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Abstract 13 

The quality of samples preserved long term at ultralow temperatures has not been 14 

adequately studied. To improve our understanding, we need a strategy to analyze 15 

protein degradation and metabolism at subfreezing temperatures. To do this, we 16 

obtained liquid chromatography-mass spectrometry (LC/MS) data of calculated protein 17 

signal intensities in HEK-293 cells. Our first attempt at directly clustering the values 18 

failed, most likely due to the so-called “curse of dimensionality”. The clusters were not 19 

reproducible, and the outputs differed with different methods. By utilizing rigid 20 

geometry with a prime ideal I-adic (p-adic) metric, however, we rearranged the sample 21 

clusters into a meaningful and reproducible order, and the results were the same with 22 

each of the different clustering methods tested. Furthermore, we have also succeeded in 23 

application of this method to expression array data in similar situations. Thus, we 24 

eliminated the “curse of dimensionality” from the data set, at least in clustering methods. 25 

It is possible that our approach determines a characteristic value of systems that follow 26 

a Boltzmann distribution. 27 

 28 

Short Title: Rigid geometry solves “curse of dimensionality” 29 

30 
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Introduction 1 

Even when frozen, biological samples degrade during aging, and most frozen cell 2 

cultures are stored for only two years. However, the cause of degradation is not well 3 

understood. A few reports have described enzymatic activities in frozen cultures, 4 

including lipase and peroxidase activities (see, e.g., [1, 2]). However, the proteomic 5 

details of cells stored at subfreezing temperatures are not known. One study used liquid 6 

chromatography-mass spectrometry (LC/MS) to study frogs in a simulated winter 7 

environment [3]; it lacks solid statistical analysis and did not consider subfreezing 8 

temperatures. In order to evaluate the potential degradation/metabolism, it is important 9 

to obtain solid proteomic data from actual frozen cultures under long-term storage in a 10 

subfreezing environment. 11 

 To do this, we devised a procedure that can distinguish samples from 12 

long-term storage from those that have been freshly prepared. Clustering analysis is a 13 

popular approach to such an evaluation; this approach uses criteria for 14 

similarity/dissimilarity to divide the data into meaningful groups. It is based on a 15 

bottom-up calculation of the data, and thus the criteria are part of the system. However, 16 

it is still necessary to define the groups and to select the actual clustering methods. If 17 

different clustering methods yield the same topological structure of the hierarchical tree 18 

or the same indices of the clusters, it can be assumed that the output of the analysis is 19 

sound; however, this is not always achieved, and discrepancies cast doubt on the results. 20 

 There are two types of clustering analysis: hierarchical clustering [4] and 21 

nonhierarchical clustering [5]. Hierarchical clustering is appropriate when there is 22 

distance/dissimilarity between the data points; it joins data based on similarities to a 23 

given point, and then combines those points based on their similarities. In this way, a 24 

multidimensional data set is reduced to a two-dimensional set, with the axes indicating 25 

labeling and clustering distance. Representatives of these methods include simple 26 

linkage, complete linkage, group averaging, weighted averaging, methods using the 27 

centroid or median, and Ward’s method. If we define the dissimilarity of i, j, and k to be 28 

Ci, Cj, and Ck, respectively, then 29 

���� � �� , ��� � ���	�� , ��
 � ������ , ��� � ����� , ��� � 
��	�� , ��
 � ���� , ����,  
where the values of αi, αj, β, and � are given in Table 1. 30 

 31 
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Table 1. Parameters of various hierarchical clustering methods. β, �: corrections 1 

based on the triangle ijk; Dissimilarity [E2: Euclidean distance; E2′: half of the 2 

squared Euclidean distance]; Monotony [monotonically increasing lengths (We note 3 

that this is not true in the centroid and median methods. The value of a monotonic 4 

increase depends on the particular situation.); T: true; F: false;]; Metric [expansion & 5 

reduction: renewal of ongoing clustering by increasing or reducing the distance between 6 

data points]. 7 

method αi αj β � Dissimilarity Monotony Metric 

single 1/2 1/2 0 −1/2 no 

restriction 

T reduction 

complete 1/2 1/2 0 1/2 no 

restriction 

T expansion 

group 

average 

��

�� ���
 

��

�� ���
 

0 0 no 

restriction 

T conserved 

weighted 

average 

1/2 1/2 0 0 no 

restriction 

T conserved 

centroid ��

�� ���
 

��

�� ���
 

�����

��� ����
�

 
0 E2 F conserved 

& 

reduction 

median 1/2 1/2 −1/4 0 E2 F conserved 

& 

reduction 

Ward �� ���

�� ��� ���
 

�� ���

�� ��� ���
 

���

�� ��� ���
 

0 E2′ T conserved 

& 

expansion 

 8 

 Nonhierarchical clustering, for example, the k-means method, is an 9 

optimization approach based on classification. The number of groups, k, is initialized. 10 

Dissimilarity is measured using the squared Euclidean distance. The k groups are then 11 

determined and scored as each data point is added. The grouping that gives the lowest 12 

score is chosen, and the process is repeated. The selection of the number of groups is a 13 

top-down approach, but from other aspects, this is a bottom-up approach. Each of the 14 
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eight methods, including seven hierarchical methods and the k-means method, can be 1 

relatively easily implemented on a computer, and these are more frequently used than 2 

are other, more complex methodologies. 3 

 A problem arises, however, when there is a high-dimensional data set (more 4 

than 1000 variables); this effect is referred to as the “curse of dimensionality”. In such a 5 

situation, the variances among samples become large and sparse, and a clustering 6 

analysis produces meaningless results (see, e.g., [6]). One solution is to use machine 7 

learning [7]. However, the high dimensionality produces a very large or incalculable 8 

value for the Akaike information criterion, and this means the solution may be invalid. 9 

