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Abstract 

Introduction 

Homologous recombination happens when a foreign DNA segment replaces a similar 

segment on the genome of a prokaryotic cell. For a genome pair, recombination affects their 

phylogenetic reconstruction in multiple ways: (i) a genome can recombine with a DNA 

segment that is similar to the other genome of the pair, thereby reducing their pairwise 

sequence divergence; (ii) a genome can also recombine with a segment from an outgroup-

genome and increase the pairwise divergence. Most phylogenetic algorithms cannot account 

for recombination; while some do, they cannot account for all effects of recombination. 

Results 

We develop a fast algorithm that takes recombination into account and reconstructs 

ultrametric-trees. Instead of considering individual positions of genome sequences, we use a 

coarse-graining approach, which divides a genome sequence into short segments. For each 

genome pair considered, our coarse-graining phylogenetic (CGP) algorithm enumerates the 

pairwise single-site-polymorphisms (SSPs) on each segment to obtain the pairwise SSP-

distribution; we then fit each empirical SSP-distribution to a theoretical SSP-distribution. We 

test the performance of our algorithm against other state-of-the-art algorithms on simulated 

and real genomes. For genomes with a substantial level of recombination, such as E. coli, 

we show that the age of internal nodes calculated by CGP is more accurate than those 

predicted by other algorithms, while the reconstructed tree topology is at least as accurate. 

Conclusion 

We develop a phylogenetic algorithm that accounts for recombination. It predicts 

ultrametric-trees more accurately than alternative algorithms, and is also substantially faster 

than the current state-of-the-art algorithms in recombination-aware phylogenetic 

reconstruction. 

Introduction 

Horizontal transfer of DNA segments between prokaryotes—termed horizontal gene 

transfer (HGT) or lateral gene transfer (LGT)—is a major driver of prokaryotic evolution (Pál 

et al. 2005). It is caused by a variety of different mechanisms, including transformation, 

transduction, conjugation, and gene transfer agents (Ochman et al. 2000; Lang et al. 2012). 

Many prokaryotic genomes encode defense systems against foreign DNA, such as the 

restriction modification system (Wilson and Murray 1991). A foreign DNA segment that 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 15, 2016. ; https://doi.org/10.1101/094599doi: bioRxiv preprint 

https://doi.org/10.1101/094599
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

enters the prokaryotic cell and survives these host defenses may be incorporated into the 

host genome. If the incoming DNA segment is highly similar to a segment on the host 

genome, then homologous recombination may occur, where the incoming segment 

homologously recombines with the host segment and overwrites it (Dixit et al. 2015). Apart 

from recombination, the incoming segment may also be inserted directly into the host 

genome through non-homologous recombination.  

Horizontal gene transfer allows the fast spread of beneficial genes, allowing 

prokaryotes to adapt to changes in the environment; for example, HGT is responsible to the 

spread of antibiotic resistance genes in the pathogenic bacteria (Huddleston 2014). 

Moreover, recombination is crucial for the long-term maintenance of prokaryotic populations, 

as it can help to repair DNA damaged by deleterious mutations to avoid the mutational 

meltdown of Muller’s ratchet (Takeuchi et al. 2014); computational modelling also suggests 

that recombination may help prokaryotes to purge selfish mobile genetic elements (Croucher 

et al. 2016). 

Recombination and HGT can severely disturb phylogeny reconstructions. If we apply 

a phylogenetic algorithm that does not account for recombination to genomes that 

recombine frequently, branch lengths will deviate systematically from the true branch 

lengths. For example, (i) when a segment of genome X recombines with a DNA segment 

from genome Y, it will erase some of the single site polymorphisms (SSNs) that previously 

differentiated X and Y, shortening the apparent distance between the genomes; here, an 

SSN refers either to single nucleotide polymorphism (SNP) or to single amino acid 

polymorphism (SAP). Conversely, (ii) when X recombines with a DNA segment of an 

outgroup genome (a genome that diverged before the split of the X and Y lineages), then it 

introduces SSPs into X, increasing the apparent X-Y distance.  

Multilocus sequence typing (MLST) can extract sequences of housekeeping genes 

from prokaryotic genomes, which can then be applied for phylogenetic reconstruction to 

resolve evolutionary relationships (Spratt 1999). However, MLST genes may also 

experience frequent recombination, and phylogenetic reconstruction without accounting for 

recombination can compromise the resulting trees (Vos and Didelot 2009). In fact, the 

frequency for recombination to cover a gene can be of the same order of magnitude as the 

mutation rate of a gene (Dixit et al. 2015). For this reason, application of conventional 

phylogenetic algorithms without accounting for recombination can lead to a severe 

underestimation of the age of the common ancestors (Schierup and Hein 2000). When there 

are more than two strains, recombination can disturb not only the relative divergence times 

between strains, but may also affect the reliability of the tree topology. Currently, only one 

published phylogenetic algorithm explicitly accounts for recombination: ClonalFrame (Didelot 
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and Falush 2007), which comes with its sister algorithm ClonalOrigin (Didelot et al. 2010); 

however, ClonalFrame only takes type (ii) but not type (i) recombination into account. 

To correctly and efficiently account for past homologous recombination events in tree 

topology and in particular in divergence time inferences, we developed a coarse-graining 

phylogenetic (CGP) algorithm to reconstruct ultrametric phylogenetic trees. While most 

conventional phylogenetic algorithms consider every variable positions of the core genome, 

the CGP algorithm divides the core genome into equally sized segments. For an aligned pair 

of genomes, CGP enumerates the mutual SSPs on every segment of the pair, and thus 

obtains the pairwise SSP distribution. CGP fits the empirical SSP distributions of all genome 

pairs to theoretical distributions generated by ultrametric trees to estimate the true 

phyologeny. We tested the accuracy of CGP tree topology and branch length predictions 

with those of other state-of-the-art algorithms, including RAxML (Stamatakis 2014), BEAST 

(Drummond et al. 2012), and ClonalFrame (Didelot and Falush 2007), using both simulated 

genomes and real E. coli genomes. 

