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Abstract

Complex learned behaviors must involve the integrated action of distributed
brain circuits. While the contributions of individual regions to learning have
been extensively investigated, understanding how distributed brain networks
orchestrate their activity over the course of learning remains elusive. To
address this gap, we used fMRI combined with tools from dynamic network
neuroscience to obtain time-resolved descriptions of network coordination
during reinforcement learning. We found that learning to associate visual cues
with reward involves dynamic changes in network coupling between the
striatum and distributed brain regions, including visual, orbitofrontal, and
ventromedial prefrontal cortex. Moreover, we found that flexibility in striatal
network dynamics correlates with participants’ learning rate and inverse
temperature, two parameters derived from reinforcement learning models.
Finally, we found that not all forms of learning relate to this circuit: episodic
memory, measured in the same participants at the same time, was related to
dynamic connectivity in distinct brain networks. These results suggest that
dynamic changes in striatal-centered networks provide a mechanism for
information integration during reinforcement learning.

Significance Statement

Learning from the outcomes of actions -- referred to as reinforcement learning --is
an essential part of life. The roles of individual brain regions in reinforcement
learning have been well characterized in terms of the updating of values for actions
or sensory stimuli. Missing from this account, however, is a description of the
manner in which different brain areas interact during learning to integrate sensory
and value information. Here we characterize flexible striatal-cortical network
dynamics that relate to reinforcement learning behavior.
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Introduction

Learning from reinforcement is central to adaptive behavior and requires
continuous and dynamic integration of sensory, motor, and reward information
over time. Major progress has been made in understanding how individual brain
regions support reinforcement learning. However, remarkably little is known about
how these brain regions interact during learning, how their interactions change
over time, and how these dynamic circuit-level changes relate to successful learning.

In a typical reinforcement learning task, participants use reinforcement over
hundreds of trials to associate cues or actions with their most probable outcome
(e.g. (1-4)). Computationally, this is captured by so-called “model-free”
reinforcement learning algorithms, a class of models that provide a quantitative and
mechanistic framework for describing behavior (1, 5, 6). These models have also
been successful in accounting for neuronal signals underlying learning behavior (3,
7, 8), demonstrating a role for the striatum and its dopaminergic inputs in updating
reward predictions. However, to support reinforcement learning, the striatum must
also integrate visual, motor, and reinforcement information over time. Such a
process is likely to involve dynamic coordination across a number of different
circuits interconnected with the striatum.

The idea that the striatum serves an integrative role in learning and cognition is not
new (9-15). Anatomically, the striatum is well positioned for integration: it receives
extensive input from many regions of cortex and projects back, through thalamus, to
motor cortex (15-18). However, while the idea that the striatum serves such a role is
anatomically and theoretically appealing, it has been very difficult to test this
possibility empirically. Thus, whether the striatum interacts with other sensory,
motor and cognitive regions during learning, and how these network-level
interactions reconfigure over the course of learning, remains unknown.

Understanding the process of integration at the network level has been hampered
by a lack of tools capable of quantifying the reconfiguration of those circuits in a
data-driven fashion as humans adapt their behavior. Until now, most studies of
large-scale brain connectivity have focused on static descriptions of networks (19-
22), limiting their ability to link networks to cognitive processes (23). Yet, there is
increasing recognition of the importance of a more dynamic perspective on circuit
configuration. Even seemingly stable networks undergo temporal changes (24-26),
implying that static descriptions fail to capture transient patterns of co-activation
that may be essential for complex behavior.

Here we aimed to address this gap. We take advantage of recent advances in a
dynamic formulation of graph theory and its application to neuroimaging data, an
emerging field known as dynamic network neuroscience (23, 27). This formulation
has been spurred by the development of tools like multi-slice community detection
(28), which can be used to infer activated circuits and their reconfiguration from
neuroimaging data collected as participants perform cognitively demanding tasks
(29-31). These tools have recently been leveraged to understand the role of dynamic
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brain-wide connectivity in motor skill learning (29, 30, 32). A key measure from this
field is an index of a brain region’s tendency to communicate with different
networks over time, known as “flexibility” (29, 31). Prior work has shown that
flexibility across a number of brain regions predicts individual differences in the
speed of acquisition of a simple motor task (29). Network flexibility has also been
shown to correlate with working memory and other dimensions of executive
function (31). But its role in updating choice behavior based on reinforcement - an
inherently dynamic process - is not known.

Guided by the anatomical and computational considerations outlined above, we
hypothesized that temporal network dynamics, indexed by flexibility, support key
processes underlying reinforcement learning. Specifically, we reasoned that
reinforcement learning is associated with dynamic coupling between areas of the
striatum and cortical regions processing sensory and value information. We
hypothesized that (1) reinforcement learning involves flexible network coupling
between the striatum and distributed brain circuits; and (2) that these circuit
changes relate to measurable changes in behavior, specifically learning performance
(accuracy, within subjects) as well as learning rate and inverse temperature,
individual difference measures derived from reinforcement learning models. We
were particularly interested in learning rate because it quantifies the extent to
which a learner weighs reinforcement from individual trials to update responses.
Thus, learning rate is a good index of integration across trials: lower learning rates
indicate that value is updated over the course of many trials. Inverse temperature
measures how strongly an individual utilizes this learned value in decision-making.

Our final hypothesis was concerned with the relationship between network
flexibility and a distinct form of learning: episodic memory for individual events.
The rationale for testing episodic memory was two-fold. First, it provided a control
comparison for time-on-task effects. Second, it was a question of interest given that
very little is known about how episodic memory is supported by network dynamics.
Given the extensive literature indicating that separate brain regions support
episodic memory vs. reinforcement learning (33, 34), we hypothesized (3) that a
distinct set of regions would exhibit a relationship between network flexibility and
episodic memory.