Alternatively, principal component analysis (PCA) with maximized variances of 10 

variance-covariance matrix [8] or non-metric multi-dimensional scaling calculating 11 

similarity in reduced dimensions without the constraint of linearity (nMDS) [9] is 12 

utilized to classify the observed data sets. These methods also exhibited “curse of 13 

dimensionality” in very high dimension, however.  14 

 In this manuscript, we present a mathematical solution that uses rigid 15 

geometry to pretreat the data prior to a cluster analysis. The most important aspect of 16 

clustering is determining the metric, and we considered the p-adic metric (of a prime 17 

ideal), which is based on rigid geometry (Please refer S1 Appendix). Utilizing the idea 18 

of blowing up singularity in rigid geometry, one can resolve singularity that affects 19 

most parts of fluctuations and purify the internal characteristic residing in the dataset 20 

[10]. This allowed us to discriminate between control samples and those that had been 21 

held in long-term storage. An appropriate metric must satisfy (i) a separation axiom (not 22 

necessarily nonnegative), (ii) the identity of indiscernibles, (iii) symmetry, and (iv) the 23 

triangle inequality. Examples of metrics include the absolute distance, the Chebyshev 24 

distance, the Euclidean distance, the average Euclidean distance, squared Euclidean 25 

distance, the Minkowski distance, the correlation efficiency, cosine efficiency nearest 26 

neighbor distance and the radial basis kernels. The selection of the metric significantly 27 

affects the calculation (see, e.g., [6]). We picked up nearest neighbor distances 28 

��� � ���
���

, ��� � ∑ ��
�
�	


	
, ��
 � �.


�	/�
 and radial basis kernels �	�, �
 � exp ��
��|� �29 

�|��� together with Euclidean distances and correlation distances ����	�, �
 � 1 �30 

����	�, �
 [11] to compare the results with a p-adic metric we invented, when di is an 31 

element i of distance vector, A is a total study area, x, z are a vectors of interests and rcor 32 
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is the correlation of them. You can easily see that all the nearest neighbor distances, 1 

radial basis kernels and Euclidean distances preserve the high dimensionalities in the 2 

distance vector d. Correlation distances seems to cancel out high dimensionality with 3 

quotient, but still does not erase the trace of singularities. This might be the cause of 4 

“curse of dimensionality”. A principle of modern geometry is that there exists a 5 

nilpotent state in which observed values converge and oscillate about −1; this results in 6 

a system that is easier to handle. Rigid geometry is a well-known mathematical field 7 

and is based on the complete non-Archimedean field; it was introduced in 1962 by John 8 

Tate [12−14]. It allows us to use p-adic elliptic curves to solve the singularity problem 9 

[10]. In this system, the non-Archimedean valuation system enables values to converge 10 

globally, but locally the values are free, due to the high dimensionality. There is a 11 

mathematically well-known topology that meets this type of requirement, Grothendieck 12 

topology (G-topology) [15]. Below, we will present the application of rigid geometry to 13 

a biological data set, and we will show that this removes the effects of the “curse of 14 

dimensionality”; the resulting topology of the clusters can then be easily interpreted. 15 

 16 

Results 17 

Direct analysis of unused LC/MS data resulted in nonproper clustering of 18 

samples with clustering methods or non-metric multidimensional scaling 19 

We extracted proteins from HEK-293 cells that had been stored in different freezing 20 

conditions. As a control, we collected fresh samples from a cell culture, samples from 21 

cells frozen for 1 h at −80°C (1h), and samples from cells frozen overnight at −80°C 22 

and subsequently transferred to liquid nitrogen and held overnight (o/n-o/n). For the 23 

treated samples, we used samples that had been preserved in liquid nitrogen for 2 or 3 24 

years. See the Methods section for more details. After performing LC/MS, we extracted 25 

unused values (the amount of total, unique peptide evidence related to a given protein) 26 

and performed clustering analyses using various hierarchical methods and the k-means 27 

method. We found that although different treatments of the sample gave significantly 28 

different results, clustering did not yield meaningful information; the clusters were not 29 

reproducible, and the outputs differed with different methods; see Fig 1A. The control 30 

and treatment data were combined and neural-network-based machine learning 31 

produced clustering of cl values (the expected number of columns in the model of the 32 

training data set) on both the control samples and the storage samples. The samples that 33 
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had been stored for 2 years were distinct from the control values, and only those stored 1 

for 3 years were interspersed (Fig 1A). This suggests the presence of “curse of 2 

dimensionality” effects (see, e.g., [6]). Additionally, PCA exhibited 89% of the data can 3 

be explained by a single component (PC1) with absolute correlation values > 0.74 in 4 

each, indicating failure in clustering (Table 2). PC2 and PC3 occupies 6% and 1% 5 

contributions, respectively. nMDS did not show proper clustering among control 6 

samples and samples frozen for years, indicating failure (Fig 1A). The number of 7 

unknown parameters in the neural network was 1636. This idea is illustrated in Fig 2A, 8 

and actual structures in geometric space are important for conducting these calculations 9 