Results 

A coarse-graining approach to phylogenetic reconstruction 

We developed a coarse-graining phylogenetic (CGP) algorithm, which explicitly 

accounts for recombination while reconstructing ultrametric phylogenetic trees. CGP is 

based on a mathematical model (Dixit et al. 2015; Pang and Lercher 2016) that 

quantitatively describes the evolution of genomic sequence divergence in a neutral 

coalescent framework (Materials and Methods). Instead of considering individual positions of 

nucleotide or amino acid sequence alignments, CGP considers genomic segments—a fixed 

number of consecutive nucleotides or amino acids positions—where an alignment is 

represented by a chain of non-overlapping segments. Given the alignment of a pair of 

genome sequences (or a set of orthologous genes), the CGP algorithm divides it into Lseg 

segments, where each segment has ls nucleotide or amino acid sites; CGP then enumerates 

positions with single site polymorphisms (SSPs) within each segment to obtain the SSP 

distribution of the pair of genomes. The pairwise SSP distributions of all considered 

genomes are then used as input for the phylogenetic reconstruction. A segment with ls sites 

can have either 0, 1, …, ls SSPs; thus a segment has ls+1 states, and a SSP distribution can 

be represented by a vector of ls+1 elements. To save computational resources, our algorithm 

uses a vector of lscutoff+1 elements to represent a SSP distribution, assigning segments with lscutoff or 

more SSPs to be in the same state. 
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The CGP algorithm infers the coalescent time of two genomes by comparing their 

empirical SSP distribution with theoretical distributions. The details of this algorithm are 

given in Materials and Methods. The remainder of this subsection, which summarizes the 

idea of the CGP algorithm; readers who are more interested in the application than in the 

technical details of CGP can skip this part. For readers who want to try using the algorithm, a 

link to the source code is provided in Supplementary File S3. 

When a prokaryotic lineage splits into two new lineages X and Y, the initial SSP 

distribution consists of a single peak at zero SSP. As time proceeds, mutations and 

homologous recombination bring in new SSPs, reshaping the SSP distribution (see Materials 

and Methods for the detailed model). There are five parameters in the model of CGP that 

determine the theoretical SSP distribution of a genome pair: (i) mutation rate μ per segment, 

(ii) homologous recombination rate ρ per segment (i.e., the probability that a recombination 

event somewhere on the chromosome covers a given segment), (iii) average sequence 

divergence θ per segment between a random genome pair in the population, (iv) transfer 

efficiency δTE , which relates the success rate of recombination with the sequence 

divergence between the incoming and the host segment, and (v) coalescent time  tXY 

between the segment pair. The unit of divergence θ and efficiency δTE can be (a) the number 

of SSPs per segment or (b) the corresponding percentage. 

To reconstruct the phylogenetic inheritance of n genomes, the CGP algorithm starts 

from the n(n-1)/2 empirical SSP distributions. The vertical phylogenetic inheritance of these 

n genomes is represented by an ultrametric phylogenetic tree. An ultrametric tree T with n 

leaves can have no more than n-1 internal nodes, and thus the CGP algorithm infers n-1 

coalescent times from the n(n-1)/2 SSP distributions. The solution space of the CGP 

algorithm includes the model parameters μ, ρ, θ, δTE—assumed to be constant across 

segments and across lineages—as well as the ultrametric tree T, whose branch lengths 

directly correspond to time. Each of the n(n-1)/2 empirical SSP distribution g(x), where x is 

the number of SSPs on a segment, has a corresponding theoretical distribution f(x); these 

n(n-1)/2 theoretical distributions depend on μ, ρ, θ, δTE, and T. We used the cross entropy 

(Boer et al. 2005) to measure the similarity between an empirical distribution g(x) and its 

corresponding theoretical distribution f(x), and the logarithm of the posterior probability of a 

point in the solution space—described by μ, ρ, θ, δTE and T—is the summation of the n(n-

1)/2 cross entropies (Materials and Methods). 

The CGP algorithm starts with an ultrametric tree constructed from single linkage 

clustering based on the SSP matrix of the genome pairs, and then performs Markov chain 

Monte Carlo (MCMC). In each step, it mutates the model parameters μ, ρ, θ, δTE or the tree 

T, and accepts the move according to its posterior probability. The algorithm proceeds and 

records the posterior parameters and the posterior tree every 1000 steps; it terminates when 
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the maximum posterior score has not increased by more than 1 for 200,000 steps (Materials 

and Methods). 

CGP accurately predicts coalescent times of simulated genomes 

To compare the performance of CGP with that of alternative algorithms, we simulated 

populations of haploid genomes following the neutral coalescent model with recombination 

(Fraser et al. 2007), using three different parameter sets ((μ, ρ, θ, δTE)=(0.05, 0.01, 10%, 

0.8%), (0.05, 0.25, 10%, 0.8%), and (0.025, 0.25, 10%, 0.8%)). These parameter sets 

correspond to species with low, intermediate, and high levels of recombination. We evolved 

genomes with Lseg=100 segments, where each segment has ls=1000 binary sites. Population 

size is maintained constant throughout the simulation (Ne=1000), and the phylogenetic 

history of the entire population is recorded (Materials and Methods). We set the transfer 

efficiency δTE=0.8% in all simulations, which is consistent with previous reports of 0.8% (Dixit 

et al. 2015) and 2.2% (Fraser et al. 2007) for E. coli. The ratio of the contributions to 

divergence by recombination and by mutation events (r/m) was found to be around 1.6, 40, 

and 80, respectively, for the three sets of model parameters (Materials and Methods). The 

r/m values of the simulated population largely overlap with the r/m values found in nature, 

which range from 0.02 to 63.6 (Vos and Didelot 2009), and thus are appropriate to represent 

the broad range of recombination levels observed in real genomes. 

