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Abstract 23 

 24 

Population genetic methods are widely used to retrace the introduction routes of invasive 25 

species. The unsupervised Bayesian clustering algorithm implemented in STRUCTURE is 26 

amongst the most frequently use of these methods, but its ability to provide reliable 27 

information about introduction routes has never been assessed. We used computer simulations 28 

of microsatellite datasets to evaluate the extent to which the clustering results provided by 29 

STRUCTURE were misleading for the inference of introduction routes. We focused on the 30 

simple case of an invasion scenario involving one native population and two independently 31 

introduced populations, because it is the sole scenario with two introduced populations that 32 

can be rejected when obtaining a particular clustering with a STRUCTURE analysis at K=2 33 

(two clusters). Results were classified as “misleading” or “non-misleading”. We then 34 

investigated the influence of two demographic parameters (effective size and bottleneck 35 

severity) and different numbers of loci on the type and frequency of misleading results. We 36 

showed that misleading STRUCTURE results were obtained for 10% of our simulated 37 

datasets and at a frequency of up to 37% for some combinations of parameters. Our results 38 

highlighted two different categories of misleading output. The first occurs in situations in 39 

which the native population has a low level of diversity. In this case, the two introduced 40 

populations may be very similar, despite their independent introduction histories. The second 41 

category results from convergence issues in STRUCTURE for K=2, with strong bottleneck 42 

severity and/or large numbers of loci resulting in high levels of differentiation between the 43 

three populations. 44 

  45 
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Introduction 46 

 47 

Retracing the introduction routes of invasive alien species is a prerequisite to accurately 48 

compare ancestral and derived populations to infer ecological and evolutionary processes 49 

which determine the invasion success. However, identification of the source of an introduced 50 

population is a complex task, because of the highly stochastic nature of the introduction 51 

process (Estoup and Guillemaud, 2010). Many population genetics methods and tools are now 52 

widely used to retrace the introduction routes of invasive species. This approach is somewhat 53 

risky, because the methods involved are often dependent on demographic and genetic 54 

equilibria, but invasions often involve demographic disequilibrium, through strong 55 

bottlenecks followed by rapid population growth, for example. Despite this limitation and the 56 

risks of using population genetics methods inappropriately in the specific context of 57 

biological invasions, only a few of these methods have been formally evaluated (e.g. Estoup 58 

and Guillemaud, 2010; Guillemaud et al., 2010). 59 

 Among population genetics methods, unsupervised individual Bayesian clustering 60 

methods are widely used. The popularity of these methods is due to their ability to infer 61 

genetic structure correctly in many situations and their apparent simplicity (several “click-62 

and-play” software suites are available). STRUCTURE (Pritchard et al., 2000; Falush et al., 63 

2003; Hubisz et al., 2009) is the most frequently used software for clustering, with more than 64 

27,000 citations for the three references indicated above in Google Scholar in May 2017. 65 

STRUCTURE aims to sort individuals in an unsupervised way into K clusters (K being 66 

defined by the user), assuming Hardy-Weinberg/linkage equilibrium within clusters (Porras-67 

Hurtado et al., 2013). In theory, if K is set to the true number of population, samples 68 

belonging to the same population will be classified into the same cluster. More broadly, 69 

because knowing or inferring the true number of population is not always possible, samples 70 
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belonging to the same cluster are at least considered as sharing a close evolutionary history. 71 

STRUCTURE is known to perform well in most cases, but it can be misleading in some 72 

situations, particularly in the presence of isolation by distance (Frantz et al., 2009; Schwartz 73 

and McKelvey, 2009), clusters of very different sizes (Kalinowski, 2011; Puechmaille, 2016), 74 

family groups (Anderson and Dunham, 2008), or high proportions of missing data (Smith and 75 

Wang, 2014). 76 

STRUCTURE and other software suites based on similar methods are frequently used 77 

in the context of introduction routes inferences (Estoup and Guillemaud, 2010; Lawson 78 

Handley et al., 2011; Cristescu, 2015). In some cases, STRUCTURE is used directly to 79 

contrast models of invasion history, mainly for comparisons of scenarios involving either 80 

multiple independent introductions from a native population, or a single introduction from the 81 

native area followed by subsequent introduction(s) from this primary introduced area. In this 82 

context, exploring clustering patterns with only two genetic clusters (K=2) is considered as 83 

informative. Indeed, one of the clustering patterns that can be obtained makes it possible to 84 

reject the hypothesis of independent introductions: if all samples from the invaded areas 85 

group together in one cluster, and all samples from the native area group in the other cluster, 86 

this allows rejecting the hypothesis of independent introductions and is considered to provide 87 

fairly conclusive evidence about a single introduction from the native area (Fig. 1). For 88 

example, Ascunce et al. (2011) explored the worldwide invasion history of the fire ant 89 