[6]. In this first analysis, we used the simple unused values with Euclidean distances 10 

when calculating the dissimilarity. 11 

 12 

Table 2. Correlation matrix of LC/MS data and principal components.  13 

raw f-1 f-2 f-3 1h1 1h2 o/1 o/2 2y1 2y2 2y3 3y 

PC1 0.97 0.92 0.97 0.97 0.98 0.95 0.96 0.74 0.88 0.98 0.96 

PC2 -0.11 0.28 -0.10 -0.12 -0.12 -0.08 -0.20 0.64 0.40 -0.00 -0.12 

PC3 -0.02 0.19 -0.12 -0.00 -0.01 0.23 -0.07 0.17 0.13 -0.00 -0.12 

 14 

A p-adic metric based on rigid geometry eliminated “curse of 15 

dimensionality” effects with LC/MS data 16 

To avoid the pitfalls described above, we designed a better metric for the calculation of 17 

groups (Please refer S1 Appendix). If we choose an appropriate geometric metric that is 18 

nilpotent for convergence/divergence of values and converges to an oscillation around 19 

−1, then more over-converged output can be extracted and used to discriminate between 20 

the observed characteristics. A common approach for this is to use rigid geometry. 21 

When using a p-adic metric that includes a subring of norm < |1|, a non-Archimedean 22 

field is more likely to converge than is an Archimedean real field or a complex field. 23 

The geometry converges globally, but locally the values are free, enabling freedom 24 

from the restriction due to “curse of dimensionality”. 25 

One example of this type of analysis is illustrated in Fig 2B (see, e.g., [16]). 26 

Consider characteristic points of an icosahedron projected onto a sphere: 12 vertices 27 

(indicated in blue in Fig 2B), 20 barycenters (the 20 centers of the triangular faces; in 28 
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green), and 30 edge midpoints (in red). Projecting the icosahedron from its center to a 1 

sphere maps a tessellation of the sphere into 120 triangles, as shown in Fig 2B left. The 2 

angles are π/2 for red, π/3 for green, and π/5 for blue. The generator I on Riemann 3 

sphere is:  4 

� �  �! 0
0 1# , $! � !�� 1

1 �	! � !��
%& , ! � '��√��/
 

An icosahedron has 6 cyclic subgroups of order 5, 10 cyclic subgroups of order 3, and 5 

15 cyclic subgroups of order 2. The quotient of this Riemann sphere by the group I is 6 

shown in Fig 2B right. In the figure, 2 (red points), 3 (green points), and 5 (blue points) 7 

correspond to the midpoints of the edges, the barycenters of the faces, and the vertices, 8 

respectively. As a result of this mapping, the system is simplified. 9 

 We define a p-adic metric based on rigid geometry, as described in the 10 

Methods section, and use this to pretreat the data before clustering or machine learning; 11 

the results are shown in Fig 1B. The control samples and those stored for long term 12 

formed distinct clusters with each of the proposed methods; this suggests this method 13 

eliminates the “curse of dimensionality”. Additionally, PCA showed 98% of 14 

contributions was attributed to PC1, PC2, PC3 and PC4. Considering absolute values of 15 

correlations, PC1 is attributed to 3y; PC2 is 2y2, 2y3; PC3 is 2y1; PC4 is f-2 with 16 

milder correlation to other control samples (Table 3). Proper clustering of p-adic values 17 

is thus well achieved also in PCA. For nMDS, the effect of clustering was prominent. 18 

All the control samples localized at almost an identical point, while samples with years 19 

of freezing environment sparse along the plotting (Fig 1B). The means of the variances 20 

in the original method and the rigid geometry method (95% confidence intervals: 60 ± 21 

10 and 6000 ± 8000, respectively) do not reflect the advantage of using the p-adic 22 

metric. However, the data from the rigid method had 10 outliers in high ranks (see Fig 23 

3A for the skewness); these were defined as being larger than the corresponding 24 

Euclidean value of the same rank. When the ten samples with the largest variances were 25 

excluded, the means of the variances obtained with the original method and the rigid 26 

geometry method became 44 ± 5 and 14 ± 3, respectively, with p = 5 × 10−20 for the 27 

t-test; again, this suggests the “curse of dimensionality” has been removed. We note that 28 

neural-network-based machine learning showed the same tendency as in the previous 29 

section; the number of unknown parameters was 1630. All the data indicate successful 30 

clustering with v metric.  31 
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 1 

Table 3. Correlation matrix among v metric of LC/MS data and principal 2 

components.  3 

v f-1 f-2 f-3 1h1 1h2 o/1 o/2 2y1 2y2 2y3 3y 

PC1 0.14 -0.00 0.06 0.08 0.19 -0.42 0.23 0.01 0.01 0.01 -1.00 

PC2 -0.05 0.01 -0.04 0.20 0.01 -0.09 -0.82 0.05 -1.00 0.98 -0.00 

PC3 0.01 0.03 0.10 0.05 0.21 0.08 0.02 -1.00 0.01 0.06 -0.00 

PC4 -0.27 -1.00 -0.08 -0.14 -0.19 -0.11 -0.12 -0.03 -0.01 -0.02 0.00 

 4 

Some other metrics failed to eliminate “curse of dimensionality” effects 5 

with LC/MS data 6 

To further clarifying the outperformance of v metric, we tested nearest neighbor 7 

distances for the calculation of clustering in LC/MS. None of the seven hierarchical 8 

clustering methods or k = 5 means has successful results in clustering (Fig 4). From the 9 