For each of the three parameter sets (representing low, intermediate, and high 

recombination levels), we collected around one hundred groups of closely related genomes 

from the simulated populations; we then reconstructed the phylogeny of each of these 

groups; we set the maximal recorded segment difference lscutoff=100 in CGP to save 

computational resources. We compared the estimates of CGP with RAxML (Stamatakis 2014), 

BEAST (Drummond et al. 2012), and ClonalFrame (CF) (Didelot and Falush 2007). All 

tested algorithms involve MCMC and generate a series of trees during the process of 

phylogenetic reconstruction; we compared the series of posterior trees of each algorithm 

with the true phylogenetic tree of the simulated genome group. To evaluate the accuracy of 

an algorithm with respect to tree topology, we measured the similarity between the posterior 

trees and the true tree using the topology similarity score stopo, which is the ratio of correctly 

inferred clusters over all clusters present, and is also denoted as ‘efficiency’ (Didelot and 

Falush 2007); to evaluate the accuracy of branch length estimates, we measured the 

average deviation between the age of internal nodes in the real tree and the age of the 

corresponding nodes in the posterior trees (the node age deviation dage) (Materials and 

Methods). 
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Table 1 summarizes the average topology similarity score and age deviation for 

different algorithms; Supplementary Tables S2 and S3 show pairwise comparisons among 

algorithms for topology prediction accuracy and node age accuracy, respectively 

(Supplementary File S1 shows a table of the raw outputs). We first examined the topologies 

of the reconstructed trees. CGP was designed to deal with problems in phylogenetic 

reconstruction that arise through recombination; accordingly, it performed worst among the 

four tested algorithms for genomes with very low recombination levels. However, CGP 

performed as well as BEAST and significantly better than both RAxML and ClonalFrame at 

intermediate and high levels of recombination (Table 1; see Supplementary Table S2 for the 

statistical significance of pairwise method comparisons). For node age prediction, CGP is 

significantly better than BEAST and ClonalFrame (Table 1; see Supplementary Table S3 for 

the statistical significance of pairwise method comparisons); note that RaxML does not 

provide node age estimates. 

Along with the series of posterior trees T, CGP also records the posterior parameters 

(μ, ρ, θ, δTE); these parameters can provide a general overview of the evolutionary dynamics 

of the population, in particular the level of recombination and the sequence divergence. μ is 

fixed throughout the MCMC simulation of CGP, and thus the meaningful parameters are ρ/μ, 

θ, and δTE. We calculated the mean of ρ/μ, θ, and δTE of each genome group by taking the 

average of the posterior parameters of the last 200,000 MCMC steps. Supplementary Figure 

S1 shows the histograms of ρ/μ, θ, and δTE of different genome groups at different levels of 

recombination. Table 2 compares the average value and standard deviation of these 

distributions of posterior parameters with the true values of the simulated populations, which 

shows that the predictions of the posterior parameters are correct within an order of 

magnitude. 

CGP predicts the ultrametric phylogenetic tree of real genomes better than 

alternative algorithms 

To test the accuracy of different algorithms on real data, we collected the nucleotide 

and amino acid sequences of the core genome of 55 E. coli and Shigella strains, aligned the 

alleles of each orthologous gene family, and also prepared the pairwise SSP distributions of 

the genome pairs (Materials and Methods; see Supplementary Table S1 for the strains 

included). We will use the umbrella term E. coli to refer to all 55 strains, as Shigella is 

sometimes considered as belonging to the E. coli species. Dixit et. el. pointed out that when 

the nucleotide sequence divergence between a pair of genomes reaches a boundary of 

1.3%, there is virtually no segment of the pair left untouched by recombination (Dixit et al. 

2015). As recombination erases phylogenetic signals of a genome, the CGP algorithm might 
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perform differently below and above this cut-off. Hence, we performed two different tests, 

assigning different constraints to the nucleotide sequence divergence of the strains. In test 1, 

we imposed the constraint that no strain pair within a test group can exceed an average 

nucleotide sequence divergence of 1.3%; in test 2, we did not impose any constraint on 

sequence divergence. Each of test 1 and test 2 contains 100 groups; each group has 10 

strains, randomly picked from the 55 strains, following the criteria imposed on the tests. To 

save computational resources, we did not concatenate all universal genes into a ‘super-

gene’ for each strain, but instead randomly selected 100 genes, concatenating their 

nucleotide sequences and separately their amino acid sequences. Thus, each of the 10 

strains in a group is represented by a nucleotide sequence and an amino acid sequence, 

with the sequences of all 10 strains forming an alignment. We used a segment size ls=30 for 

nucleotide sequences and ls=10 for amino acid sequences, and set ls
cutoff to its maximum 

possible value, i.e., ls
cutoff=ls, to simplify the numerical calculations (see Supplementary File 

S2 for table of the strains and genes used in different test groups). We performed five 

different phylogenetic reconstructions for each sequence set, using (i) CGP, (ii) BEAST, and 

(iii) ClonalFrame on nucleotide sequences, as well as (iv) CGP and (v) BEAST on amino 

acid sequences (Materials and Methods). 