Solenopsis invicta with a total of 2,144 colonies sampled from 75 geographic locations, 90 

including 39 native (South America) and 36 invaded (USA, China, Australia) areas. They 91 

found that all samples from invasive populations clustered together when analyzing the data 92 

with STRUCTURE at K=2 and concluded that only one introduction from the native area 93 

occurred. They then used approximate Bayesian computation to test whether the oldest 94 

invasive population in the USA was the source of all other invasive populations in distant 95 
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areas. Similarly, Cordero et al. (2017) analyzed 378 individuals of the Manila clam Ruditapes 96 

philippinarum from 9 geographic locations, including 3 native (Asia) and 6 invaded (North 97 

America and Europe) areas. They found that STRUCTURE analyses at K=2 grouped all 98 

samples of invasive populations into the same cluster. They concluded that a single native 99 

Asian introduction of the species into North America was very likely, and that North America 100 

then became the source of the European outbreak. Such use of STRUCTURE in the context of 101 

invasion biology is very common (e.g. Lachmuth et al., 2010; Papura et al., 2012; Robert et 102 

al., 2012; Bolte et al., 2013; Fontaine et al., 2013; Sanz et al., 2013; Zhang et al., 2014; Yu et 103 

al., 2014; Zhou et al., 2015; Guillemaud et al., 2015; Rewicz et al., 2015; Dieni et al., 2016; 104 

Zhu et al., 2017). However, invasions frequently involve major demographic events, such as 105 

strong bottlenecks followed by genetic drift, which may significantly impair our ability to 106 

determine introduction routes correctly from a given STRUCTURE result. This may account 107 

for the contradictory outcomes sometimes obtained with different population genetics 108 

methods. For example, Mallez et al. (2015) found conflicting results when trying to infer the 109 

origin of the invasive Portuguese outbreak of the pinewood nematode Bursaphelenchus 110 

xylophilus: while FST values suggested a native North American origin, STRUCTURE 111 

suggested an origin from an oldest invasive population in Japan for these samples, because all 112 

invasive samples from Portugal and Japan belonged to one cluster and all native samples 113 

belonged to another cluster while analyzing K=2 patterns. 114 

 In this study, we evaluated the risk of incorrect introduction route inferences based on 115 

STRUCTURE analyses, for the simple case of an invasion scenario involving one native 116 

population and two independently introduced populations. We chose to simulate this scenario 117 

because it is the sole one that can be rejected when obtaining a particular clustering with a 118 

STRUCTURE analysis at K=2 (Fig. 1). We simulated a large number of microsatellite 119 

datasets drawn from populations of various effective sizes and bottleneck severities. 120 
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STRUCTURE analyses were performed on these simulated datasets and the resulting 121 

clustering patterns at K=2 were classified as “misleading” or “non-misleading”. We then 122 

explored the effect of demographic parameters on the likelihood of misleading patterns being 123 

obtained, to identify and predict the situations in which the use of STRUCTURE in a context 124 

of introduction routes inference may be risky. 125 

 126 

Methods 127 

 128 

Scenario description and data simulation 129 

 130 

We chose to simulate a scenario with two independent introductions because it is the only one 131 

that can be rejected from a STRUCTURE analysis when considering two introduced 132 

populations and a native one (Fig. 1). We thus defined a simple historical scenario in which 133 

two invasive populations (populations 2 and 3) were independently founded 50 generations 134 

ago from the same native population (population 1). Both invasive populations were subject 135 

to a demographic bottleneck lasting 20 generations (Fig. 2a). The effective sizes of all three 136 

populations at equilibrium (N) and the effective number of founders of the two invasive 137 

populations during the bottlenecks (NF) could take different values: 10000, 1000, 100, 10 and 138 

2 individuals, with N ≥ NF. Log10(N/NF) was considered to quantify bottleneck severity. 139 

We used DIYABC version 2.0.4 software (Cornuet et al., 2014) to generate 500 140 

microsatellite multilocus genotype datasets for each of the 15 different combinations of N and 141 