original values of nearest neighbor distances, control samples and samples undergone 10 

long-term preservations were not properly clustered, either (Fig 4). Since there is only 11 

single dimension for comparison, neural network and PCA were not performed. There 12 

are also zero distances for nMDS, and this method was not performed, either.  13 

We also performed kernel principal component analysis with radial basis 14 

kernels in LC/MS. Even utilizing this method, control samples and samples undergone 15 

long-term preservations were not properly clustered (Fig 4). For other methods such as 16 

cluster analysis via nonparametric density estimation with radial basis kernels and kernel 17 

k-means, neither of them had successful clustering results (Fig 4, cluster analysis via 18 

nonparametric density estimation was converged to a single group). Neural network used 19 

in this study was already with radial basis kernels, and nMDS was not suitable for the 20 

analysis because kernel is metric based.  21 

Next, we calculated correlation distances and performed all the seven 22 

hierarchical clustering methods, k = 5 means, neural network, PCA and nMDS. We 23 

found that none of the method was able to achieve proper separation between long-term 24 

storage samples and frozen samples (Fig 5, Table 4). Table 4 for PCA shows PC1 and 25 

PC2 (89 and 7% contribution to the data, respectively) were the major components and 26 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2017. ; https://doi.org/10.1101/094391doi: bioRxiv preprint 

https://doi.org/10.1101/094391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 9

PC1 lacks f-2 and 2y2 contribution, while PC2 is attributed to these two, which does not 1 

make sense for the proper clustering.  2 

 3 

Table 4. Correlation matrix among correlation distances of LC/MS data and 4 

principal components.  5 

 f-1 f-2 f-3 1h1 1h2 o/1 o/2 2y1 2y2 2y3 3y 

PC1 0.98 -0.12 0.98 0.98 0.99 0.91 1.00 -0.97 -0.62 0.94 0.97 

PC2 0.11 0.96 -0.02 0.11 0.10 0.23 -0.03 0.17 0.76 0.26 -0.03 

 6 

A p-adic metric based on rigid geometry also eliminated “curse of 7 

dimensionality” effects on some microarray data 8 

To further characterizing the metric in other omics data such as gene expression data of 9 

microarray, we utilized existing data set of heme regulatory network in yeast 10 

Saccharomyces cerevisiae from [17]. In the original signal intensity data set of the 11 

expression array, heme deficient samples and heme sufficient samples were 12 

differentially clusterized in single linkage analysis and k = 4 means method, but failed 13 

in other six hierarchical clustering methods or neural network tested (Fig 6A). However, 14 

utilizing v metric, all the seven hierarchical clustering methods and k = 4 means method 15 

exhibited differentially clusterized heme deficient samples and heme sufficient samples 16 

(Fig 6B). In this data set, neural network with rigid geometry still did not improve the 17 

result of clustering, however. Additionally, PCA of raw signal values exhibited 97% of 18 

the data can be explained by a single component with absolute correlation values > 0.96 19 

in each, indicating failure in clustering (Table 5). Even in v metric, 54% contribution 20 

was from PC1 (0.99 correlated with s2), 23% was from PC2 (-0.93 correlated with s3), 21 

19% was from PC3 (0.96 correlated with s1), 2% was from PC4 (1.00 correlated with 22 

d3), 2% was from PC5 (1.00 correlated with d2), 0.1% was from PC6 (0.99 correlated 23 

with d1). This independency of the components shows that PCA has failed in clustering 24 

even in v metric (Table 6). For nMDS, original raw signal intensities showed weak 25 

clustering (Fig 6A). However, as in LC/MS data, v metric exhibited that all the 26 

heme-deficient samples localized at almost an identical point, while heme-sufficient 27 

samples sparse along the plotting (Fig 6B), suggesting nMDS worked very fine. The 28 

average of variances in original signals and v metric were 80000 ± 30000 and 400000 ± 29 
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500000, respectively (95% confidential). When we removed 39 outlier samples of v 1 

metric (Fig 3B), they became 70000 ± 30000 and 1400 ± 600 with p = 7 × 10−6 for the 2 

t-test, as in the LC/MS data of HEK-293. The number of unknown parameters in 3 

neural-network-based machine learning were 18685 and 18683 for original signals and 4 

v metric, respectively, indicating too many number of dimensions caused failure of 5 

clustering in neural network.  6 

 7 

Table 5. Correlation matrix of microarray data in Saccharomyces cerevisiae and 8 

principal components. d; replicas of heme-deficient samples. s; replicas of 9 

heme-sufficient samples.  10 

raw d1 d2 d3 s1 s2 s3 

PC1 0.96 0.99 0.98 0.99 0.99 0.99 

PC2 0.26 0.01 0.15 -0.10 -0.15 -0.14 

 11 

Table 6. Correlation matrix among v metric of microarray data in Saccharomyces 12 

cerevisiae and principal components. d; replicas of heme-deficient samples. s; replicas 13 

of heme-sufficient samples.  14 

v d1 d2 d3 s1 s2 s3 

PC1 -0.06 -0.02 -0.00 0.01 0.99 0.30 

PC2 0.02 -0.01 0.01 -0.27 0.13 -0.93 

PC3 0.05 -0.07 -0.04 0.96 0.03 -0.22 

PC4 0.06 0.03 1.00 0.01 0.00 0.00 

PC5 0.14 1.00 -0.02 0.01 0.00 -0.00 

PC6 0.99 -0.01 -0.00 -0.00 0.00 0.00 

 15 

 We also analyzed gene expression data characterized by induction factor of 16 

expression array in the culture of Escherichia coli in low glucose environments from 17 

