity in glucosinolate biosynthesis52. Furthermore, as several 254 

enzymes are encoded by multiple gene copies in B. rapa, we harnessed the power of our 255 

module analysis to identify which of these copies was co-expressed with other metGSL 256 

genes and therefore most likely to be functionally involved in the pathway. For example, 257 

out of the six MAM gene copies in B. rapa, only Bra029355 and Bra013007 were 258 

recovered in metGSL modules (Figure 3 and Figure S5). Module data also suggest that 259 

the glutathione S-transferase class tau (GSTU) activity is one step of the core pathway 260 

that may differ between the two species. Specifically, in A. thaliana, GSTU20 is thought 261 

to encode this reaction, and this gene was recovered in metGSL modules in our analysis 262 

(Figure 2a). However, this association was not recovered in B. rapa. Instead, three 263 

paralogous GSTUs (Bra003647, Bra026679, and Bra026680), corresponding to the A. 264 

thaliana GSTU23 and GSTU25 genes, respectively, formed modules with metGSL genes, 265 

making these genes good candidates for investigation of GSTU activity in B. rapa 266 

(Figure 3 and Figure S6).  267 

 268 

Modules recover functionally characterized BGCs and identify associated, unclustered 269 

genes. We next investigated whether our approach also recovered BGCs by examining 270 

whether our co-expression modules recovered the six functionally characterized BGCs in 271 

these eight plant genomes (Table S9). All six BGCs were recovered in our module 272 

analysis (Table S8). Specifically, co-expression modules recovered all genes comprising 273 

the BGCs involved in the production of the triterpenoids marneral60 (3 / 3 genes; Figure 274 

4a) and thaliaol61 (4 / 4 genes; Figure 4b) in A. thaliana and the diterpenoid 275 
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momilactone62 (5 / 5 genes; Figure 4c) in O. sativa. Modules recovered 7 / 9 genes in the 276 

phytocassane63 diterpene cluster in O. sativa (rice); the OsKSL5 and CYP71Z6 genes 277 

forming a terpene synthase-cytochrome p450 pair of genes were strongly co-expressed 278 

with each other but not with the rest of the pathway (Figure 4d). The two triterpenoid 279 

BGCs in A. thaliana were typically combined into the same co-expression module; the 280 

same pattern was observed for the two diterpenoid BGCs in O. sativa (Figure S7 and 281 

Figure S8). Genes within these BGCs were also strongly co-expressed with additional 282 

genes located outside the BGC boundaries, including one putative transcription factor and 283 

several putative transporters (Figure S7 and Figure S8). 284 

 285 

Seven of eight genes in the partially clustered pathway for production of the 286 

steroidal alkaloid α-tomatine in S. lycopersicum64 (tomato) were recovered by our co-287 

expression analysis (Figure 4e). Only the glucosyltransferase gene, GAME2, encoding the 288 

last enzymatic reaction in the proposed α-tomatine pathway, showed a conspicuously 289 

different expression profile, consistent with previous reports64,65. Several 290 

glucosyltransferase genes paralogous to GAME2 were strongly co-expressed with the rest 291 

of the genes in this pathway (Figure S9), but whether or not these genes participate in α-292 

tomatine biosynthesis is yet to be determined. Additional genes strongly co-expressed 293 

with the rest of the α-tomatine pathway include, among others, one putative transcription 294 

factor, several possible metabolite transporters, and a cellulose synthase-like gene located 295 

adjacent to the BGC (Figure 4e and Figure S9).  296 

 297 
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Lastly, five of the six genes in the benzoxazinoid 2,4-dihydroxy-7-methoxy-1,4-298 

benzoxazin-3-one (DIMBOA)66 cluster in Z. mays formed co-expression modules in our 299 

analysis (Figure 4f). Specifically, the first five genes in the DIMBOA pathway (Bx1-300 

Bx5), responsible for the biosynthesis of the precursor 2,4-dihydroxy-1, 4-benzoxazin-3-301 

one (DIBOA), formed modules with each other but not with the final gene in the BGC, 302 

Bx8 (Figure S10).  303 

 304 

Similar to the modifying genes of the metGSL pathway in A. thaliana, terminal 305 

Bx genes appear to have unique gene expression signatures distinct from the core 306 

pathway. For example, DIBOA is modified to DIMBOA by the action of two additional 307 

unclustered genes (Bx6 and Bx7)67, neither of which was assigned to modules with core 308 

genes or each other. Toxic DIBOA/DIMBOA is transformed into stable glucoside, 309 