NF values, through a coalescent process. For all datasets, a sample of 30 diploid individuals 142 

per population was simulated. We evaluated the effect of the number of loci on the analyses, 143 

by performing simulations with 10, 20 and 100 unlinked microsatellite markers. We used a 144 

generalized stepwise mutation model, with realistic values for all three parameters (Jarne and 145 
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Lagoda, 1996; Estoup et al., 2002): the mean mutation rate (set to 5x10-4), the mean 146 

parameter of the geometric distribution defining the number of microsatellite repeats gained 147 

or lost during mutation events (set to 0.22) and the mean mutation rate for single-nucleotide 148 

insertion/deletion (set to 10-8). In total, we simulated 22,500 datasets (15 sets of parameters x 149 

500 datasets per set x 3 numbers of loci). We developed a pipeline with PERL scripts, 150 

available on request, to automate the processing of the datasets (simulation and subsequent 151 

STRUCTURE and post-STRUCTURE analyses). 152 

 153 

STRUCTURE analyses and misleading clustering 154 

 155 

For each of the 22,500 simulated datasets, a Bayesian clustering analysis was performed in 156 

parallel, on a 120-nodes computer cluster, with STRUCTURE software version 2.3.4 157 

(Pritchard et al., 2000). We chose the admixture model with correlated allele frequencies. We 158 

used default values for all the other parameters. Each run consisted of a burn-in period of 105 159 

Markov chain Monte Carlo (MCMC) iterations, followed by 5x105 MCMC iterations. This 160 

run length is considered to be long enough to obtain precise estimates of parameters 161 

(Pritchard et al., 2010), but we also tried runs of double this length for some combinations of 162 

parameters with 100 loci. The results obtained were the same (data not shown). We carried 163 

out ten replicate runs for each dataset and each value of K, the number of genetic clusters, 164 

with K taking values of 1, 2, 3 and 4. 165 

We investigated the ability of STRUCTURE to clarify introduction routes by focusing 166 

on K=2 analyses. With K=2, the two samples from an introduced population may or may not 167 

cluster together. With the scenario simulated here, in which the two invasive populations 168 

result from two independent introductions, the two samples of the introduced populations 169 

would not be expected to cluster together (Fig. 1). Indeed, the two independent drift pulses at 170 
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work during these two introductions (i.e. the bottleneck events) should make the introduced 171 

populations more genetically different from each other than from the native population, from 172 

which they are separated by a single drift pulse. Consequently, STRUCTURE would yield a 173 

misleading pattern if the native population sample belonged to one cluster and the two 174 

invasive population samples both belonged to the other at K=2. Indeed, this could be 175 

considered evidence for a lack of independence of the two populations, with one invasive 176 

population being the source of the other (Fig. 1; Fig. 2b). Such a clustering pattern, hereafter 177 

referred to as “misleading clustering”, would lead most STRUCTURE users to an incorrect 178 

interpretation, according to which a “successive introductions” scenario would be more likely 179 

than the “independent introductions” scenario. Note that STRUCTURE analyses carried out 180 

on three population samples with K=3 are, theoretically, unsuitable for comparisons of 181 

independent and successive introduction scenarios, because each population sample would 182 

probably form its own cluster (Fig. 1).  183 

For analysis of the 225,000 STRUCTURE runs with K=2 and estimation of the 184 

frequency of misleading clusterings, the STRUCTURE output was characterized as follows. 185 

From the output file of each run, we extracted the proportion of membership QiA and QiB of 186 

population sample i for clusters A and B, respectively (with QiB = 1 - QiA). The QiA and QiB 187 

values were coded as 0, 25, 50, 75 or 100 when belonging to the [0;0.2], ]0.2;0.4[, [0.4;0.6], 188 

]0.6;0.8[ or [0.8;1] intervals, respectively. For each STRUCTURE run, we summarized the 189 

clustering pattern by a code C1A/C2A/C3A, where CiA is the membership code of population 190 

sample i for cluster A. For example, the clustering code would be 0/0/100 for a STRUCTURE 191 

run output in which Q1A=0.12, Q2A=0.05 and Q3A=0.96. Note that belonging to cluster A or B 192 

has no specific meaning, and the subscripts A and B can thus be permuted. For example, 193 

clustering codes 0/0/100 and 100/100/0 summarize the same pattern and are pooled together 194 

as 0/0/100. Given the simulated scenario of independent introductions of the two invasive 195 
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populations, 0/100/100 was the code considered to correspond to misleading clustering (Fig. 196 