[18]. Utilizing the values calculated by 2induction factor, all the seven hierarchical clustering 18 

methods, k = 4 means and neural network failed in proper clustering between the 19 

samples of short starvation and long starvation (Fig 7A). However, the clustering of v 20 

metric by all the 7 hierarchical methods and k = 4 means has succeeded in proper 21 

arrangements of clustering (Fig 7B). For neural network, only replicate 2 of long 22 
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starvation (GSM106341) was misclustered, suggesting the improvement of clustering. 1 

The number of unknown parameters in neural-network-based machine learning were 2 

2233 and 2223 for 2induction factor and v metric, respectively. Additionally, PCA exhibited 3 

63% of the data can be explained by a single component with absolute correlation 4 

values > 0.71 in each. 12% of the data can be explained by s1 with a correlation value 5 

0.54, 11% of the data can be explained by l2 with a correlation value 0.54, 7% of the 6 

data can be explained by s3 with a correlation value -0.49, and 6% of the data can be 7 

explained by s2 with a correlation value 0.46. This mild independency indicates failure 8 

in clustering (Table 7). For v metric, 50% of the data can be explained by a single 9 

component with absolute correlation values > 0.62 in each. 18% of the data can be 10 

explained by s3 with a correlation value 0.71, 14% of the data can be explained by s1 11 

with a correlation value -0.74, 10% of the data can be explained by l2 with a correlation 12 

value 0.70, 7% of the data can be explained by l1 & l3 with a correlation values -0.54 13 

and -0.53. This mild independency indicates failure in clustering (Table 8). For nMDS, 14 

original values showed weak clustering (Fig 7A). However, as in LC/MS data, v metric 15 

exhibited that all the samples with long exposure to a low glucose environment 16 

localized at almost an identical point, while samples with short exposure sparse along 17 

the plotting (Fig 7B), suggesting nMDS worked very fine. The average of variances in 18 

original signals and v metric were 0.30 ± 0.08 and 0.088 ± 0.006 (95% confidential), 19 

respectively, with p = 4 × 10−7 for the t-test (Fig 3C). 20 

 21 

Table 7. Correlation matrix of microarray data in Escherichia coli and principal 22 

components. s; replicas with short-term starvation. l: replicas with long-term starvation.  23 

raw s1 s2 s3 l1 l2 l3 

PC1 0.71 0.86 0.76 0.83 0.76 0.84 

PC2 0.54 -0.10 0.26 -0.44 0.09 -0.43 

PC3 -0.40 -0.12 0.27 -0.16 0.54 -0.14 

PC4 0.18 -0.15 -0.49 0.04 0.35 0.06 

PC5 -0.07 0.46 -0.19 -0.19 0.05 -0.20 

 24 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2017. ; https://doi.org/10.1101/094391doi: bioRxiv preprint 

https://doi.org/10.1101/094391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 12

Table 8. Correlation matrix among v metric of microarray data in Escherichia coli 1 

and principal components. s; replicas with short-term starvation. l: replicas with 2 

long-term starvation. 3 

v s1 s2 s3 l1 l2 l3 

PC1 0.62 0.81 0.69 0.72 0.68 0.73 

PC2 -0.26 -0.35 0.71 -0.27 0.05 -0.26 

PC3 -0.74 0.28 -0.04 0.24 0.15 0.26 

PC4 0.01 -0.27 -0.15 0.01 0.70 0.02 

PC5 -0.01 0.28 -0.02 -0.54 0.16 -0.53 

 4 

 These two data sets indicate that the calculation of v metric is effective not 5 

only in proteomics data, but also in expression data such as raw expression profiles or 6 

induction factors, at least in clustering methods and nMDS.  7 

 8 

Discussion 9 

Utilizing p-adic rigid geometry, we succeeded in eliminating the “curse of 10 

dimensionality” effects from significantly diverged sample data, at least for the LC/MS 11 

data for HEK-293. If the total number of dimensions (n = ∑nd) exceeds the original 12 

number of model dimensions (in this case, n = 1630), the values converged. We 13 

assumed the number of traces (∑nd – n) became nilpotent [19]. Here, 800 (the first rank 14 

protein data were removed from N = 803) × 11 = 8800 > 1630, and the observed 15 

convergence of v was expected beyond the underdetermined system. To support this 16 

idea, clusters f-1, f-2, and 2y2, which were misclustered in Fig 1A, were appropriately 17 

clustered when using the v metric (Fig 8); this was true for all the clustering methods 18 

and neural network considered, with 800 × 3 = 2400 > 1606. This allowed us to 19 

determine whether a given sample was from a nearly fresh culture or had been stored 20 

for a long time at low temperature. It is also notable that for PCA, 90, 10 and 0.4% 21 

contributions were from PC1, PC2 and PC3, and 2y2, f-2 and f-1 were correlated 22 

independently to PCs with 1.00, 1.00 and 0.97, respectively. PCA seems not to work 23 

well in high-dimensional data. For nMDS, only three points are not proper to observe 24 

clustering.  25 
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This success is entirely based on an algebraic, analytic, and topological 1 

geometric analysis based on rigid geometry. So far as we know, this is the first 2 

application of “rigid geometry” to a biological system. We note that this methodology 3 

can be applied to any type of data, providing the data approximately follows a neutral 4 

logarithmic Boltzmann-type distribution. The agreement of results from a supervised 5 

machine learning and from several unsupervised clustering analyses demonstrates the 6 

power of this methodology. In biology, a similar approach can be used to evaluate the 7 

proteins inside cells of microbes [20]. The possibility of applications to other research 8 

fields, such as chemistry, physics, astronomy, and earth science, is promising but 9 

depends on successfully introducing the concept of “fitness” to the particular 10 

application.  11 

We expect physiological differences affect the patterning of protein/mRNA 12 

expression in the type of analysis presented here. However, if fluctuations within a set of 13 

replicates are prominent, the clustering may be improperly achieved. We measure the 14 

fluctuations by observing obvious differences among control and experimental samples. 15 