To test these hypotheses, we used functional magnetic resonance imaging (fMRI) to
measure changes in brain network structure while participants engaged in a
reinforcement learning task (Fig. 1A). On each trial, participants were presented
with a visual cue, made a choice indicated by a key press, and then received
feedback. We used a task for which behavior has been well described by
reinforcement learning models (35), and which is known from fMRI to involve the
striatum (35) and from patient studies to depend on it (34). The task also included
trial-unique images presented during feedback, allowing us to test the role of
network dynamics in episodic memory. Each of these images coincided with
reinforcement, but they were incidental to the learning task (Fig. 1B).
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Figure 1. Task design and learning performance. Participants performed a
reinforcement learning task while undergoing fMRI (35). A. Learning phase.
Participants were instructed to associate each of 4 cues (butterflies) with one of two
outcomes (flowers). Feedback was probabilistic, with positive feedback following the
choice on 80% of correct trials and on 20% of incorrect trials. B. Memory test. Each
feedback event was presented with a unique image. Thirty minutes following the MRI
scan, participants were given a surprise episodic memory test, testing recognition and
confidence for images seen during the scan, intermixed with novel images. C. Average
performance on the learning task improved linearly, suggesting continuous learning
across all trials.

Results

Reinforcement learning performance. Participants learned the correct response for
each cue. The percentage of optimal responses increased continuously from 68% in
the first block to 76% in the final block, on average. Using a mixed-effects logistic
model, we observed a significant effect of block on learning performance, as
measured by the proportion of optimal responses during each block (Fig. 1C;

B = 0.28, Standard Error (S.E.) =0.11, p = 0.01 (Wald approximation, (36)). We also
fit reinforcement learning models (1, 5) to participants' trial-by-trial choice
behavior, utilizing hierarchical Bayesian models to aid estimation and pool
information across subjects ((37), SI).

Of particular interest was the learning rate , a parameter that indexes the extent to
which an individual weighs feedback from single trials. A low learning rate indicates
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Figure 2. Flexibility in the striatum relates to learning performance within
subjects. A. Mixed-effects model fit for the association between network flexibility in an
a priori striatum ROI and learning performance. The black line represents the fixed effect
estimate and the gray band represents the 95% confidence interval for this estimate,
while color lines represent subject-level random effects estimates. See SI for a Bayesian
extension of this model and full model fits with uncertainty for individual subjects. B.
This effect was not distinguishable across regions of the striatum (SI; bar plots and error
bars represent means and standard errors).

that an individual is combining choice value over multiple experiences. Also of
interest was inverse temperature 5, which measures how strongly an individual
relies on learned value overall. The average learning rate (a) was 0.41 with a
standard deviation of 0.14; the average inverse temperature () was 3.84, with a
standard deviation of 4.31 (see SI for details about models and fit). These @ and
parameters provide a mechanistic probe of individual differences in learning, which
allowed us to characterize the relationship between network dynamics and distinct
sources of learning variability.

Flexibility in the striatum relates to reinforcement learning. As a first step, we sought
to characterize spatial and temporal properties of dynamic brain networks during
the task. We constructed dynamic functional connectivity networks for each subject
in 50 s windows, and used a recently developed multi-slice community detection
algorithm (28) to partition each network into dynamic communities: groups of
densely connected brain regions that evolve in time (SI). Our analyses included 110
cortical and subcortical ROIs from the Harvard-Oxford atlas, including bilateral
nucleus accumbens, caudate, and putamen subregions of the striatum. We computed
a flexibility statistic for each learning block, which measures the proportion of
changes in each region’s allegiance to large-scale communities over time (29).
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To test whether flexibility in the striatum’s network coupling is related to learning
performance, we fit a mixed effects logistic regression (36) using average flexibility
across the Harvard Oxford striatum ROIs during individual learning blocks to
predict performance. Striatal flexibility computed for each block was significantly
associated with the proportion of optimal responses (Fig. 2A; § = 9.45, S.E. = 2.75,
p < 0.001 (Wald approximation (36))). This effect could not be distinguished
statistically across subregions of the striatum (Fig. 2B, SI). For appropriate
posterior inference, we fit a Bayesian extension of this model (38) (SI), to generate a
posterior 95% credible interval of [3.53, 14.99] (Fig. S4). To ensure that this
approach reflected a within-subjects relationship between flexibility and learning,
we included each subject’s average flexibility across blocks in the model. This model
produced similar results (f = 9.79, S.E. = 2.82, p = 0.0005), indicating that
increases in dynamic striatal connectivity are associated with increased
reinforcement-learning performance.

Individual differences in reinforcement learning parameters correlate with striatal
flexibility. We next explored the relationship between flexibility and reinforcement
learning model parameters, which account for individual differences in learning
behavior. We were most interested in the learning rate a, which quantifies the
extent to which individuals weigh feedback from single trials when updating the
value of a choice (1, 5). Learning rate was negatively correlated with network
flexibility in the nucleus accumbens (Spearman’s correlation coefficient p = -0.29,
p(p>0) = 0.04, Fig. 3A) and to a lesser extent the caudate (p =-0.24, p(p>0) = 0.09
Fig. 3A); that is, participants with a lower learning rate (indicating more integration
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Figure 3. Flexibility in the striatum relates to reinforcement learning parameters
across subjects. Violin plots showing posterior distributions of the correlation between
parameters from RL models and flexibility in striatal regions. A. Learning rate, which
indexes reliance on single trials for updating value, is negatively correlated with
flexibility in the nucleus accumbens and caudate. B. Inverse temperature, which
measures overall use of learned value, is positively correlated with flexibility in the same
regions. Plotting the joint distribution and utilizing partial correlations indicate that
these effects are separable (Fig. S5).
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of value across multiple trials) had more flexibility in these regions. Inverse
temperature was positively correlated with flexibility in the same regions
(accumbens p = 0.30, p(p<0) < 0.001; caudate p = 0.33, p(p<0) = 0.002), indicating
that subjects relying more on learned value overall showed more dynamic striatal
connectivity (Fig. 3B). The effects of these two parameters were separable, as
indicated by partial correlations and the joint posterior distribution (Fig. S5).