2b). All other clustering codes were considered non-misleading in the context of introduction 197 

routes inference. Focusing on the codes instead of the proportions of membership made it 198 

possible to pool together slightly different clustering patterns in the same category. 199 

Given the stochastic processes involved in the MCMC analysis, the ten replicated 200 

STRUCTURE runs performed on a single dataset could conceivably generate different 201 

results, a phenomenon called genuine multimodality (Jakobsson and Rosenberg, 2007; Porras-202 

Hurtado et al., 2013). Clustering results for a given dataset were considered to be 203 

homogeneous if the same clustering code (as defined above) was obtained in all ten runs. 204 

They were otherwise considered to be heterogeneous. We evaluated the global occurrence of 205 

misleading clustering in the analyses of the simulated datasets, and focused on two critical 206 

categories of misleading clusterings (Fig. 2c): 207 

(i) “Misleading homogeneous clusterings”: for one dataset, all ten runs homogeneously 208 

provide the misleading clustering pattern 0/100/100. 209 

(ii) “Misleading heterogeneous clusterings”: for one dataset, the ten runs are not 210 

homogeneous (i.e. genuine multimodality is observed) and the misleading clustering pattern 211 

0/100/100 predominates. 212 

For each dataset, we also inferred the best value of K, as follows: if the mean natural 213 

logarithm of the likelihood of the data ln(P(X|K)) with K in [1, 2, 3, 4] is maximal for K=1, 214 

then the inferred number of clusters is 1; otherwise, we determined the best value of K (either 215 

K=2 or K=3) by the ΔK method (Evanno et al., 2005). 216 

 217 

Effect of demographic parameter values on misleading clustering 218 

 219 
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For each number of simulated microsatellite loci (10, 20 or 100), the variables  “proportion of 220 

analyses yielding misleading homogeneous clusterings” and “proportion of analyses yielding 221 

misleading heterogeneous clusterings” were analyzed independently with a generalized linear 222 

model, using a binomial probability distribution of the residual error and a logit link function. 223 

The following factors were included as fixed effects: effective population size N and 224 

bottleneck severity log10(N/NF). We used the Akaike information criterion (AIC) to select the 225 

best model from the various models of different complexity. Analyses were performed with R 226 

software V3.2.2 (R Development Core Team, 2015). 227 

 228 

Link between summary statistics of genetic diversity and STRUCTURE patterns 229 

 230 

We summarized each simulated dataset, by using ARLSUMSTAT version 3.5 software 231 

(Excoffier and Lischer, 2010) to compute the mean number of alleles and the mean expected 232 

heterozygosity in each population sample, and the pairwise FST values between each pair of 233 

populations. We also used in-house PERL scripts to compute (i) the mean individual 234 

assignment likelihood (Rannala and Mountain, 1997) (Li→j) of each invading population 235 

(samples 2 and 3) to each possible source population (i.e. either the native population or the 236 

other invasive population), and (ii) the number of alleles shared by the invasive population 237 

samples. 238 

 For the comparison of datasets leading to “misleading homogeneous clusterings”, 239 

“misleading heterogeneous clusterings” and “non-misleading clusterings”, we specifically 240 

explored a few genetic diversity summary statistics: (i) expected heterozygosity of the native 241 

population sample, (ii) mean expected heterozygosity of both invasive population samples 242 

and (iii) the ratio of alleles shared by the two invasive population samples to the total number 243 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 1, 2017. ; https://doi.org/10.1101/094029doi: bioRxiv preprint 

https://doi.org/10.1101/094029
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

of alleles in the two samples. For each summary statistic and each number of loci, pairwise 244 

Mann-Whitney tests with Holmes correction for multiple comparisons were performed. 245 

We also compared STRUCTURE results with those obtained by two other methods 246 

traditionally used to identify source populations: (i) the “FST-based method” and the (ii) the 247 

“assignment likelihood-based method” (Genton et al., 2005; Pascual et al., 2007; Ciosi et al., 248 

2008; Tepolt et al., 2009; Thibault et al., 2009; Papura et al., 2012; Mallez et al., 2015; Dieni 249 

et al., 2016). For an “independent introductions” scenario, we would expect the FST between 250 

the two invasive population samples to be larger than the FST values between the native 251 

population and each of the invasive population samples (i.e. FST 2-3 > FST 1-2 and FST 2-3 > 252 