As we do not know the true vertical phylogeny of the E. coli genomes, we evaluated 

the accuracy of each reconstructed phylogeny by comparing its posterior trees with the 

phylogenetic signals inferred from absence and presence of genes across different genomes 

(Cohen et al. 2010). We summarized a series of posterior trees (of CGP or BEAST) using 

the “treeannotator” program, which is part of the BEAST package and calculates the 

maximum clade credibility tree from a posterior tree series, to create a representative tree for 

a phylogenetic reconstruction; for ClonalFrame, its output file already contains a consensus 

tree, and we used it as its representative tree. Treating each internal node of the 

representative tree as an ancestral strain, we applied GLOOME (Cohen et al. 2010), a 

maximum likelihood algorithm, to reconstruct the presence and absence of genes in the 

ancestral strains, and also the genes transferred horizontally into the ancestral genomes, 

based on the representative tree and the presence and absence of genes across different 

extant strains (Materials and Methods). We used the GLOOME posterior likelihood (GPL) of 

the ancestral genome reconstruction to serves as an indicator to quantify the accuracy of 

each representative tree: the more accurate the representative tree is, the better it should 

match the phylogenetic signal inferred from absence and presence of genes in different 

genomes, and hence the higher its GPL. Further, we reconstructed the HGT events and the 

genes transferred in each event; we used the number of reconstructed HGT events (NHGT) 

as another indicator to evaluate the accuracy of a representative tree (Materials and 

Methods)—we expect that the more the representative tree deviates from the true 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 15, 2016. ; https://doi.org/10.1101/094599doi: bioRxiv preprint 

https://doi.org/10.1101/094599
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

phylogeny, the more erroneous HGT events are inferred; thus, lower values of NHGT indicate 

more reliable representative trees. 

Supplementary File S2 lists the GPL and NHGT of individual test groups, and Table 3 

summarizes the accuracy of the different algorithms as assessed by the average GPL and 

NHGT. Supplementary Table S4 and Supplementary Table S5 further compare the accuracy 

of different algorithms by testing the GPL and NHGT of their reconstructions using Wilcoxon 

signed rank tests. From these tables, we can infer that the accuracy of the algorithms ranked 

by GPL is largely consistent with that ranked by NHGT. The only exception is that according to 

GPL, ClonalFrame appears to result in more accurate trees than BEAST applied to 

nucleotide sequences, while NHGT indicates the reverse to be true. The reason behind this 

inconsistency appears complicated; one possible explanation is that one of the two 

indicators is more sensitive to the topology of the tree, while the other is more sensitive to 

the branch lengths. Nonetheless, both GPL and NHGT support that, in general, CGP applied 

to amino acid sequences more accurately reconstructs phylogenetic trees than all other 

tested algorithms. 

The CGP algorithm records the posterior tree as well as other model parameters, 

including ρ/μ, θ, and δTE; these posterior parameters can reflect the level of recombination 

and the sequence divergence within the population. For each genome group for which we 

applied the CGP algorithm, we took the average of the parameters of the last 200,000 

MCMC steps to get the representative values of ρ/μ, θ, and δTE for the group. Table 4 

summarizes the mean and standard deviation of the distributions of the posterior ρ/μ, θ, and 

δTE. The value of δTE is known to be around 1% ~ 3% (Fraser et al. 2007), but is measured to 

be from 6.1% to 13% by CGP (geometric mean in Table 4). A possible cause of this large 

deviation is the small number of sites per segment ls that we used in the calculation (ls=30 for 

nucleotide sequences and ls=10 for amino acid sequences). While a small ls (and small 

lscutoff) can speed up the CGP algorithm, it also introduces uncertainties, as each additional 

SSP on a segment increases the segment divergence by 3.3% when ls=30, and 10% when 

ls=10. The divergence introduced by an SSP, denoted as ΔSSP, is comparable to δTE, which 

makes the estimations deviate from the expectation. When we used larger segment sizes, 

ls=300 for nucleotide sequences and ls=100 for amino acid sequences, with ls
cutoff=80 to save 

computational time, we obtain a smaller ΔSSP; in this case, CGP estimates δTE to be around 

1.4% - 3.3% (Table 5, geometric average), consistent with the literature values. 

We also compared the computational cost of different algorithms. For each 10-

genomes test group of both test 1 and 2, we performed phylogenetic reconstruction using 

CGP, BEAST, ClonalFrame on the nucleotide sequences as well as CGP and BEAST on the 

amino acid sequences, and measured the CPU time of each run (see Supplementary File S2 

for results of individual test groups and Table 6 for average CPU times of each algorithm). 
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The ranking of running times of different algorithms is 

BEASTn<CGPa<CGPn<BEASTa<ClonalFrame; the significance of this ranking is confirmed 

by a comparison of CPU times using Wilcoxon signed rank tests at significance level of 0.05. 

Table 6 shows that, while BEAST performed on nucleotide sequences has the shortest run 

time, the running times of the CGP algorithm on nucleotide sequences as well as on amino 

acid sequences are of the same order of magnitude, and an order of magnitude shorter than 

those of ClonalFrame. 

Discussion 

In this work, we developed a coarse-graining phylogenetic (CGP) reconstruction 

algorithm. The model behind CGP can directly account for homologous recombination in 

prokaryotic genomes, which is a feature missing in many other phylogenetic reconstruction 

algorithms. We have conducted extensive analyses to compare the accuracy of CGP with 

other state-of-the-art algorithms, reconstructing ultrametric phylogenies for simulated as well 

as for real E. coli genomes. On simulated genomes, CGP performs better than other 

algorithms in predicting branch lengths for sets of genomes of all examined levels of 

recombination; CGP is also at least as good as other algorithms for topology prediction of 

the phylogenetic tree at intermediate or higher levels of recombination. On real E. coli 

genomes, we examined the consistency between the reconstructed phylogenetic trees and 

the phylogenetic signal inferred from the absence and presence of genes in the genomes; 

we showed that the phylogenetic tree reconstructed by CGP based on amino acid 

sequences is significantly more accurate than those generated by the other algorithms.  