DIBOA-Glc/DIMBOA-Glc, by glucosyltransferases (Bx8 and Bx9), which were likewise 310 

not assigned to modules in our analysis. However, a gene adjacent to the DIMBOA BGC, 311 

encoding an uncharacterized glucosyltransferase (GT; GRMZM2G085854) with 27% 312 

amino acid identity to Bx8, does belong to the same module as the core Bx genes in 313 

network N3 (Figure S10), but the MR scores of this gene to core Bx genes are noticeably 314 

weaker than those between the core Bx genes (Figure 4f). Additional Bx genes (Bx10-315 

Bx14), which are not part of the BGC and are responsible for the biosynthesis of modified 316 

benzoxazinoid compounds (e.g., HDMBOA-Glc, DIM2BOA-Glc)68,69, were also not 317 

assigned to modules in our analysis (Figure S10); this pattern is similar to that observed 318 

with the terminal reactions of the metGSL biosynthesis pathway.  319 

 320 
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Bx1 is thought to represent the first committed step in benzoxazinoid biosynthesis, 321 

encoding an indole-3-glycerolphosphate lyase (IGL) that converts indole-3-322 

glycerolphosphate to indole. However, in our module analysis, an additional gene co-323 

expressed with the core Bx genes is an indole-3-glycerolphosphate synthase (IGPS; 324 

GRMZM2G106950), which catalyzes the reaction directly upstream of Bx1 (Figure S10). 325 

Two additional genes encoding indole-3-glycerolphosphate synthases are present in Z. 326 

mays (GRMZM2G169516 and GRMZM2G145870), but neither was strongly co-327 

expressed with those in the benzoxazinoid pathway. Similarly, the two additional 328 

paralogs to Bx1 in Z. mays (TSA and IGL, responsible for the production of tryptophan 329 

and volatile indole, respectively) formed independent co-expression modules, consistent 330 

with their distinct metabolic and ecological roles (Figure S10)70,71. The inclusion of an 331 

unlinked IGPS gene in the benzoxazinoid co-expression modules suggests that the first 332 

committed step in the biosynthesis pathway may start one reaction earlier than previously 333 

predicted based on the DIMBOA BGC gene content. 334 

 335 

To test whether GT and IGPS are likely to be involved in benzoxazinoid 336 

biosynthesis, we measured their gene expression responses to two different types of 337 

insect herbivory (aphid and caterpillar), ecological conditions under which benzoxazinoid 338 

biosynthesis genes are typically induced72,73. GT showed gene expression responses 339 

similar to Bx8 and Bx9, being induced within the first few hours after the introduction of 340 

insect herbivores (Figure S11). Although the median fold change of expression relative to 341 

controls is small (< 5) for all three glucosyltransferases, this result is consistent with a 342 

putative role of GT in creating stable benzoxazinoid glucosides along with Bx8 and Bx9. 343 
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IGPS was also significantly induced in response to insect herbivory, mostly notably in the 344 

caterpillar feeding experiment in which IGPS expression increased over 50-fold during a 345 

24-hour period (Figure S11). In contrast, the two other indole-3-glycerolphosphate 346 

synthase genes showed little to no response to herbivory, consistent with this IGPS 347 

encoding a specialized enzyme involved in benzoxazinoid biosynthesis or volatile indole, 348 

which is also induced by caterpillar herbivory74.  349 

 350 

Bioinformatically predicted BGCs in plants do not form co-expression modules and are 351 

typically not co-expressed. To examine whether putative BGCs (i.e., predicted based on 352 

physical clustering and with no known associated products) show evidence of co-353 

regulation in response to specific environmental conditions, we investigated whether they 354 

were also recovered in our co-expression network analysis. We found that two different 355 

sets of putative BGCs showed little to no co-expression (Figure S12). Specifically, both 356 

the 137 Enzyme Commission (EC)-based BGCs predicted by Chae et al.8 and the 51 357 

BGCs predicted by the antibiotics and secondary metabolism analysis shell 358 

(antiSMASH)34 had median MR scores of 9,670 and 10,890, respectively. Furthermore, 359 

the EC-based BGCs’ distribution of co-expression was similar to that of the control 360 

distribution of neighboring genes (P = 0.187, Wilcoxon rank sum test), whereas the co-361 

expression of antiSMASH BGCs was significantly lower than that of the control (P = 362 

0.027) (Figure 5a and Table S10). In contrast, the six validated BGCs had a median MR 363 

score of 17.4 and were significantly more co-expressed than the control (P = 3.20 × 10-4) 364 