FST 1-3). We would also expect both invasive population samples to be best assigned to the 253 

native population sample (i.e. L2→1 > L2→3 and L3→1 > L3→2). 254 

For each dataset, a global exact test for population genotypic differentiation (Raymond 255 

& Rousset, 1995a) was carried out with GENEPOP software version 4.3 (Raymond & 256 

Rousset, 1995b). If a dataset displayed no population differentiation, we made the prudent and 257 

standard decision of not trying to infer any evolutionary relationship between the population 258 

samples. Consequently, such datasets were considered to generate non-misleading results for 259 

all methods. 260 

 261 

Results 262 

 263 

Effect of demographic parameter values on simulated datasets 264 

 265 

The 500 simulated datasets for each parameter set are summarized with some common 266 

statistics in Table S1. Decreasing effective population sizes (N) generate lower intra-267 

population and higher inter-population genetic diversities. Increasing bottleneck severity 268 
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(log10(N/NF)) generates lower intra-population genetic diversities for both invasive samples, 269 

and overall higher inter-population genetic diversity. The main impact of a larger number of 270 

loci is a decrease in the variance of all summary statistics. Overall, the chosen parameter 271 

values (for N and NF) yield a large number of different combinations of genetic diversity for 272 

evaluation of the ability of STRUCTURE software to explore introduction routes in different 273 

situations. 274 

 275 

Overall STRUCTURE results 276 

 277 

The best value of K inferred was most frequently three (Fig. 3 and Fig. S1). The proportion of 278 

datasets for which the best number of clusters was K=3 increased strongly with increasing 279 

numbers of loci (41.9%, 50.6% and 74.9% for 10, 20 and 100 loci, respectively). More than 280 

80% of the simulated datasets for which K=3 was inferred by the ΔK method had 281 

heterogeneous clustering codes (i.e. genuine multimodality) at K=2 (Fig. 3). By contrast, 282 

when the number of inferred clusters was one or two, multimodality at K=2 was found in less 283 

than 10% of all datasets. 284 

 285 

Occurrence of misleading STRUCTURE patterns 286 

 287 

Three categories of clustering codes at K=2 accounted for more than 95% of all runs (see 288 

Table S2 for details): (i) clusterings in which all populations were fully admixed and 289 

undistinguishable with STRUCTURE (i.e. the 50/50/50 code), (ii) clusterings in which the 290 

two invasive samples belonged to different clusters (i.e. the C1A/100/0 and C1A/0/100 codes) 291 

and (iii) the misleading clusterings defined earlier (see Methods), in which the two invasive 292 
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samples belonged to the same cluster, whereas the native sample belong to the other cluster 293 

(i.e. the 0/100/100 code, Fig. 2b). 294 

Overall, the proportion of datasets with at least one misleading clustering pattern over 295 

the ten STRUCTURE runs (“misleading homogeneous clusterings”, “misleading 296 

heterogeneous clusterings” and non-misleading clusterings with at least one run yielding a 297 

misleading pattern) was 15.31%, 22.07% and 47.01% for 10, 20 and 100 simulated loci, 298 

respectively (Fig. 4a and Fig. S2), and very similar proportions were obtained with more (0.1 299 

and 0.9) and less (0.3 and 0.7) stringent QiA cutoff values (instead of 0.2 and 0.8 for QiA) for 300 

the encoding of pattern results (Table S3). 301 

The frequency of “misleading homogeneous clusterings” was similar for different 302 

numbers of loci, and was rather low overall (between 4.24% and 5.59% of the datasets, Fig. 303 

4a). “Misleading heterogeneous clusterings” were also infrequent, but their frequency 304 

increased with the number of loci: 2.71%, 3.96% and 8.41% for 10, 20 and 100 loci, 305 

respectively (Fig. 4a). Overall, 7.45%, 9.55% and 12.65% of datasets for 10, 20 and 100 loci, 306 

respectively, yielded misleading results. For some combinations of parameters, this 307 

proportion reached 36.8% of datasets (Fig. S2). K=2 was most often (70%) inferred for 308 

datasets yielding “misleading homogeneous clusterings”, and K=3 was most often (91%) 309 

inferred for datasets leading to “misleading heterogeneous clusterings” (Fig. 4b). 310 

 311 

Effect of demographic parameter values on STRUCTURE results 312 

 313 

For the response variable “proportion of analyses yielding misleading homogeneous 314 

clusterings”, the best model according to the AIC always included the effective population 315 

size at equilibrium N, which was highly significant whatever the number of simulated loci 316 