Together, these results demonstrate that reinforcement learning involves dynamic
changes in network structure centered on the striatum. They also suggest that
distinct sources of individual differences in learning - reliance on individual trial
feedback and overall use of learned value - are related to differences in this dynamic
striatal coupling. We next sought to examine which regions the striatum connects
with during the task, and how such connections change over the course of learning.

Striatal allegiance with visual and value regions increases during learning. While an
increase in flexible striatal network coupling is associated with learning within and
between individuals, this leaves open the critical question of which regions are
involved in this process. To address this question we used a dynamic graph theory
metric known as module allegiance, which measures the extent to which each pair of
regions shares a common network during a given time window (30). Using the
community labels described above, we first estimated the allegiance between the
striatal subregions and every other ROI in the brain for each time window, and then
probed their relationship to learning.

We found that overall, the nucleus accumbens and the caudate showed stronger
connectivity with midline prefrontal, temporal, and retrosplenial structures, while
the putamen exhibited relatively stronger connectivity with motor cortices (Fig.
$6). To address the key question of which regions changed coupling with
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Figure 4. Allegiance between the striatum and visual cortex increases over the course of
learning. A. Module allegiance between the striatum and a number of visual cortex ROIs
changes over time (whole-brain corrected, pFDR < 0.05). B. Striatal allegiance increases in each
of these visual ROIs (color lines represent the mean for each ROI passing FDR threshold across
subjects and striatal regions). Allegiance is averaged across striatal sub-regions. See Fig. S7 for
results presented by subregion.
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Figure 5. Flexibility in cortical regions is related to learning performance. Regions
passing FDR correction following a univariate whole-brain analysis using the same
mixed-effects model as the a priori striatum ROI. Regions passing this threshold include
left motor cortex, bilateral parietal cortex, and right orbitofrontal cortex. See Table S1
and Fig. S9 for a full list of regions and an exploratory uncorrected map.

subregions of the striatum during learning, we ran whole-brain searches of separate
mixed-effects ANOVAs for each region, predicting striatal allegiance with learning
block. This analysis does not assume any shape or direction to these temporal
changes. A number of regions of visual cortex showed an increase in striatal
allegiance over the course of learning (all FDR p<0.001, Fig. 4). Examining
subregions of the striatum (correcting for multiple comparisons across allegiance of
all ROIs with all striatal regions) revealed increases in visual coupling in the nucleus
accumbens and putamen, as well as between the putamen and orbitofrontal and
ventromedial prefrontal cortices, regions known for their role in value processing
(39)(Fig. S7).

Flexibility relates to learning in a distributed set of brain regions. In a number of
reports on dynamic networks, averaged whole brain flexibility has been used as a
marker of global processes and associated with cognition (29, 40). Indeed, we found
that whole-brain flexibility related to learning performance within subjects

(8 = 11.84,S.E.=3.91, p<0.005) and, to some extent, learning rate across subjects
(Fig. S8, p =-0.26, p(p>0) = 0.07). We were thus interested in regions outside of the
striatum that exhibit dynamic connectivity related to learning.

We conducted the learning performance analysis for each of the 110 ROIs, in
addition the analysis in the striatum reported above (Fig. 2). This analysis again
revealed a significant effect of flexibility in striatal subregions (the right putamen
and left caudate) surviving FDR correction. In addition, the whole-brain corrected
results, presented in Fig. 5, indicate that network flexibility in regions of the motor
cortex, parietal lobe, and orbital frontal cortex (among others, see Table S1 and Fig.
S9 for full list and uncorrected map), are associated with reinforcement learning.
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Figure 6. Network flexibility in medial prefrontal and parahippocampal cortex
relates to episodic memory. An exploratory analysis showed effects of network
flexibility on episodic memory performance in medial prefrontal and temporal lobes. A.
Average memory (proportion remembered) across blocks. Participants’ recollection
accuracy varied across blocks. Line represents group average and bars represent
standard errors. B. A number of medial prefrontal regions as well as the right
parahippocampal gyrus passed an exploratory uncorrected threshold of p<0.05 for the
effect of flexibility on subsequent episodic memory. The effect in the left paracingulate
gyrus survived FDR correction.

Flexibility in medial cortical regions is associated with episodic memory. Finally, our
task also included trial-unique objects presented simultaneously with
reinforcement, allowing us to measure subjects’ episodic memory, a process thought

to rely on distinct cognitive and neural mechanisms to feedback-based incremental
learning. We tested whether network flexibility was associated with episodic
memory for these trial-unique images, as assessed in a later surprise memory test
(Fig. 1). Having a measure of episodic memory for the same trials in the same
participants allowed us to determine whether striatal network dynamics are
correlated with any form of learning, or whether these two forms of learning,
occurring at the same time, are related to distinct network dynamics.

Behaviorally, participants’ memory was better than chance (d-prime = 0.93, t21 =
7.27,p <0.0001). Memory performance (“hits”) varied across learning blocks,


https://doi.org/10.1101/094383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/094383; this version posted May 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

allowing us to assess within-subject associations between network flexibility and
behavior (Fig. 6A). Memory performance was not correlated with incremental
learning performance (mixed effects logistic regression, § = 0.41, Standard Error
(S.E.)=0.51, p=0.42 (Wald approximation)). We tested the effect of flexibility on
memory performance (proportion correct) in each of the 110 ROIs. A whole-brain
FDR-corrected analysis revealed one region where flexibility was associated with
episodic memory, the left paracingulate gyrus. An exploratory uncorrected analysis
revealed regions in the medial prefrontal and medial temporal (parahippocampal)
cortices where flexibility was associated with episodic memory (p<0.05
uncorrected, Fig. 6B). None of the sub-regions from our a priori striatum ROI passed
even this low threshold for an effect of flexibility on episodic memory.