From Fig 1A/Fig 6A/Fig 7A, obviously all the hierarchical clustering analyses show 16 

contradictory results, while from Fig 1B/Fig 6B/Fig 7B, all the hierarchical clustering 17 

analyses show matched results, indicating significant improvement at least for 18 

hierarchical clustering. Control samples of fresh samples vs. very short time of freezing 19 

have statistically non-significant difference in average quantification (p = 0.40 for t-test), 20 

while that vs. years of freezing do have statistically significant difference (p = 6.0 × 10-8 21 

for t-test). We thus concluded that long-term storage in low temperature does have affect 22 

sample preservation, while short-term does not. 23 

 We tried to utilize neural network for an example of supervised approach, 24 

which is more powerful tool for classification. However, the approach was not as 25 

trustable as we had expected, according to incalculable Akaike information criterion. 26 

Furthermore, the data of Fig 6A and Fig 6B have suggested neural network is not 27 

trustable if the data have very high dimensions. We thus moved to more general approach 28 

of clustering that is trustable in any methods we have tested, and this is the aim of this 29 

work. Our approach seems to erase the traces of huge degree of freedom by erasing the 30 

singularities.  Additionally, regression analysis still depends heavily on the number of 31 

independent variables. If the number of variables is still large, it is difficult to classify the 32 

data due to “curse of dimensionality”. The data of PCA and p-adic metric performed well 33 
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in LC/MS compared with failure of clustering in original unused vales. However, neither 1 

original values nor v metrics perform well in expression arrays. This might be that high 2 

dimensionality prevents reducing dimensions to certain small values in PCA. It is also 3 

notable that in nMDS, control samples clustered to almost a single point, while 4 

experimental samples were sparse along the plots, indicating clear distinction of the 5 

characteristics of the samples by nMDS.  6 

In conclusion, we have succeeded in removing the “curse of dimensionality” 7 

from the observed differences among control and treatment (fresh and stored) samples 8 

of HEK-293 cells when evaluating LC/MS data, and other expression data of 9 

Saccharomyces cerevisiae and Escherichia coli treated by clustering methods and 10 

nMDS. The success was entirely based on the topological characteristics of the p-adic 11 

metric on rigid geometry. This approach has the potential to calculate the characteristic 12 

values of any system for which the data approximate a neutral logarithmic Boltzmann 13 

distribution. 14 

 15 

Materials and Methods 16 

Cell culture 17 

A human HEK-293 cell line from an embryonic kidney was purchased from RIKEN 18 

(Japan). The original cultures were frozen on either March 18, 2013 (3-year storage) or 19 

March 5, 2014 (2-year storage), and they were used in experiments between February 20 

and June 2016. The strain was cultured in Modified Eagle’s Medium (MEM) + 10% 21 

fatal bovine serum (FBS) + 0.1 mM nonessential amino acid (NEAA) at 37°C with 5% 22 

CO2. Subculturing was performed in 0.25% trypsin, and prior to the experiment, the 23 

original cells from RIKEN were frozen following the standard protocol provided by 24 

RIKEN: in culture medium with 10% dimethyl sulfoxide (DMSO), they were cooled 25 

until reaching 4°C at −2°C/min, held at that temperature for 10 min, cooled until 26 

reaching −30°C at −1°C/min in order to freeze, held at that temperature for 10 min, 27 

cooled again until reaching −80°C at −5°C/min, and then held at that temperature 28 

overnight. The next day, they were transferred to storage in liquid nitrogen. Freezing 29 

conditions for the control samples are described in the Results section. 30 

 31 

Protein extraction, alkylation, and digestion 32 
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The HEK-293 proteins were extracted using the standard protocol for the RIPA buffer 1 

(NACALAI TESQUE, INC., Kyoto, Japan). Approximately 106 harvested cells were 2 

washed once in Krebs-Ringer-Buffer (KRB; 154 mM NaCl, 5.6 mM KCl, 5.5 mM 3 

glucose, 20.1 mM HEPES pH 7.4, 25 mM NaHCO3). They were resuspended in 30 µl 4 

of RIPA buffer, passed in and out through 21G needles for destruction, and incubated on 5 

ice for 1 h. They were then centrifuged at 10,000 g for 10 min at 4°C, followed by 6 

collection of the supernatants; the proteins were quantified by using a Micro BCA 7 

Protein Assay Kit (Thermo Fisher Scientific, Waltham, U.S.A.), and further processing 8 

was performed using XL-Tryp Kit Direct Digestion (APRO SCIENCE, Naruto, Japan). 9 