(Table 1). Lower N values resulted in a higher proportion of misleading homogeneous 317 
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clusterings (Fig. S3a). The best model also included bottleneck severity, log10(N/NF), and the 318 

interaction between the two main factors for 10 and 100 loci. Bottleneck severity was 319 

significant only for 10 loci, and had a positive effect: the stronger the bottleneck, the higher 320 

the proportion of misleading homogeneous clusterings. The interaction between the two 321 

factors was significant in both models (Table 1 and Fig. S3a). 322 

 For the response variable “proportion of analyses yielding misleading heterogeneous 323 

clusterings”, the full model was selected for all numbers of simulated loci (Table 1). The 324 

effective population size at equilibrium N was significant in all cases, and had a negative 325 

effect (Fig. S3b). Bottleneck severity log10(N/NF) was also strongly significant for all 326 

numbers of loci, but its effect was positive for 10 and 20 loci and negative for 100 loci. The 327 

interaction between the two factors was significant for 20 and 100 loci, with a positive effect 328 

(Table 1). 329 

 330 

Links between summary statistics for genetic diversity and STRUCTURE patterns 331 

 332 

The diversity of the native population, as assessed by its expected heterozygosity in the 333 

datasets with “misleading homogeneous clusterings”, was lower than that for “non-334 

misleading” datasets, whatever the number of loci considered (Fig. 5). On the contrary, no 335 

clear trend could be observed for datasets with “misleading heterogeneous clusterings”. For 336 

these datasets, the mean expected heterozygosity was relatively high with 10 loci, 337 

intermediate with 20 loci and low with 100 loci, but, in each case, extreme low and high 338 

values were observed. The diversity of invasive populations, which was affected by both the 339 

diversity of the native population and bottleneck severity, was low for both kinds of 340 

misleading clusterings (Fig. 5). In comparisons with the “non-misleading” datasets, the 341 

proportion of alleles shared by the two invasive populations was higher for the datasets with 342 
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“misleading homogeneous clusterings”, and lower for “misleading heterogeneous 343 

clusterings”, unless 100 loci were considered (Fig. 5). 344 

Outcomes for comparisons of STRUCTURE clusterings with results from FST-based 345 

and assignment likelihood-based methods were very mixed, depending on the type of 346 

“misleading clusterings” considered. 86.5%, 93.6% and 99.1% of datasets with “misleading 347 

homogeneous clusterings” in STRUCTURE provided misleading results with at least one of 348 

the methods based on FST or assignment likelihood, when considering 10, 20 and 100 loci, 349 

respectively (Fig. S4). By contrast, datasets with “misleading heterogeneous clusterings” in 350 

STRUCTURE analysis were rarely (for 10 and 20 loci), or at least not as strongly (for 100 351 

loci), associated with misleading results with the other methods: this was the case for 15.2%, 352 

24.9% and 67.5% of these datasets for 10, 20 and 100 loci, respectively (Fig. S4). Note that, 353 

overall, STRUCTURE generates less misleading results than the other two methods. 354 

 355 

Discussion 356 

 357 

We used simulated microsatellite datasets for a particular invasion scenario to determine 358 

whether the method implemented in the widely used STRUCTURE software (Pritchard et al., 359 

2000) could mislead users trying to infer introduction routes. We focused on a scenario with 360 

two independent introductions from a native population because this scenario can be rejected 361 

when obtaining some particular clustering results, which is not true for successive 362 

introductions scenarios when the chronology of introductions is not known. We found that, 363 

for a true scenario of two independent invasions from a single source, STRUCTURE runs 364 

could give misleading clustering patterns (i.e. the two invasive populations clustered together 365 

at K=2). In about 10% of all simulated datasets, the results led to incorrect interpretation, with 366 

all (“homogeneous misleading clusterings”) or most (“heterogeneous misleading clusterings”) 367 
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of the runs for a given dataset yielding the misleading pattern. Some combinations of 368 

demographic parameters resulted in higher frequencies of misleading results with 369 