In constructing the ultrametric phylogeny, the CGP algorithm also estimates the level 

of recombination and sequence divergence in the population. Table 2 compares the true 

parameters used to simulate the genome populations with the posterior values estimated by 

CGP. It shows that the CGP measurements of ρ/μ, θ, and δTE is accurate within an order of 

magnitude. Table 4 and Table 5 shows the posterior values of ρ/μ, θ, and δTE estimated for 

E. coli genomes, one using a smaller segment size ls and the other one using a larger ls. It 

shows that while parameter estimates using a smaller ls and a larger ls are consistent with 

each other  for ρ/μ, they do not agree with each other for θ and δTE. The estimate of δTE 

based on a larger ls is consistent with published values (Table 5), while the same is not true 

for the estimate based on a smaller ls (Table 4). A smaller ls leads to a lower resolution of the 

δTE measurement and thereby reduces its accuracy. We need to compare the CGP 

algorithm with other state-of-the-art programs, such as ClonalOrigin (Didelot et al. 2010), in 

order to understand how good are the measurements of ρ/μ, θ and δTE. 
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The CGP algorithm is fast; its speed is independent of the sequence length of 

individual genomes except for calculation of the pairwise distance distributions. Its speed is 

comparable to that of the fastest tested algorithm (BEAST on nucleotide sequences; Table 

6), and CPG is an order of magnitude faster than ClonalFrame—the only other published 

algorithm that accounts for homologous recombination. CGP infers the phylogeny from the 

pairwise SSP distributions, f(x,t), of the genomes considered; f(x,t) is represented by an 

array with ls
cutoff elements in the program, which uses the same amount of memory 

regardless of whether a genome sequence is made up of 100 genes or 10,000 genes. The 

segment size ls and the cutoff number for SSPs on a segment, ls
cutoff, affect the 

computational cost and the accuracy of the reconstruction. The reconstructed phylogeny is 

more accurate if we set a high ls
cutoff, such as ls

cutoff=ls; but the reconstruction process is faster 

if we use a smaller ls. When ls is too small, this will reduce the accuracy of the posterior 

parameters (ρ/μ, θ, δTE). Thus, we need to adjust the parameters in the CGP algorithm to the 

problem at hand in order to balance speed and accuracy, and we leave this for future work. 

Materials and Methods 

Coalescent framework to model a neutral population of genomes with mutation 

and homologous recombination 

The coarse-graining phylogenetic (CGP) algorithm assumes genomes to follow 

dynamics described in the framework of neutral coalescent model (Kingman 2000) with 

homologous recombination (following the one in Fraser et al. (Fraser et al. 2007)). This 

neutral coalescent model considers a constant population of Ne nodes with non-overlapping 

generations, each node in the population is haploid and contains a genome. A node in one 

generation randomly picks another node in the previous generation as parent and inherit its 

genome, thereafter mutation and homologous recombination can occur on the node’s 

genome. A genome has Lseg segments that represent genes, and each segment has ls binary 

sites that represent nucleotide or amino acid. Mutation occurs at a rate μ per segment per 

generation, which mutates a random position on a segment. Recombination occurs at a rate 

ρ per segment per generation, where it tries to recombine with an “allele” of the segment 

from a random genome in the population. Recombination has a success rate of exp(-x/δTE), 

where x is the divergence between the incoming foreign segment and the host segment; the 

unit of segment divergence, as well as δTE, can be number of single site polymorphisms 

(SSPs), or simply %. If the recombination succeeds, then the foreign segment will replace 

the host segment; otherwise, the recombination fails and the host segment will not be 

replaced. The average segment divergence in the population, i.e., divergence of a segment 
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between a pair of genomes averaged over all genome pairs in the population, is denoted as 

θ=2μNe. 

A model to describe the evolution of divergence distribution 

We applied the theoretical model introduced in Dixit et al. (Dixit et al. 2015; Dixit et al. 

2016), which describes the evolution of SSP distribution between a pair of genomes X and 

Y. Let us divide the genome of X and Y into Lseg consecutive segments with lp positions, and 

let f(x,t) be the distribution of divergence on the segments, where x≥0 is segment 

divergence, t≥0 is the coalescent time between X and Y, and f(x,t) is normalized to unity.  

At t=0, i.e., the time when the most recent common ancestor (MRCA) splits into the X 

and Y lineages, both genomes are identical, and thus f(x,0)=1 when x=0, and f(x,t)=0 

otherwise. After the MRCA splits into two lineages, mutation and recombination occur and 

affect their SSP distribution, and we assumed each recombination covers only one segment. 

The evolution of f(x,t) is described by the following equation: 

𝑑𝑓(𝑥, 𝑡)

𝑑𝑡
= 2𝜇(𝑓(𝑥 − 𝛥𝑆𝑆𝑃 , 𝑡) − 𝑓(𝑥, 𝑡)) + 2𝜌(∫ 𝑑𝑦𝑃(𝑥|𝑦, 𝜃, 𝛿𝑇𝐸)𝑓(𝑦, 𝑡)

𝑖𝑛𝑓

0

− 𝑓(𝑥, 𝑡)) 
(1) 

Here, the first term accounts for mutation, and the second term accounts for recombination. 