(Figure 5a and Table S10). Similarly, the 13 terpene synthase-cytochrome P450 (TS-365 

CYP) pairs identified by Boutanaev et al.44 were variably co-expressed with a median 366 
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MR score of 45. Although two of the 13 TS-CYP pairs were negatively correlated in their 367 

expression, the TS-CYP distribution was still significantly better than the control (P = 368 

2.73 × 10-4) (Figure 5a and Table S10).  369 

 370 

Not surprisingly, given the lack of co-expression, putative BGCs, by and large, 371 

did not form co-expression modules, with only 7 / 188 putative BGCs overlapping by 372 

three genes or more with co-expression modules. In contrast, 78 / 188 putative BGCs 373 

overlapped with co-expression modules by only one gene, indicating that the genes 374 

within these BGCs were more strongly co-expressed with genes outside their cluster than 375 

with those inside (Figure 5b and Table S8).  376 

 377 

An example of the poor association between co-expression modules and putative 378 

BGCs comes from the antiSMASH-predicted BGC30. Only 2 / 6 genes in BGC30 379 

showed strong pairwise co-expression: a TS-CYP pair also identified by Boutanaev et al. 380 

and labeled PAIR6 (Figure 5c). The terpene synthase (AT5G44630) of PAIR6 is known 381 

to be involved in the production of sesquiterpenoid flower volatiles75. This functional 382 

annotation is supported by our module analysis, which assigned PAIR6 to a co-383 

expression module consisting of 46 physically unlinked genes that are significantly 384 

enriched for gene ontology terms associated with flower development (Figure 5d and 385 

Table S11). A second example comes from the EC-mapped BGC130. None of the genes 386 

in this BGC were strongly co-expressed with each other (Figure S12). Instead, one gene 387 

in the BGC, GSTU20, is a known participant in metGSL biosynthesis, an association that 388 

is recovered by co-expression modules in our analysis (Figure 2 and Table S8). 389 
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 390 

Discussion  391 

An enormous number of novel plant SMs awaits discovery and characterization4. Yet, 392 

due to their rapid evolution and narrow taxonomic distribution7-9, SM pathways and 393 

genes are often unknown, slowing the pace of discovery. Gene co-expression and 394 

chromosomal proximity are two omics-level traits that can be harnessed for high-395 

throughput prediction of SM pathways and genes4, but their general utility remained 396 

unknown. By examining 10 global co-expression datasets—each a meta-analysis of 172 397 

to 15,275 transcriptome experiments—across eight plant model organisms, we found that 398 

gene co-expression was powerful in identifying known SM pathways, irrespective of the 399 

location of their genes in the genome, as well as in predicting novel SM gene 400 

associations. Below, we discuss why gene proximity may not be a reliable method of SM 401 

pathway identification in plant genomes as well as enumerate the advantages and caveats 402 

of our co-expression network-based approach. 403 

 404 

 It is well established that genes in SM pathways are spatially and temporally 405 

regulated in response to diverse ecological conditions; arguably, this shared regulatory 406 

program is one of the defining characteristics uniting genes belonging to SM 407 

pathways1,11,12. Furthermore, numerous gene expression studies of the genes participating 408 

in diverse SM pathways, including BGCs, from diverse organisms show that SM pathway 409 

genes typically share similar gene expression patterns (i.e., they are co-expressed) 410 

21,32,33,64,65,76,77. Simply put, gene co-expression can be predictive of membership in a 411 

given SM pathway. The question then is whether one can employ genome-wide or global 412 
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gene expression data to predict SM pathways in a high-throughput fashion. The results of 413 

our analyses suggest that this is the case; modules in global co-expression networks 414 

constructed from genome-wide expression studies across myriads of different conditions 415 

in A. thaliana were significantly enriched in genes associated with diverse SM-related 416 

metabolic functions (Figure 1a). Moreover, modules recovered many experimentally 417 

validated SM pathways in these plants (Table S5 and Table S8), including the six known 418 

to form BGCs (Figures 4).  419 

 420 

It is also well established that gene arrangement in plant genomes is not random78. 421 

For example, as much as 60% of metabolic pathways in A. thaliana (as measured by 422 

KEGG) show statistically significant higher levels of physical proximity in the genome 423 

than expected by chance79. The most extreme version of this “closer than expected” gene 424 

arrangement is the growing list BGCs involved in plant SM biosynthesis42. While the 425 

statistical significance of this pattern is non-debatable, the degree to which gene 426 

arrangement is predictive of genes’ participation in the same pathway is not immediately 427 

obvious. For example, the genes of many known plant SM pathways52,80 do not form 428 