The samples were solidified in acrylamide gel, washed twice in ultrapure water, washed 10 

three times in dehydration solution, and dried. The samples were then processed using 11 

an In-Gel R-CAM Kit (APRO SCIENCE, Naruto, Japan). The samples were reduced 12 

for 2 h at 37°C, alkylated for 30 min at room temperature, washed five times with 13 

ultrapure water, washed twice with destaining solution, and then dried. The resultant 14 

samples were trypsinized overnight at 35°C. The next day, the dissolved digested 15 

peptides were collected by ZipTipC18 (Merck Millipore, Corp., Billerica, U.S.A.). The 16 

tips were dampened with acetonitrile twice and equilibrated twice with 0.1% 17 

trifluoroacetic acid. The peptides were collected by ~20 cycles of aspiration and 18 

dispensing, washed twice with 0.1% trifluoroacetic acid, and eluted by 0.1% 19 

trifluoroacetic acid /50% acetonitrile with aspiration and dispensing five times × three 20 

tips followed by vacuum drying. The finalized samples were stored at −20°C. Before 21 

performing LC/MS, they were resuspended in 0.1% formic acid, and the amounts were 22 

quantified by Pierce Quantitative Colorimetric Peptide Assay (Thermo Fisher Scientific, 23 

Waltham, U.S.A.). This protocol is published at 24 

http://dx.doi.org/10.17504/protocols.io.h4qb8vw. 25 

 26 

LC/MS 27 

LC/MS was performed by the Medical Research Support Center, Graduate School of 28 

Medicine, Kyoto University with a quadrupole−time-of-flight [Q-Tof] mass 29 

spectrometer TripleTOF 5600 (AB Sciex Pte., Ltd., Concord, Canada). We followed 30 

their standard protocols. The loading amount for each sample was 1 µg. We extracted 31 

the quantitative data for the unused information for identified proteins by using 32 

ProteinPilot 4.5.0.0 software (AB Sciex Pte., Ltd., Concord, Canada). 33 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2017. ; https://doi.org/10.1101/094391doi: bioRxiv preprint 

https://doi.org/10.1101/094391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16

 1 

Clustering analyses and machine learning of the pattern 2 

For LC/MS, hierarchical clustering analyses were performed by the standard hclust 3 

function in R 3.2.3 (https://cran.r-project.org) with the package stats. The actual 4 

hierarchical methods used were: single linkage, complete linkage, group average, 5 

weighted average, centroid, median, and Ward’s method. The k-means method was 6 

performed by the standard kmeans function in R 3.2.3 with the package stats. It was 7 

calculated based on all eleven/six samples. For machine learning, an 11-1-1 hierarchical 8 

neural-network analysis was performed in R 3.2.3 with the package nnet, and the cl 9 

(number of raw data points) factors were calculated as a characterization index for the 10 

pattern. For expression arrays, all the analyses were done the same as LC/MS except 11 

using R 3.3.2 and 6-1-1 hierarchical neural-network. Principal component analyses 12 

(PCA) and non-metric multi-dimensional scaling (nMDS) were also performed by 13 

prcomp and isoMDS functions of R 3.3.2 with the packages stats and MASS, 14 

respectively. The metric used for nMDS was: √
�����	��

�	�	���
. Nearest neighbor distances 15 

were calculated by nndist function of R 3.3.2 with the package spatstat. Kernel principal 16 

component analysis was performed by kpca function of R 3.3.2 with the package 17 

kernlab, selecting rbfdot option. Cluster analysis via nonparametric density estimation 18 

was performed by pdfCluster function of R 3.3.2 with the package pdfClsuter. Kernel 19 

k-means method was performed by kkmeans function of R 3.3.2 with the package 20 

kernlab. Correlation distances were calculated by corDist function of R 3.3.2 with the 21 

package MKmisc. With correlation distances, 10-1-1 neural network was used because 22 

one of the 11 values was zero. We only used the unused values or expression data that 23 

are observable in each of the eleven/six samples; this was done to avoid distortion of the 24 

calculation from identification failures within the LC/MS process or microarray 25 

experiments, since there were relatively few signal values (N = 803, 9335, 1109 in each 26 

sample). The actual unused values or expression data used in the calculation are shown 27 

in S2 Table. 28 

 29 

Supporting Information 30 

S1 Appendix. Utilizing a p-adic metric embedded in rigid geometry.  31 

Appendix indicating calculation of the new metric v. 32 
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S2 Table. The table of raw values for the identified proteins and expression arrays. 1 

Sheet 1, unused values for LC/MS in HEK-293; Sheet 2, raw signal intensities for 2 

expression array in Saccharomyces cerevisiae [17]; Sheet 3, raw induction factor values 3 

of Escherichia coli in [18]. Please also see the legend of Fig 1A, 7 and 9.  4 

 5 
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Captions to Figures 1 

 2 

Fig 1. Clustering of value sets for each protein in the LC/MS data of HEK-293 (N = 3 

803). f-1, f-2, and f-3: freshly prepared samples in replicates 1, 2, and 3, respectively; 4 

1h1 and 1h2: samples frozen at −80°C for 1 h in replicates 1 and 2, respectively; o/1 and 5 

o/2: samples that remained at −80°C overnight and then in liquid nitrogen overnight 6 