Discussion

The current study reveals that reinforcement learning involves dynamic
coordination of distributed brain regions, particularly interactions between the
striatum and visual and value regions in the cortex. Increased dynamic connectivity
between the striatum and large-scale circuits was associated with learning
performance as well as with parameters from reinforcement learning models.
Together, these findings suggest that network coordination centered on the
striatum underlies the brain’s ability to learn to associate values with sensory cues.

Our results indicate that during learning the striatum increases the extent to which
it couples with diverse brain networks, specifically with regions processing value
and relevant sensory information. This may represent the formation of efficient
circuits for integrating and routing decision variables. Our reinforcement learning
model findings are consistent with this idea. Striatal flexibility is negatively related
to learning rate, suggesting that increased dynamic coupling with relevant cortical
areas may lead to less trial-level weighting of prediction errors during learning.
Flexibility in striatal circuits is also positively related to inverse temperature,
indicating that this increased dynamic coupling is associated with stronger reliance
on learned value during decision-making. Thus, our findings support a framework
wherein network flexibility underlies information integration during learning.

This framework offers clear and testable predictions for future studies. It suggests
that flexibility will play a larger role in learning the more that learning depends on
widespread information integration, and also that this process is specific to regions
known to support the particular demands of learning in a given situation.

For example, instrumental conditioning involving complex audio-visual stimuli (41)
would be expected to associate more strongly with striatal flexibility than the task
presented here and would be expected to involve increases in striatal interactions
with auditory as well as visual cortex. In addition, learning that relies on other forms
of integration, for example the transfer or generalization of information (42, 43) or
encoding of associations across space or time (44, 45), is predicted to be associated
with network flexibility in medial temporal and prefrontal regions.
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There are a number of limitations to this report. First, given the static feedback
probabilities, the relationship between network flexibility and learning performance
could be affected by the time on task for each subject. This seems unlikely to fully
explain the relationship because flexibility was related to multiple aspects of
learning behavior and episodic memory, which was associated with network
flexibility in a distinct set of brain regions, did not increase over time. Nonetheless,
future studies incorporating reversal periods to dissociate time from performance
will be important for addressing this issue. Another limitation is the hard-
partitioning approach for network assignments provided by multi-slice community
detection, which necessarily underemphasizes uncertainty about community labels.
There have been very recent attempts to formalize probabilistic models of dynamic
community structure (46, 47), but most work examining dynamic networks in the
brain have used deterministic community assignment (29, 30, 48). More work is
needed to develop and validate these probabilistic models and apply them to
neuroscience data. Finally, while the spatial resolution of fMRI makes it an appealing
method to characterize dynamic networks, studies using modalities with higher
temporal resolution such as ECoG (49) and MEG (50) will be important for
providing more fine-grained temporal information.

To summarize, we report a novel link between reinforcement learning and dynamic
changes in networks centered on the striatum. While most descriptions of
reinforcement learning have focused on the role of individual regions, recent
advances in network theory are beginning to make the role of dynamic
communication between individual regions and broader networks in this process a
tractable area of research (27, 29-31). Here we show that incremental learning
based on reinforcement is associated with dynamic changes in network structure,
across time and across individuals. Our results suggest that the striatum’s ability to
dynamically alter connectivity with sensory and value-processing regions provides
a mechanism for information integration during decision-making and that learning
may be characterized by the formation of these dynamic circuits.

Materials and Methods

Experimental Design. Twenty-five healthy right-handed adults (age 24-30 years,
mean of 27.7, standard deviation of 2.0, 13 females) were recruited from the
University of California Los Angeles and the surrounding community as the adult
comparison sample in a developmental study of learning (51). All participants
provided informed consent in writing to participate in accordance with the UCLA
Institutional Review Board, which approved all procedures. Individuals were paid
for their participation. Participants reported no history of psychiatric or
neurological disorders, or contraindications for MRI scanning. Three subjects were
excluded from this analysis (two for technical issues in behavioral data collection
and one for an incidental neurological finding), leading to a final sample size of 22.

Task and Behavioral Analysis. The probabilistic learning task administered to

subjects undergoing an fMRI session has been previously described (34, 35, 51, 52).
During the imaging session, individuals underwent an instrumental conditioning
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procedure, in which they learned to associate 4 cues with 2 possible outcomes. The
cues were images of butterflies; the choices were images of flowers. They were then
given feedback consisting of the words ‘Correct’ or ‘Incorrect’. Presentation of
feedback also included an image of an object unique to each trial, shown in random
order for the purpose of subsequent memory testing. For each butterfly image, one
flower represented the ‘optimal’ choice, with a 0.8 probability of being correct,
while the alternative flower had a 0.2 probability of being followed by correct
feedback. Subjects performed four blocks of this probabilistic learning phase, each
consisting of 30 trials. Feedback was presented for 2 seconds, and was followed by a
randomly jittered inter-trial interval.

For each trial in the learning phase, both the feedback received as well as whether
or not subjects made the optimal choice were recorded, and percent correct for each
block was computed as the percent of trials on which subjects made the optimal
choice, regardless of feedback. These variables enable a characterization of learning
as the proportion of optimal choices in each block, as well as that in the test phase.
Using this information, we fit reinforcement learning models to subjects’ decisions
(1, 5), utilizing a hierarchical Bayesian approach to pool uncertainty across subjects
and aid in model identifiability (SI).