ΔSSP is the increase in divergence on a segment when a mutation occurs; if we take the 

number of SSPs as the unit of divergence, then ΔSSP=1. μ is the segment mutation rate, ρ is 

the rate for recombination to occur on a segment. The factor 2 in both terms accounts for the 

fact that, mutation or recombination occurring on either X or Y will affect f(x,t). In reality, 

recombination can cover multiple segments, and so we have ρ=ρiniL, where ρini is the rate for 

a recombination to initiate at a segment, and L is the average length of a recombination 

stretch (in unit of segment). Moreover, μ and ρ change if we use a different segment size ls, 

but the ratio ρ/μ remains the same. 

P(x|y,θ,δTE) of Eq. (1) is the recombination kernel, which is the probability for a 

recombination to change the number of SSPs on a segment from y to x. θ here is the 

average segment divergence in the population, and δTE is the transfer efficiency with unit 

divergence. P(x|y,θ,δTE) is divided into three terms, 

𝑃(𝑥|𝑦, 𝜃, 𝛿𝑇𝐸) = 𝛩(𝑦 − 𝑥)𝐴1(𝑥|𝑦, 𝜃, 𝛿𝑇𝐸) + 𝛩(𝑥 − 𝑦)𝐴2(𝑥|𝑦, 𝜃, 𝛿𝑇𝐸) + 𝛿(𝑥)𝐴3(𝑦, 𝜃, 𝛿𝑇𝐸) 

Here, Θ(x) is step function, which is 1 when x>0 and 0 when x≤0; δ(x) is Dirac delta function, 

where δ(x)=0 when x≠0, and its integral around x=0 gives 1. The three terms of P(x|y,θ,δTE) 

represent three different possible scenarios of recombination: 

1. when y>x, recombination reduces divergence, and  

𝐴1(𝑥|𝑦, 𝜃, 𝛿𝑇𝐸) =
1

𝜃
𝑒𝑥𝑝(−

𝑦

𝛿𝑇𝐸
)𝑒𝑥𝑝(−

2𝑥

𝜃
) 
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2. when y<x, recombination increases divergence, and  

𝐴2(𝑥|𝑦, 𝜃, 𝛿𝑇𝐸) =
1

𝜃
𝑒𝑥𝑝(−

𝑥

𝛿𝑇𝐸
)𝑒𝑥𝑝(−

𝑦

𝜃
)𝑒𝑥𝑝(−

𝑥

𝜃
) 

3. when y=x, the transferred DNA segment fails to recombine, or the recombination 

does not change the divergence of the pair,  

𝐴3(𝑦, 𝜃, 𝛿𝑇𝐸) = 1 − ∫ 𝑑𝑥𝐴1(𝑥|𝑦, 𝜃, 𝛿𝑇𝐸)
𝑦

0

− ∫ 𝑑𝑥𝐴2(𝑥|𝑦, 𝜃, 𝛿𝑇𝐸)
∞

𝑦

 

P(x|y,θ,δTE) satisfies the normalization condition 

∫ 𝑑𝑥𝑃(𝑥|𝑦, 𝜃, 𝛿𝑇𝐸)
∞

0

= 1 
 

Supplementary Figure S2 shows an example SSP distributions of the model at different 

coalescent time t, with model parameters (μ, ρ, θ, δTE) equal (0.01, 0.01, 2%, 1%). 

A caveat of the recombination process modelled in this work is that, while the 

recombination kernel in the model in Dixit et al. (Dixit et al. 2015) assumes that a DNA 

segment transferred into another host will always result in a successful recombination, the 

kernel defined here also considers the case where a transferred DNA fails to recombine with 

the host segment. We deemed the current treatment more appropriate, as it separates the 

process of DNA segment transfer and the process of recombination, and assumes the rate 

of a DNA transfer to be constant; while in Dixit et al. (Dixit et al. 2015), it assumes that the 

rate of successful recombination is constant. 

Estimating r/m—ratio of contributions to divergence by homologous 
recombination and by mutation 

The r/m measures the ratio between the contributions to sequence divergence by 

homologous recombination and by mutation. A higher r/m means that recombination 

contributes more SSPs, while a lower r/m means mutation contributes more. We can 

estimate the r/m value from the model parameters (Dixit et al. 2016): 

𝑟

𝑚
≤

𝜌

𝜇
𝑚𝑖𝑛(𝜃, 𝛿𝑇𝐸) (2) 

The average number of SSPs brought by mutations on a segment within a unit time is μ. The 

average number of recombination that covers a segment within a unit time is ρ. If θ≪δTE, 

then most recombination will be successful, and the average number of SSPs introduced to 

a segment by a recombination is approximately θ—the average segment divergence 

between random genome pairs. If θ≫δTE, then on average a successful recombination will 

introduce δTE SSPs to a segment. 

The number of SSPs introduced by recombination is around min(θ,δTE)ρ, which gives 

(ρ/μ)min(θ,δTE) after divided by μ. A caveat here is that, what this expression estimates is an 
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upper bound to the true r/m; because the rate of successful recombination is lower than ρ 

when θ≫δTE.  

Computational simulation of the neutral coalescent model 

We simulated genome populations following the framework of a neutral coalescent 

model that has recombination; this model has been applied to understand the effect of 

recombination on sequence divergence (Fraser et al. 2007). We set the population size 

Ne=1000, each genome in the population has Lseg=100 segments, and each segment has 

ls=1000 binary sites. Throughout a simulation, we recorded the history of node inheritance, 

so that we have the exact phylogenetic tree of all the nodes in the population. We allowed 

the simulation to last for at least 10,000 generations. Starting from the 10,000th generation, 

we traced for the most recent common ancestor (MRCA) of all nodes in the population; the 

MRCA of all nodes may not exists if the simulation does not last long enough; if the MRCA 

has emerged, then we stop the simulation and recorded the binary genome of all the nodes. 