BGCs, while other pathways consist of a combination of clustered and unclustered 429 

genes64,69,81. Complicating matters further, SM pathways may form a BGC in some 430 

species but not others82. Given that the majority of known plant SM pathways does not 431 

form BGCs, it is perhaps not surprising that nearly all putative plant SM BGCs, which 432 

were predicted based solely on gene proximity, were not co-expressed (Figure 5). 433 

 434 
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We interpret this absence of co-expression as evidence that most of these putative 435 

BGCs likely do not correspond with actual SM pathways and that gene proximity is 436 

insufficient to be used as the primary input for predicting SM pathways in plant genomes. 437 

Admittedly, the strength of this argument rests on whether the global co-expression 438 

networks that we have constructed accurately capture the spatial and temporal regulation 439 

of BGCs in response to the diverse ecological conditions plants experience, which is at 440 

least partially dependent on the number and types of the conditions sampled83. For 441 

example, genes in a BGC or pathway that are never expressed or are not variably 442 

expressed across conditions would not be correlated with each other in our analysis. 443 

Although this is a valid concern, the hundreds to thousands of conditions25 used to 444 

construct each co-expression dataset (Table S1) as well as the recovery of many known 445 

SM pathways from these organisms (Table S5 and Table S8), suggest that its effect is 446 

unlikely to influence our major findings. Going forward, increased resolution of BGCs 447 

and SM pathways in co-expression networks will require the inclusion of data from more 448 

tissues, time points, and environmental conditions during which SM genes and pathways 449 

are likely to vary in their regulation, for example different types of insect herbivory69,72,84 450 

and complex field conditions85.  451 

 452 

Another caveat associated with predicting SM pathways from global co-453 

expression networks is that SM pathways whose expression profiles are highly similar 454 

would be predicted to comprise a single pathway. This will likely be a more common 455 

occurrence, and examples of this behavior are present in our results. Specifically, the two 456 

triterpenoid BGCs in A. thaliana were almost always combined in the same co-457 
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expression module, regardless of the network investigated (Figure S7); the same was true 458 

for the two diterpenoid BGCs in O. sativa (Figure S8). Although predicting individual 459 

SM pathways is obviously ideal, the lumping of multiple pathways into one may in some 460 

cases reveal novel biology. For example, such a pattern could also be indicative of 461 

crosstalk between SM pathways or BGCs, or that multiple SM pathways are employed in 462 

response to the same set of environmental conditions. 463 

   464 

The final caveat is that our approach will not be as powerful in cases where some 465 

of the genes in the pathway are not under the same regulatory program as the others. For 466 

example, we noted that the genes encoding terminal modification enzymes, such as the 467 

genes for side-chain modification of glucosinolates (Figure S4) or the UDP-468 

glucosyltransferases in S. lycopersicum (GAME2) and Z. mays (Bx8-Bx14), had 469 

expression profiles that were quite different from those of core pathway genes; thus, they 470 

were often not recovered in the same modules as their corresponding core SM pathway 471 

genes. It is possible that additional sampling of appropriate expression conditions could 472 

allow for recovery of these terminal metabolic branches in co-expression modules that 473 

include the rest of the pathway. However, the terminal SM genes and products can be 474 

under balancing or diversifying selection56; moreover, the core and terminal steps in an 475 

SM pathway may take place in different tissues86. In cases like these, the terminal 476 

metabolic branches and core SM pathway may be identified as distinct co-expression 477 

modules in global co-expression networks no matter how many conditions are sampled. 478 

 479 
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 In summary, our results indicate that generating and constructing global gene co-480 

expression networks is a powerful and promising approach to the challenge of high-481 

throughput prediction and study of plant SM pathways. Global gene co-expression 482 

networks can straightforwardly be constructed for any plant, model or non-model, as long 483 

as the organism’s transcriptome can be sampled under a range of conditions. In principle, 484 

this would not require a genome sequence, only a high quality de novo transcriptome 485 

assembly. Furthermore, global gene co-expression networks could be used in conjunction 486 

with other high-throughput data types (e.g., proteomics, metabolomics). We believe that 487 

combining high throughput transcriptomics across ecological conditions with network 488 

biology will transform our understanding of the genetic basis and architecture of plant 489 

natural products and usher in a new era of exploration of their chemodiversity. 490 