STRUCTURE, and, contrary to expectations, increasing the number of loci also lead to an 370 

overall increase in the frequency of misleading results. Our results suggested that the two 371 

types of misleading clustering hazard, homogeneous and heterogeneous misleading 372 

clusterings, were very different. We suggest that (i) “homogeneous misleading clusterings” 373 

probably arise from a large probability of independently drawing the same alleles twice from 374 

a native population with low genetic diversity and that (ii) “heterogeneous misleading 375 

clusterings” probably randomly arise from convergence problems in STRUCTURE. 376 

For “homogeneous misleading clustering”, the effective size of the native population 377 

has the strongest effect: the smaller this effective population size, the higher the risk of 378 

obtaining misleading clustering patterns over all STRUCTURE runs. Such “homogeneous 379 

misleading clustering” occurred principally when the two invasive populations shared a large 380 

proportion of alleles, and the FST-based and likelihood assignment-based methods frequently 381 

yielded the same clustering pattern. Accordingly, the number of clusters inferred by the 382 

Evanno’s method was most frequently K=2. Invasive populations encounter founder effects 383 

and genetic drift (Simberloff, 2009; Lawson Handley et al., 2011), which are random 384 

processes. The probability of independently drawing the same alleles twice, with similar 385 

frequencies, from a given native population is usually low (when random processes are at 386 

work), but can actually be quite large when the diversity of the native population is itself low. 387 

This is particularly true in cases of low heterozygosity (Allendorf, 1986), in which one or a 388 

few alleles occur at high frequency at each locus.  389 

The interpretation of “heterogeneous misleading clusterings” is less clear-cut, but 390 

several lines of evidence suggest the involvement of convergence issues in STRUCTURE 391 

runs. Indeed, “heterogeneous misleading clusterings” at K=2 most often occurred when the 392 
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best K value was undoubtedly 3, which corresponds to the true number of population. More 393 

generally, this category of misleading clusterings was associated with a better ability to 394 

differentiate the three populations. This may explain why the proportion of “heterogeneous 395 

misleading clusterings” was higher for a larger number of loci, for which more information is 396 

available to properly differentiate populations (Evanno et al., 2005; Waples and Gaggiotti, 397 

2006; Hubisz et al., 2009). Besides, for 10 and 20 simulated loci, the proportion of 398 

“heterogeneous misleading clusterings” was positively related to bottleneck severity, which 399 

accentuates differences between populations. Overall, we suggest that “heterogeneous 400 

misleading clustering” probably results from a convergence problem in the MCMC procedure 401 

of STRUCTURE: when an inappropriate number of clusters is imposed — here K=2 whereas 402 

the data are more consistent with K=3 — multimodalities are often observed (Pritchard et al., 403 

2000; Jakobsson and Rosenberg, 2007), and sometimes, by chance, a large proportion of 404 

misleading clustering events occur in the various runs, resulting in “heterogeneous misleading 405 

clustering”. 406 

 407 

Conclusion and general recommendations 408 

 409 

This study was based on a single simple invasion scenario with only three populations. More 410 

complex scenarios should be studied in the future, but this study constitutes a crucial first 411 

step, providing important information about the use of clustering methods in the context of 412 

biological invasions. 413 

We found that STRUCTURE yielded misleading results, but at a low frequency. 414 

However, our results suggest that some situations should be analyzed with care. First, 415 

invasion biologists should be very cautious if the diversity of the native population is low: 416 

independent introductions from a single source population with low genetic diversity are 417 
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likely to produce genetic signals similar to that expected for successive introductions. Such 418 

misleading results are difficult to spot, as they are consistent with the results of other 419 

methods, such as FST- or assignment likelihood-based methods. In this context, quantitative 420 

methods, such as approximate Bayesian computation, may be very useful. Second, 421 

multimodal STRUCTURE results should be interpreted very cautiously, particularly if large 422 

numbers of loci are used. This is sobering news, because many published studies interpret 423 

STRUCTURE results at different K values, including those displaying genuine multimodality. 424 

This problem is not specific to the exploration of introduction routes and has much wider 425 

implications (Meirmans, 2015). Multimodality is often a sign of poor convergence of 426 

STRUCTURE runs, and is therefore likely to lead to results of limited biological meaning. In 427 

such situations, other methods (e.g. FST-based, assignment likelihood-based) may make it 428 

possible to determine whether the STRUCTURE results are misleading or not. More 429 

generally, it is important to keep in mind that STRUCTURE results have to be interpreted 430 

cautiously (Pritchard et al., 2010) and, in the context of invasion routes inferences, it should 431 

rather be used as a tool to clarify the scenery and decrease the number of genetic units from a 432 

large number of population samples to a few main clusters before quantitative analyses, such 433 

as approximate Bayesian computation, are performed (Lombaert et al., 2014). 434 
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Tables 579 