Following the fMRI session (30 minutes), subjects were given a surprise memory
test for the trial-unique object images presented during feedback in the learning
phase. Subjects were presented with all 120 objects shown during the conditioning
phase, along with an equal number of novel objects, and asked to judge the images
as “old” or “new”. They were also asked to rate their confidence for each decision on
a scale of 1-4 (one being most confident; four indicating “guessing”). All responses
rated 4 were excluded from our analyses (35).

Dynamic Connectivity Analysis. MRI images were acquired on a 3 T Siemens Tim Trio
scanner using a 12-channel head coil (EPI TR=2 s, see SI for full acquisition
parameters). Functional images were preprocessed using FSL’s FMRI Expert
Analysis Tool (FEAT (53)). To assess dynamic connectivity between the ROIs, time
courses were further subdivided into sub-blocks of 25 TRs each. We then computed
the pairwise coherence between each pair of ROIs at f=0.06-0.12 Hz to form
temporal connectivity matrices (SI). Each connectivity matrix is treated as a graph
or network, in which each brain region is represented as a network node, and each
functional connection between two brain regions is represented as a network edge
(20, 54).

Uncovering Evolving Circuits Using Multi-slice Community Detection. To extract
modules or communities from a single-network representation, one typically
applies a community detection technique such as modularity maximization (55).
However, these single-network algorithms do not allow for the linking of
communities across time-points, thus hampering statistically robust inference
regarding the reconfiguration of communities as the system evolves (28). In
contrast, the multilayer approaches allow for the characterization of multi-layer
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network modularity, with layers representing time windows. In this framework,
each network node in the multi-layer network is connected to itself in the preceding
and following time windows in order to link networks in time. This enables us to
solve the community-matching problem explicitly within the model (28), and also
facilitates the examination of module reconfiguration across multiple temporal
resolutions of system dynamics (56). We thus constructed multilayer networks for
each subject, allowing for the partitioning of each network into communities or
modules whose identity is robustly tracked across time windows (SI). We used the
community labels to compute flexibility and module allegiance statistics.

Dynamic Network Statistics—Flexibility and Allegiance. To characterize the dynamics
of these temporal networks and their relation to learning, we computed the
flexibility of each node, which measures the extent to which a region changed its
community allegiance over time (29) . Intuitively, flexibility can be thought of as a
measure of a region’s tendency to communicate with different networks during
learning. Flexibility is defined as the number of times a node displays a change in
community assignment over time, divided by the number of possible changes (equal
here to the number of time windows in a learning block minus 1). This was
computed for each region in each block (Fig. $3). In addition, average measures of
flexibility were computed across the brain and across all blocks. We also computed
the module allegiance of each ROI with respect to regions of the striatum during
each learning block. Module allegiance is the proportion of time windows in which a
pair of regions is assigned the same community label, and thus tracks which regions
are most strongly coupled with each other at a given point in time. To obtain stable
estimates, we averaged both flexibility and allegiance scores for each ROI over the
500 iterations of the multilayer community detection algorithm.

Relating Dynamic Networks to Reinforcement Learning. To examine the effect of
flexibility on learning from feedback, we estimated a generalized mixed-effects
model predicting optimally correct choices with flexibility estimates for each block
with a logistic link function, using the Maximum Likelihood (ML) approximation
implemented in the Ime4 package (36). Subjects’ average flexibility in an a priori
striatum ROI was used to predict the proportion of optimal choices in each learning
block. The ROI included bilateral caudate, putamen, and nucleus accumbens regions
from the Harvard-Oxford atlas. We included a random effect of subject, allowing for
different effects of flexibility on learning for each subject, while constraining these
effects with the group average. Average flexibility across sessions was included as a
fixed effect in the model in order to ensure that our estimates represented within-
subject learning effects. We also estimated this effect for whole-brain flexibility,
which has been related to several cognitive functions in previous reports (29, 31).

To provide appropriate posterior inference about the plausible parameter values
indicated by our data, and to account for uncertainty about all parameters, we also
fit a fully Bayesian extension of the ML approximation described above for the effect
of striatal flexibility on learning performance (Fig. S4).
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To examine the relationship between flexibility and parameters estimated from
reinforcement learning models, we tested whether striatal flexibility was correlated
with the learning rate « and inverse temperature f for each subject, using
Spearman’s correlation coefficient due to the non-Gaussian distribution of these
parameters. To account for joint uncertainty in these parameters at the group and
subject level, correlations were computed over the full posterior distributions from
the reinforcement-learning model (Fig. S1, S5).

To determine which regions changed coupling with the striatum during the course
of the task, we fit mixed effects models using learning block to predict log-
transformed module allegiance. This analysis was computed first using the average
of each ROI’s allegiance with the striatal sub-regions, and then separately for all sub-
regions of the striatum. In both cases this analysis was carried out for each region of
the brain, treating block as a factor so as to avoid assumptions about the linearity or
direction of changes in allegiance. We controlled the false discovery rate across all
ROI-striatum pairs.

To explore other regions exhibiting effects of dynamic connectivity on learning
performance, we separately modeled the effect of flexibility in each brain region on
reinforcement learning using the ML approximation implemented in the Ime4
package. We applied a false discovery rate correction for multiple comparisons
across regions (57). While regions passing this threshold are reported, we also
visualize the results using an exploratory uncorrected threshold of p<0.05 (Fig. S9).