(“o/n-o/n”) in replicates 1 and 2, respectively; 2y1, 2y2, and 2y3: samples preserved in 7 

liquid nitrogen storage according to the RIKEN protocol for approximately 2 years in 8 

replicates 1, 2, and 3, respectively; 3y: sample preserved in liquid nitrogen storage 9 

according to the RIKEN protocol for approximately three years. The numbers in the 10 

k-means table are the indices of the classified groups. The numbers in the neural 11 

network table are the cl factors, which represents the one-dimensional characteristics of 12 

the systems. The differences in cl values show dissimilarity of the samples. Please also 13 

see the Methods section. (A) Unused values. (B) v values. 14 

 15 

Fig 2. “Curse of dimensionality” and a possible solution. (A) “Curse of 16 

dimensionality” effects when there is a sparse geometric distribution of data points; see 17 

also Ronan et al. (2016). (B) Example of geometric conversion to a simpler system: 18 

quotient of icosahedral tessellation by I on a Riemann sphere. 2 (red points), 3 (green 19 

points), and 5 (blue points) correspond to the midpoints of the edges, the barycenters of 20 

the faces, and the vertices, respectively; see also Cornelissen and Kato (2005). 21 

 22 

Fig 3. Ranked variance distributions of original values and v values of omics data. 23 

Euclidean; raw values. v; p(I)-adic v values. Horizontal axis: the rank of values. Vertical 24 

axis: the variances. (A) Ranked variance distributions of unused values and v values of 25 

proteins used for calculations (N = 803). (B) Ranked variance distributions of raw signal 26 

intensity values and v values of expression arrays for Saccharomyces cerevisiae used 27 

for calculations (N = 9335). (C) Ranked variance distributions of 2induction factor values 28 

and v values of expression arrays for Escherichia coli used for calculations (N =1109). 29 

 30 

Fig 4. Clustering of nearest neighbor distance value sets and radial basis kernel 31 

value sets for each protein in the LC/MS data of HEK-293 (N = 803). f-1, f-2, and 32 

f-3: freshly prepared samples in replicates 1, 2, and 3, respectively; 1h1 and 1h2: 33 
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samples frozen at −80°C for 1 h in replicates 1 and 2, respectively; o/1 and o/2: samples 1 

that remained at −80°C overnight and then in liquid nitrogen overnight (“o/n-o/n”) in 2 

replicates 1 and 2, respectively; 2y1, 2y2, and 2y3: samples preserved in liquid nitrogen 3 

storage according to the RIKEN protocol for approximately 2 years in replicates 1, 2, 4 

and 3, respectively; 3y: sample preserved in liquid nitrogen storage according to the 5 

RIKEN protocol for approximately three years. The numbers in the k-means table are 6 

the indices of the classified groups. The numbers in the neural network table are the cl 7 

factors, which represents the one-dimensional characteristics of the systems. The 8 

differences in cl values show dissimilarity of the samples. Please also see the Methods 9 

section.  10 

 11 

Fig 5. Clustering of correlation distance value sets for each protein in the LC/MS 12 

data of HEK-293 (N = 803). Euclidean; raw values. v; p(I)-adic v values. Horizontal 13 

axis: the rank of values. Vertical axis: the variances. (A) Ranked variance distributions 14 

of unused values and v values of proteins used for calculations (N = 803). (B) Ranked 15 

variance distributions of raw signal intensity values and v values of expression arrays 16 

for Saccharomyces cerevisiae used for calculations (N = 9335). (C) Ranked variance 17 

distributions of 2induction factor values and v values of expression arrays for Escherichia 18 

coli used for calculations (N =1109). 19 

 20 

Fig 6. Clustering in the expression array data of Saccharomyces cerevisiae (N = 21 

9335). d1, d2, and d3: heme-deficient samples in replicates 1 (GSM206793), 2 22 

(GSM206794), and 3 (GSM206795), respectively; s1, s2, and s3: heme-sufficient 23 

samples in replicates 1 (GSM206796), 2 (GSM206797), and 3 (GSM206798), 24 

respectively. The numbers in the k-means table are the indices of the classified groups. 25 

The numbers in the neural network table are the cl factors, which represents the 26 

one-dimensional characteristics of the systems. The differences in cl values show 27 

dissimilarity of the samples. Please also see [17] and the Methods section for more 28 

detail. (A) Raw signal intensities. (B) v values.  29 

 30 

Fig 7. Clustering in the expression array data of Escherichia coli (N = 1109). s1, s2, 31 

and s3: samples with short-term starvation for glucose in replicates 1 (GSM106337), 2 32 

(GSM106338), and 3 (GSM106339), respectively; l1, l2, and l3: samples with 33 
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long-term starvation for glucose in replicates 1 (GSM106340), 2 (GSM106341), and 3 1 

(GSM106342), respectively. The numbers in the k-means table are the indices of the 2 

classified groups. The numbers in the neural network table are the cl factors, which 3 

represents the one-dimensional characteristics of the systems. The differences in cl 4 

values show dissimilarity of the samples. Please also see [18] and the Methods section 5 

for more detail. (A) 2induction factor values. (B) v values. 6 

 7 

Fig 8. Clustering of newly invented v value sets of each protein in LC/MS of 8 

HEK-293 (N = 803). f-1 and f-2: freshly prepared samples in replicates 1 and 2, 9 

respectively; 2y2: a sample preserved in liquid nitrogen storage according to the RIKEN 10 

protocol for approximately two years in replicate 2. The numbers in the k-means table 11 

are the indices of the classified groups. The numbers in the neural network table are the 12 

cl factors, which represents the one-dimensional characteristics of the systems. The 13 

differences in cl values show dissimilarity of the samples. Please also see the Methods 14 

section. 15 

 16 
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