 491 

Materials and Methods 492 

Genome annotations, protein sequences, and gene co-expression values, measured using 493 

Pearson’s correlation coefficient (PCC) and mutual rank (MR), across the eight plant 494 

species were downloaded from the ATTED-II25, ALCOdb46, NCBI RefSeq and JGI 495 

Genome Portal databases (Table S1). ATTED-II co-expression datasets with less than 496 

50% coverage of the target genome were excluded. The MR score for two example genes 497 

A and B is given by the formula, 498 

������ �  ����������  	  ��������� 

where ��������� is the rank of gene B in a PCC-ordered list of gene A against all other 499 

genes in the microarray or RNAseq meta-analysis; similarly, ��������� is the rank of 500 

gene A in a PCC-ordered list of gene B against all other genes, with smaller MR scores 501 
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indicating stronger co-expression between gene pairs47. MR scores were converted to 502 

network edge weights using 5 different rates of exponential decay (Figure S1). Any edge 503 

with PCC < 0.3 or edge weight < 0.01 was excluded.  504 

 505 

Comparison of MR- and PCC-based networks, showed that the MR-based 506 

networks were more comparable between species and datasets. For example, PCC-based 507 

networks were more sensitive (variable) to differences in the number of experimental 508 

samples and genome coverage between datasets in the two species that had microarray- 509 

and RNAseq-based datasets (A. thaliana and O. sativa). In contrast, the MR-based 510 

networks were more robust to dataset differences (Figure S13), in agreement with the 511 

original description of the MR metric by Obayashi and Kinoshita47. Moreover, MR-based 512 

networks were remarkably consistent with respect to the number of genes they contained; 513 

in contrast, PCC-based networks sometimes varied by orders of magnitude in the number 514 

of genes included (Figure S13), Finally, MR-based networks consistently included nearly 515 

all genes in a given dataset, regardless of the MR threshold stringency employed; that 516 

was not the case with PCC-based networks (Figure S13 and Table S2). For these reasons, 517 

we chose to focus the investigation on the MR-based networks. 518 

 519 

Modules of tightly co-expressed genes were detected using ClusterONE using 520 

default parameters48. Modules with ClusterONE P value > 0.1 were excluded. Modules 521 

were considered ‘SM-like’ if they contained 2 or more non-homologous genes with a 522 

significant match to a curated list of PFAM domains present in experimentally verified 523 

(Evidence = ‘EV-EXP’) genes assigned to MetaCyc51 SECONDARY BIOSYNTHESIS 524 
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pathways (hmmsearch87 using default inclusion thresholds; Table S6). SM-like modules 525 

were then binned into meta-modules of non-overlapping gene sets.  526 

 527 

 Bioinformatically-predicted BGCs were obtained from the published literature8,44 528 

and by running the A. thaliana reference genome (TAIR10; each protein-coding gene was 529 

represented by its longest transcript) through antiSMASH v3.0.434 with the --clusterblast 530 

--subclusterblast --smcogs options enabled. Average co-expression of each gene set 531 

(module or BGC) was calculated as the average MR score across all gene pairs in the set. 532 

 533 

All statistical analyses were performed in R, including dhyper (hypergeometric), 534 

wilcox.test (Wilcoxon Rank Sum), p.adjust (Benjamini and Hochberg adjusted P-value) 535 

from the stats package. Network maps were drawn using a Fruchterman-Reingold force-536 

directed layout using the igraph R package (http://igraph.org). 537 

 538 

Data Availability 539 

All co-expression modules identified in our analysis are included in the supplemental 540 