To explore the relationship between network dynamics and other forms of learning,
we also regressed flexibility statistics from each ROI against subsequent memory
scores for the trial-unique objects presented during feedback. If the effects of
striatal flexibility were relatively selective to incremental learning, we expected to
find no significant association even at an uncorrected threshold with memory in the
regions comprising our striatal ROI. In addition, this provided an exploratory
analysis to examine the regions in which network flexibility plays a potential role in
episodic memory. Given a host of previous studies on multiple learning systems, we
reasoned it might be possible to detect an effect of dynamic network coupling on
episodic memory in regions traditionally associated with this form of learning.

Supporting Information

Task and Behavioral Analysis. Before scanning, participants completed a practice
round of 8 trials to become familiar with the task. On each trial, participants were
presented with an image of one of the four butterflies along with two flowers, and
asked to indicate which flower the butterfly was likely to feed from, using a left or
right button press. The four learning blocks were followed by a test phase, in which
subjects performed the same butterfly task without feedback for 32 trials.

Reinforcement Learning Model. To characterize learning, we fit standard
reinforcement learning models to individuals’ choice behavior (1, 5). Briefly, the
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expected value for a given choice at time ¢, Q;, is updated based on the reinforcement
outcome r¢ via a prediction error 6;:

Q41 = Q¢ + aé;
6 = 10— Q4.

The reinforcement learning models included two free parameters, a and 5. The
learning rate « is a parameter between 0 and 1 that measures the extent to which
value is updated by feedback from a single trial. Higher « indicates more rapid
updating based on few trials and lower a indicates slower updating based on more
trials. Another parameter fit to each subject is the inverse temperature parameter S,
which determines the probability of making a particular choice using a softmax
function (1, 58), so that the probability of choosing choice 1 on trial t would be:

eBQlt
p(ct =1 I a, ﬁ) = eBQR1t4eBQ2¢’

where p(c; = 1) refers to the probability of choice one and Q;; is the value for this
choice on trial ¢t.

Reinforcement learning models of this form have known issues with identifiability
(37). To constrain the parameter space to reduce noise, we fit a hierarchical
Bayesian model, which regularizes this estimation with empirical prior distributions
ona and S (1):
B ~ Gamma(b1l,b2)
a ~ Beta(al, a2),

where b1 and al are shape parameters, and b2 and a2 are scale parameters. By
fitting prior parameters as part of the model, individual-level likelihood parameters
are constrained by group average distributions. These group parameters were
themselves regularized by weakly informative hyperprior distributions
(Cauchy*(0,5) in all cases). Models were fit using Hamiltonian Markov Chain Monte
Carlo in Stan (38). In addition to the benefit of constraining the parameter space,
this approach produces a posterior distribution of all parameters, which
incorporates uncertainty at both group and individual levels in parameter
estimation, and also allows for the consideration of all plausible values of RL
parameters in subsequent analyses (see Fig. S1 for examples of group- and subject-
level distributions), rather than relying on point estimates or Gaussian assumptions.

MRI Acquisition Parameters. For each block of the learning phase of the conditioning
task, we acquired 200 interleaved T2*-weighted echo-planar (EPI) volumes with the
following sequence parameters: TR = 2000 ms; TE = 30 ms; flip angle (FA) = 90°;
array =64 x 64; 34 slices; effective voxel resolution = 3x3x4 mm; FOV = 192 mm). A
high resolution T1-weighted MPRAGE image was acquired for registration purposes
(TR=2170 ms, TE = 4.33 ms, FA = 72, array = 256 x 256, 160 slices, voxel resolution
=1 mm3, FOV = 256).
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fMRI Preprocessing. Images from each learning block were high-pass filtered at f >
0.008 Hz, spatially smoothed with a 5mm FWHM Gaussian kernel, grand-mean
scaled, and motion corrected to their median image using an affine transformation
with tri-linear interpolation. The first three images were removed to account for
saturation effects. Functional and anatomical images were skull-stripped using FSL'’s
Brain Extraction Tool. Functional images from each block were co-registered to
subject’s anatomical images and non-linearly transformed to a standard template
(T1 Montreal Neurological Institute template, voxel dimensions 2 mm3) using FNIRT
(59). Following image registration, time courses were extracted for each block from
110 cortical and subcortical regions of interest (ROIs) segmented from FSL'’s
Harvard-Oxford Atlas. Due to known effects of motion on measures of functional
connectivity (60, 61), time courses were further preprocessed via a nuisance
regression. This regression included the six translation and rotation parameters
from the motion correction transformation, average CSF, white matter, and whole
brain time courses, as well as the first derivatives, squares, and squared derivatives
of each of these confound predictors (62).

Dynamic Connectivity Analysis. For each 25 TR sub-block, connectivity was
quantified as the magnitude-squared coherence between each pair of ROIs at f =
0.06-0.12 Hz in order to later assess modularity over short time windows in a
manner consistent with previous reports (29, 32):

eyl

o) = Gxx(NGyy ()’

where Gy, (f) is the cross-spectral density between regions x and y, and G,,(f) and
Gy, (f) are the autospectral densities of signals x and y, respectively. We thus
created subject-specific 110 x 110 x 32 connectivity matrices for 110 regions and 8
time windows for each of the 4 learning blocks, containing coherence values ranging
between 0 and 1. The frequency range of 0.06-0.12 Hz was chosen to approximate
the frequency envelope of the hemodynamic response, allowing us to detect changes
as slow as 3 cycles per window with a 2 second TR.