 580 

Table 1: Results obtained with the best model selected from the various statistical models run for the response variables “proportion of analyses 581 

yielding homogeneous misleading clusterings” and “proportion of analyses yielding heterogeneous misleading clusterings”. Note: significant P-582 

values, for a 5% threshold of significance, are shown in bold 583 
Response variable Number of loci Factors of selected model Estimate Std error z-value (df=7499) P 

Proportion of analyses yielding homogeneous misleading clusterings     

       

 10 N -0.004 0.0005 -7.931 <0.0001 

  log10(N/NF) 0.399 0.084 4.746 <0.0001 

  N x log10(N/NF) 0.001 0.0002 5.185 <0.0001 

       

 20 N -0.005  0.0005 -9.658    <0.0001 

       

 100 N -0.0003  0.00006 -5.757  <0.0001 

  log10(N/NF) -0.194 0.259 -0.749 0.4540 

  N x log10(N/NF) -0.028 0.005 -5.190 <0.0001 

       

Proportion of analyses yielding heterogeneous misleading clusterings     

       

 10 N -0.0002 0.00007 -3.496 0.0005 

  log10(N/NF) 1.107 0.114 9.672 <0.0001 

  N x log10(N/NF) 0.00004 0.00002 1.827 0.0677 

       

 20 N -0.0004 0.00006 -5.977 <0.0001 

  log10(N/NF) 0.574 0.079 7.178 <0.0001 

  N x log10(N/NF) 0.00009 0.00002 4.854 <0.0001 

       

 100 N -0.0009  0.0001  -9.666    <0.0001 

  log10(N/NF) -0.801 0.068 -11.715 <0.0001 

  N x log10(N/NF) 0.0003 0.00003 11.245 <0.0001 

584 
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Figures 

 

Figure 1: Schematic representations of the main STRUCTURE clustering patterns that can be 

obtained at K=3 and K=2 according to different invasion scenarios (either independent or 

successive) involving one native and two invasive populations. Other patterns with admixture 

are also possible but are not shown here because they are less informative in the context of 

invasion routes. At K=3, with 3 samples, the same pattern (i.e. each sample constitutes a 

cluster) is likely to be found whatever the scenario, and thus no valuable information about 

the origin of introduced populations can be deduced. On the contrary, patterns obtained at 

K=2 can be informative: whereas clustering patterns a and b can be obtained in both 

independent and successive scenario, pattern c should only be found if introductions are 

successive. If obtained, this pattern c would lead a STRUCTURE user to eliminate the 

independent scenario as a likely one. 
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Figure 2: Simulated scenario and main observed STRUCTURE patterns at K=2. (a) 

Graphical representation of the simulated scenario in which two invasive populations 

(populations 2 and 3) are independently derived from the native population (population 1). N 

is the effective size at equilibrium and NF is the effective number of founders during the 

bottlenecks. (b) Schematic representations of the main patterns obtained in the STRUCTURE 

runs for K=2 and their associated summarized codes. The misleading pattern, inconsistent 

with the simulated scenario, is boxed. (c) Five examples of clusterings obtained over ten 

STRUCTURE runs for K=2, and their associated classification. In this study, we focused on 

“misleading homogeneous clusterings” and “misleading heterogeneous clusterings”, in which 

“misleading patterns” were found in all ten runs or predominated, respectively, for a given 

dataset. Runs displaying the misleading pattern are boxed. 
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Figure 3: Distribution of the best number of clusters K inferred by Evanno’s method for each 

number of loci, and the proportion for which there was an absence (homogeneous clustering) 

or presence (heterogeneous clustering) of genuine multimodality in the ten STRUCTURE 

runs carried out at K=2. 
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 Figure 4: (a) Proportion of datasets with and without misleading patterns (Fig. 2b) for the ten 

STRUCTURE runs at K=2. (b) Best inferred number of clusters K obtained by Evanno’s 

method for each number of loci within the datasets displaying misleading homogeneous (left) 

and misleading heterogeneous clusterings (right). 
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 Figure 5: Tukey boxplots representing population genetics summary statistics for simulated 

datasets yielding non-misleading clusterings, misleading homogeneous clusterings or 

misleading heterogeneous clusterings. Within each frame, plots labeled with different letters 

are significantly different at the 5% level of significance (Mann-Whitney tests). 
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