files online (Dataset S1).  541 
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Figure 1. Global co-expression network analysis of eight plant genomes 
identify co-expressed modules of specialized metabolic genes. a) MetaCyc 
pathway enrichment analysis of experimentally characterized A. thaliania genes 
assigned to modules (orange bars) relative to those that do not form modules (grey 
bars) in A. thaliania microarray-based network MR-N1. Grey arrow indicates that the 
bottom eight pathway categories are children of ‘Biosynthesis’ in the MetaCyc 
hierarchy.  Asterisks denote significant enrichment or depletion of MetaCyc categories 
in module genes; *P ≤ 0.05, ***P ≤ 0.0005 (Benjamini & Hochberg adjusted P-values, 
hypergeometric test). See Figure S2 for enrichment tests in other A. thaliania 
networks. b) Count of SM-like meta-modules identified in 10 microarray (m) and 
RNAseq (r) co-expression datasets from eight Viridiplantae. SM-like modules were 
collapsed into meta-modules of non-overlapping gene sets. Networks were construct-
ed using three different rates of exponential decay for converting MR scores to edge 
weights, where MR-N1 corresponds to smallest network with the steepest rate of 
decay and therefore the fewest edges; conversely, MR-N3 is the largest network with 
the shallowest rate of decay and the most edges.
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Figure 2. Co-expression modules efficiently recover the majority of genes for 
metGSL biosynthesis in A. thaliana. a) Network map of an example co-expression 
module involved in metGSL biosynthesis. Nodes in the map represent genes and 
edges connecting two genes represent the weight (transformed MR score) for the 
association. The diagram of the metGSL biosynthesis pathway is depicted, right. 
Other co-expressed genes not known to be involved in metGSL biosynthesis are 
shown in the dashed box. Nodes and gene names are colored according to their 
known or putative function. MetGSL genes not recovered in modules are colored 
black. Genes not present in the co-expression dataset are lined out. b) Heatmap 
depicting the correlation of co-expression of a second example co-expression module 
involved in metGSL biosynthesis. Diagonal numbers within the heatmap indicate MR 
score. Gene names are colored as in part a. Module genes are depicted as red 
triangles in the accompanying chromosome segments (parallel lines indicate the 
genes are not physically co-located; scale bar is in kilobase pairs). Note: data from 
the RNAseq-based networks are shown as two metGSL genes (SOT17 and SOT18) 
are not present in the microarray dataset. Microarray-based networks performed 
similarly (Table S8).
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Figure 3. Co-expression modules predict functional metGSL biosynthesis 
genes in B. rapa. Network map of an example co-expression module involved in 
metGSL biosynthesis. Nodes in the map represent genes and edges connecting two 
genes represent the weight (transformed MR score) for the association. The diagram 
of the metGSL biosynthesis pathway is depicted, right, with all predicted orthologs to 
known metGSL genes in A. thaliana as listed on brassicadb.org. Other co-expressed 
genes not known to be involved in metGSL biosynthesis are shown in the dashed 
box. Nodes and gene names are colored according to their known or putative 
function. MetGSL orthologs not recovered in modules are colored black. A. thaliana 
metGSL genes with no known ortholog in B. rapa are lined out. See Table S7 for 
associated NCBI and Ensembl gene IDs.
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Figure 4. Co-expression pattern of six functionally characterized BGCs in plants. 
Heatmaps depict the correlation of co-expression of six BGCs for the production of a. 
marneral, b. thalianol, c. momilactone, d. phytocassane, e. tomatine, and f. DIMBOA. 
Diagonal numbers indicate MR scores; squares are blank if MR ≥ 100. BGC genes are 
bolded in the heatmap and colored red in the accompanying chromosome segments. 
Scale bars are in kilobase pairs.
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Figure 5. The genes comprising the majority of bioinformatically predicted BGCs are 
not co-expressed. a) Comparison of average co-expression of modules versus character-
ized and putative BGCs. The bottom and top of each box plot correspond to the first and 
third quartiles (the 25th and 75th percentiles), respectively. The lower whisker extends from 
the box bottom to the lowest value within 1.5 * IQR (Inter-Quartile Range, defined as the 
distance between the first and third quartiles) of the first quartile. The upper whisker extends 
from the box top to the highest value that is within 1.5 * IQR of the third quartile. Red 
squares and triangles indicate BGCs or gene pairs that correspond to the all or part of the 
thalianol and marneral BGCs, respectively. Asterisks denote significant deviation from the 
control distribution of neighboring genes; *P ≤ 0.05 (Wilcoxon rank sum tests). b) From top 
to bottom, histogram of maximum overlap between co-expression modules and known 
(characterized) BGCs, TS-CYP gene pairs, EC-mapped BGCs, and antiSMASH BGCs. c) 
Heatmap depicting the correlation of co-expression for a eight-gene region of chromosome 
five in A. thaliana containing an example antiSMASH BGC (BGC30) and TS-CYP gene pair 
(PAIR6). Diagonal number indicates MR score; squares are blank if MR ≥ 100. Heatmap 
scale is the same as in part a. BGC genes are bolded in the heatmap and colored red in the 
accompanying chromosome segments (TS-CYP pair is marked with asterisks). Scale bars 
are in kilobase pairs. d) Network map of a module that maximally overlaps with BGC30. 
Overlapping genes (TS-CYP PAIR6) are colored dark blue. 
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