In the context of dynamic functional connectivity matrices, the network
representation is a temporal network, which is an ensemble of graphs that are
ordered in time (63). If the temporal network contains the same nodes in each
graph, then the network is said to be a multilayer network where each layer
represents a different time window (64). The study of topological structure in
multilayer networks has been the topic of considerable study in recent years, and
many graph metrics and statistics have been extended from the single-network
representation to the multilayer network representation. Perhaps one of the single
most powerful features of these extensions has been the definition of so-called
identity links, a new type of edge that links one node in one time slice to itself in the
next time slice. These identity links hard code node identity throughout time, and
facilitate mathematical extensions and statistical inference in cases that had
previously remained challenging.
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Multi-slice Community Detection. While many statistics are available to the
researcher to characterize network organization in temporal and multilayer
networks, it is not entirely clear that all of these statistics are equally valuable in
inferring neurophysiologically relevant processes and phenomena (23). Indeed,
many of these statistics are difficult to interpret in the context of neuroimaging data,
leading to confusion in the wider literature. A striking contrast to these difficulties
lies in the graph-based notion of modularity or community structure (55), which
describes the clustering of nodes into densely interconnected groups that are
referred to as modules or communities (65, 66). Recent and convergent evidence
demonstrates that these modules can be extracted from rest and task-based fMRI
data (67, 68), demonstrate strong correspondence to known cognitive systems
(including default mode, fronto-parietal, cingulo-opercular, salience, visual,
auditory, motor, dorsal attention, ventral attention, and subcortical systems (22,
69)), and display non-trivial re-arrangements during motor skill acquisition (29, 30)
and memory processing (31). These studies support the utility of module-based
analyses in the examination of higher order cognitive processes in functional
neuroimaging data.

The partitioning of these multilayer networks into temporally linked communities
was carried out using a Louvain-like locally greedy algorithm for multilayer
modularity optimization (28, 70).

1 K
Qmi = ZZ {(Aijl - Vlkzll:lil) 8 + 5ijler} 5(91’1,9#),
ijlr
where Q,,,; is the multilayer modularity index. The adjacency matrix for each layer [
consists of components A;j;. The variable y; represents the resolution parameter for
layer I, while Cj gives the coupling strength between node j at layers / and r (see
below for details of fitting these two parameters). The variables g;; and g,
correspond to the community labels for node i at layer / and node j at layer r,
respectively; ki is the connection strength (in this case, coherence) of node i in layer
[; 2u = ¥, kjr; the multilayer node strength k;, = kj; + ¢;;; and ¢;; = Y- Cj;,-. Finally,
the function & (gil, g jr) refers to the Kronecker delta function, which equals 1 if
gi=gjr, and 0 otherwise.

Resolution and coupling parameters (y; and Cj;,,, respectively) were selected using a
grid search formulated explicitly to optimize Q,,; relative to a temporal null model
(56). The temporal null model we employed is one in which the order of time
windows in the multilayer network was permuted uniformly at random. Thus, we
performed a grid search to identify the values of y; and Cj;,- that maximized

Qmi — Qnuu (Fig. S2), following (56). To ensure statistical robustness, we repeated
this grid search 10 times. To maximize the stability of resolution and coupling, each
subject’s parameters were treated as random effects, with the best estimate of
resolution and coupling generated by averaging across-individual subject estimates.
This is a similar approach to that taken in computational modeling of reinforcement
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learning, in which learning rate and temperature parameters are averaged in order
to generate prediction error estimates (1). With this approach, we estimated the
optimal resolution parameter y to be 1.18 (standard deviation of 0.61) and the
coupling parameter C to be 1 (this was the optimal parameter for all subjects for all
iterations). These values are quite similar to those chosen a priori (usually setting
both parameters to unity) in previous reports (29).

Finally, we note that maximization of the modularity quality function is NP-hard,
and the Louvain-like locally greedy algorithm we employ is a computational
heuristic with non-deterministic solutions. Due to the well known near-degeneracy
of Q,,; (28, 56, 71), we repeated the multi-slice community detection algorithm 500
times using the resolution and coupling parameters estimated from the grid search
procedure outlined above. This approach ensured an adequate sampling of the null
distribution (56). Each repetition produced a hard partition of nodes into
communities as a function of time window: that is, a community or module
allegiance identity for each of the 110 brain regions in the multilayer network.

Flexibility and Learning

Averaged across time, sensory and motor regions showed the lowest levels of
flexibility (72), while association cortices showed moderate to high levels of (Fig.
S$3a). In addition to this regional distribution, we sought to verify that flexibility
was not related to the size of the ROL. We found that ROI size only explained 1.17 %
of the variance in average flexibility across individuals, r = 0.11, tios = 1.311, p =
0.26), indicating that this measure is not an artifact of the parcellation we used. We
also studied the temporal profile of this measure, by examining changes in flexibility
over the course of the task. Flexibility (averaged across all ROIs) increased in early
learning blocks, before slightly but significantly decreasing in later stages of the task
(Fig. S3b; quadratic effect -0.01; p<0.0001). We fit generalized mixed-effects
models of the relationship between learning performance and average striatal
flexibility using Ime4. In an attempt to examine distinct effects in different striatal
sub-regions, we attempted to include striatal ROI as a varying effect. The maximum
likelihood estimate of the variance by region was 0, indicating that there is little
variability across regions and not enough data to distinguish these small effects. Fig.
2b shows the results of separate models for each region of the striatum, essentially
assuming that this regional variance is infinite. Even with this assumption, there
were no significant differences between estimates for any pair of striatal regions.