We performed simulation on three sets of parameters, with ρ/μ = 0.2, 5, 10 to 

represent prokaryotic species with low, intermediate and high level of recombination. The 

parameters (μ, ρ, θ, δTE) of the simulations include: 

1. ρ/μ=0.2: (0.05, 0.01, 10%, 0.8%), r/m≈1.6 

2. ρ/μ=5: (0.05, 0.25, 10%, 0.8%), r/m≈40 

3. ρ/μ=10: (0.025, 0.25, 5%, 0.8%), r/m≈80 

We repeated the simulation ten times for each parameter set, generating ten different 

populations to test the performance of our coarse-graining algorithm. 

The r/m values of our simulations estimated from Eq. (2) are 1.6, 40, 80. The r/m 

values reported from a previous study for a wide scope of prokaryotic species ranges from 

0.02 to 63.6 (Vos and Didelot 2009); hence the parameters we picked coincides can 

represent the levels of recombination occurred in nature, and is suitable for testing the 

performance of different phylogenetic reconstruction algorithms. 

We picked genomes from the simulated populations, and used them to test the 

performance of different phylogenetic algorithms. If we randomly pick the genomes from a 

population, then their root nodes is likely to have an age troot~1000 because Ne=1000. 

However, we need a set of genomes such that one frequently recombines with each other’s 

DNA segments; therefore, the random genomes are picked with the constraint that, the age 

of their MRCA should be small, i.e., troot≪1000; this constraint allows us to pick the genomes 

that are likely to have exchanged their DNA segments. 

We simulated ten populations for each of the three levels of of recombination. In 

each simulated population, we picked ten sets of genomes, each set with different 
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constraints on the age of their MRCA: troot ~ 10, 20, …, 100. We allowed each set to have 

number of genomes lied in a small range 10≥n≥4, as it is not always possible to find a lot of 

genomes with root age lied within a particular range. This generates 100 groups of genomes 

for each ρ/μ value. 

Evaluating the fit of a theoretical SSP distribution to an empirical SSP 
distribution 

We need to fit an empirical SSP distribution with a theoretical distribution in order to 

infer the coalescent time of a genome pair. Let us consider a pair of genomes X and Y that 

are divided into Lseg segments. Let gXY(x) to be number of segments with divergence x, and 

so g(x) is normalized to Lseg. Further, let us denote the theoretical distribution as fμ,ρ,θ,δTE(x,t), 

which is normalized to unity when it integrates over x. The probability to observe the 

empirical distribution gXY(x) given the theoretical distribution fμ,ρ,θ,δTE(x,t) is 

∏[𝑓𝜇,𝜌,𝜃,𝛿𝑇𝐸
(𝑥, 𝑡)]𝑔𝑋𝑌(𝑥)

𝑥

 

 

which, if we take the logarithm on this term, becomes the cross entropy (Boer et al. 2005). 

Suppose that we have n genomes, denoted as X1, X2, …, Xn, and suppose that we 

describe their phylogeny of inheritance with an ultrametric tree T; we assumed that the n(n-

1)/2 pairwise SSP distributions evolve according to the the neutral coalescent model with 

parameters μ, ρ, θ, δTE. Let us also denote the coalescent time of genome pair Xa and Xb 

inferred from the tree T to be tT(Xa,Xb). The logarithm of the posterior probability to observe 

the n(n-1)/2 empirical pairwise SSP distributions given the model with parameters (μ, ρ, θ, 

δTE) and the ultrametric tree T, denoted as S(X1,X2, …,Xn|μ, ρ, θ, δTE,T), is the summation of 

the n(n-1)/2 cross entropy: 

𝑆(𝑋1, . . . 𝑋𝑛|𝜇, 𝜌, 𝜃, 𝛿𝑇𝐸 , 𝑇) = ∑ 𝑙𝑜𝑔{∏[𝑓𝜇,𝜌,𝜃,𝛿𝑇𝐸
(𝑥, 𝑡𝑇(𝑋𝑎 , 𝑋𝑏))]𝑔𝑋𝑎𝑋𝑏

(𝑥)}

𝑥𝑎𝑙𝑙 (𝑋𝑎,𝑋𝑏) 𝑝𝑎𝑖𝑟𝑠

 

(3) 

Markov chain Monte Carlo simulation to search for the best fit ultrametric tree 

and model parameters 

The CGP algorithm performs Markov chain Monte Carlo (MCMC) simulation to 

reconstruct the ultrametric phylogenetic tree of genomes. Given n genomes, the CGP 

algorithm started by calculating the distance matrix of the n genomes based on their pairwise 

sequence divergence, and inferred the ultrametric tree from the distance matrix using single 

linkage clustering; this tree is used at the start of the MCMC simulation. CGP algorithm 

calculated the theoretical SSP distribution at different discrete time steps, and fitted these 
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theoretical distributions to the empirical distributions; thus the age of an internal node 

inferred by CGP is always an integer. At the start, we set the numerical value of the mutation 

rate to be μ=min(0.02, <xfarthest>/200) (unit: number of mutation per segment per time step); 

here, <xfarthest> is the average number of SSPs per segment between the most divergent pair 

among the n genomes.  

To calculate the numerical value of the SSP distribution fμ,ρ,θ,δTE(x,t), we represented 

the SSP distribution as a vector in the program. Each segment can have possible ls+1 

states, corresponding to 0, 1, 2, …, ls SSPs in the segment; thus a vector of ls+1 elements is 

appropriate to represent fμ,ρ,θ,δTE(x,t). The processes of mutation and homologous 

recombination can be represented as an (ls+1)×(ls+1) matrix, which transforms the SSP 

distribution at time t to time t+1. However, to save computational resources, we set a cutoff 

ls
cutoff≤ls, where segments with number of SSPs greater than ls

cutoff are considered as having 

ls
cutoff SSPs. This artificially reduces computational time, at the expense of accuracy of the 

phylogenetic reconstruction. 