Bayesian Models of Flexibility and Performance.
We used the ‘brms’ package for fitting flexibility-performance models in the Stan
language (38). These were similar to the likelihood approximation models, but
included a covariance parameter for subject-level slopes and intercepts (which
could not be fit by the above approximation), and weakly informative prior
distributions to regularize parameter estimation:

B ~ N(0,10%)

T~ Cauchy*(0,5),
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where f§ represents the “fixed effects” parameters (slope and intercept), t
represents the “random effects” variance for subject-level estimates sampled from
B, and Cauchy™ is a positive half-t distribution with one degree of freedom (73).
Similarly, we used an Ikj prior with n = 2 for correlations between subject-level
intercept and slope estimates (74). This approach also allowed us to visualize
subject-level estimates of the relationship between flexibility and performance (Fig.
S4).
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Figure S1. Group- and subject-level estimates of reinforcement learning model
parameters. A. Joint posterior distribution for group-average learning rates and
inverse temperature parameters derived from hierarchical Bayesian reinforcement
learning model, each computed from the scale and shape of their respective prior
distributions. B. Example subject-level parameters from three individuals,
exhibiting a range of uncertainty. Note that in individuals with learning rates
plausibly close to 0, the inverse temperature becomes highly uncertain for extreme
values of learning rate. This uncertainty was accounted for in our correlations with
network flexibility by computing these correlations over the full distribution of
parameter values.
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Figure S2. Grid searches for optimizing resolution and coupling parameters
for multi-slice community detection. Two grid searches at distinct scales
illustrating that our resolution and coupling parameters (1.18 and 1, respectively)
fall at the peak of our optimization function. A. We first used a wide grid to cover a
larger range of potential parameters. The average peak of this search across subjects
and iterations was used to select resolution and coupling terms for multi-slice
community detection. B. To ensure that the large grid steps did not affect this
selection, we repeated the search on a smaller scale. Our parameters are clearly
within the optimum range on both grids.
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Figure S3. Spatial and temporal characteristics of network flexibility. Network
flexibility exhibited distinct spatial and temporal patterns. A. Flexibility averaged
across all learning blocks was highest across regions of association cortex and
lowest in sensory and motor regions. B. Flexibility averaged across the whole brain
consistently increased in early learning blocks. Color lines represent whole-brain
flexibility for single subjects.
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Figure S4. Subject-level data and fits for Bayesian hierarchical model of the
effect of striatal flexibility on learning. For posterior inference on the effect of
striatal flexibility on learning performance, we fit a Bayesian hierarchical model.
Each subplot displays data (open circles) from a single subject. Solid lines represent
model estimates for the effect of flexibility on learning, while dotted lines represent
95% credible intervals.
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Figure S5. Joint distributions of correlation between flexibility and
reinforcement learning model parameters for striatal regions. Because we
computed Spearman correlations over the posterior distributions of learning rate
and inverse temperature from hierarchical Bayesian models, our inferences can be
most fully expressed with the joint distributions of correlations between flexibility
and each parameter. While there is some covariance between these correlations, the
two effects are clearly separable. This is further supported by partial correlations,
which did not substantially alter inference (accumbens-alpha p =-0.23, caudate-
alpha p =-0.16, accumbens-beta p = 0.23, caudate-beta p = 0.28).
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Figure S6. Module allegiance broken down by striatal region. Maps show
regions in the 50t percentile of allegiance for each striatal ROI, averaged over all
learning blocks. Consistent with anatomical and functional connectivity, the nucleus
accumbens and caudate show stronger allegiance with midline frontal, temporal,
and retrosplenial regions, while the putamen shows relatively stronger allegiance
with motor regions.
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Figure S7. Visual and value regions change allegiance with the striatum over
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the course of the task. A. Regions where time-dependent changes to striatal

allegiance exceed a threshold of pFDR<0.05, corrected for all ROIs’ allegiance with

=== Accumbens

=== Putamen

all three striatal regions (109 x 3 comparisons). These results were generated using

mixed-effects ANOVAs and contain no assumptions about the shape or direction of

changes. B. Panel plot showing the change in allegiance over time for every pair

passing the above threshold. Lines and bands represent and bands standard errors.

As with average striatal allegiance, the nucleus accumbens and putamen increase
coupling with visual regions during the task. In addition, the putamen exhibits an
increase in coupling with the right orbitofrontal and ventromedial prefrontal cortex
and a decrease in coupling with primary auditory cortex. No regions’ allegiance with
the caudate survived correction for multiple comparisons. Abbreviations:

Occ=0ccipital, Temp=Temporal, Front=Frontal, and MTG=Middle Temporal Gyrus.
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Figure S8. Whole-brain flexibility is negatively correlated with learning rate.
Because reinforcement learning parameters were fit using a fully Bayesian model,
we computed correlations with flexibility over the full posterior distributions for
these parameters. Our uncertainty about these correlations can be expressed with
the joint distribution of learning rate and inverse temperature correlations. There
was evidence of a negative relationship between whole-brain flexibility and learning
rate (p =-0.26, p(p>0) = 0.07).
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Figure S9. Exploratory uncorrected (p<0.05) results for whole-brain effect of
network flexibility on reinforcement learning performance.
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Figure S10. The relationship between striatal flexibility and learning is robust
across different lengths of connectivity windows. We recomputed coherence
over 23- and 27-TR windows, and ran the multi-slice community detection
algorithms to extract flexibility. The relationship between average flexibility and
performance was similar across time windows. Regression coefficients and standard
errors (SE) from mixed-effects models are plotted here (23 TR: effect=8.38,
SE=2.55; 27 TR: effect=6.52, SE=3.67).
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Table S1
Harvard Oxford Region Regression | p
Coefficient
Left Caudate 5.93 0.003
Left Orbitofrontal Cortex 4.88 0.006
Left Planum Polare 10.97 0.000
Left Precentral Gyrus 4.79 0.006
Left Supramarginal Gyrus 5.38 0.003
Right Inferior Temporal Gyrus, anterior 4.75 0.01
Right Inferior Temporal Gyrus, posterior | 4.66 0.01
Right Supplemental Motor Cortex 8.54 0.0009
Right Middle Temporal Gyrus 3.51 0.006
Right Planum Temporal 8.19 0.01
Right Putamen 6.10 0.003
Right Supramarginal Gyrus 6.48 0.003

33


https://doi.org/10.1101/094383
http://creativecommons.org/licenses/by-nc-nd/4.0/