After the initial tree T and the initial parameters (μ, ρ, θ, δTE) are determined, the 

MCMC proceeds. In each step, one of the following moves is considered: 

1. There is a n-2/2 chance to mutate one of the parameters (ρ, θ, δTE). The algorithm 

considers six different parameter sets (ρ(1+ɛ), θ, δTE), (ρ(1-ɛ), θ, δTE), (ρ, θ(1+ɛ), δTE), 

(ρ, θ(1-ɛ), δTE), (ρ, θ, δTE(1+ɛ)), (ρ, θ, δTE(1-ɛ)), with random variable ɛ, 1≫ɛ>0. 

Absolute upper limits are imposed for some of the parameters: ρ<1,θ<100% and 

δTE<100%. These new parameter sets, along with the original one, is selected 

according to their relative posterior probabilities. 

2. Else, there is a n-2/2 chance for a random branch of the tree to be cut and grafted to 

a different part of the tree. In this move, a branch with the younger internal node Y 

and older internal node O is picked randomly, with their ages denoted as tY and tO. 

This branch is then cut at the height tO, and the entire sub-clade is then grafted to all 

other branches that are present at height tO to generate new ultrametric trees. All 

these new trees, along with the original one, is selected according to their relative 

posterior probabilities. 

3. Else, an internal node is picked randomly and moved one time step upwards or 

downwards to generate a new tree. If the picked node cannot move in the chosen 

direction, as it is blocked by another node, then the algorithm will swap the branches 

to produce new trees (see Supplementary Figure S3 for illustration); one of these 

new trees, along with the original tree, is selected according to their relative posterior 

probability. 

The simulation continues, and stops when the maximal score (logarithm of the posterior 

probability) of the chain of MCMC steps has not increased by more than 1 for the last 
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200,000 steps. (see Supplementary File S3 for source code). 

Constructing the SSP distribution of real genomes 

In this study, we used 55 E. coli and Shigella genomes to test our model algorithm 

(see Supplementary Table S1 for the list of 55 genomes). Let us simply call all these strains 

E. coli, as Shigella strains are sometimes considered as a subclade of E. coli. We performed 

the following procedure to prepare the sequence of each strain for phylogenetic 

reconstruction: 

1. We created a file in FASTA format that contains the amino acid sequence of the 

genes (CDS features in the Genbank files) for each strain; the corresponding 

nucleotide sequences of the genes of the same strain is stored in another FASTA 

file; thus a strain has two FASTA file, both have the same number of genes. 

2. We identified the orthologous gene families by performing the Proteinortho program 

(Lechner et al. 2011) on the amino acid FASTA file of the 55 strains. 

3. For each orthologous gene family that is universal to 55 strains and has only one 

allele on each strain, we aligned the nucleotide sequence of its alleles using MAFFT 

(Katoh and Standley 2013) with options “--maxiterate 1000” and “--localpair”; we 

performed another alignment on the amino acid sequences of the orthologous gene 

family using the same MAFFT settings. 

4. For each alignment (nucleotide acid or amino acid), we removed the positions with a 

dash, so as to make the alleles of the orthologous gene family to have equal length; 

moreover, positions with ‘J’ on amino acid alignments are also removed, as ‘J’ 

represents an ambiguous amino acid and may trigger an error in the BEAST 

program. 

While we can single out the orthologous gene families that are universal to all 55 

strains and do not have paralogs on the genomes, and concatenate their alleles to make a 

‘super-gene’ to represent each strain, we avoided this approach because subsequent 

phylogenetic reconstruction using ClonalFrame can last for more than a week. Instead, we 

randomly selected 100 orthologous gene families, concatenated their alleles to generate 

‘super-gene’ that represent different strains. 

Since the CGP algorithm takes the distribution of pairwise SSPs on the genome 

segments as input, we divided the sequence of the chosen 100 genes in segments; we used 

segment size ls=30, 300 for nucleotide and ls=10, 100 for amino acid sequences, discarding 

the last segment of each gene if it has fewer than ls sites, and calculated the SSP 

distributions based on those segments. 
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Testing algorithms of phylogenetic reconstruction with simulated genomes 

We simulated the neutral coalescent model to generate genome data, and used them 

to test the performance of different phylogenetic algorithms, including our CGP algorithm, 

RAxML (Stamatakis 2014), BEAST (Drummond et al. 2012) and ClonalFrame (CF) (Didelot 

and Falush 2007). Given n binary genomes generated in the simulation, we calculated the 

n(n-1)/2 pairwise SSP distributions and applied CGP to infer their ultrametric tree; the CGP 

algorithm lasts for at least 200,000 steps, and it records the posterior parameters and 

posterior tree every 1,000 steps. The CGP algorithm terminates when the logarithm of the 

posterior probability does not increase by more than 1 for 200,000 MCMC steps, and we 

collected the data generated in the last 200,000 steps for analysis.  

For RAxML, we applied the substitution model BINGAMMA, which is suitable for 

binary data; we also used the rapid bootstrap options ‘-x’ and ‘-N 200’ in RAxML, which 

carried out 200 ML searches on 200 randomized stepwise addition parsimony trees; this 

generated a series of 200 posterior trees for further analysis.  

For BEAST, we converted the 0 and 1 in the binary genomes into A and T, and 

applied the default nucleotide substitution model HKY (Hasegawa et al. 1985), strict clock, 

constant size coalescence (Kingman 1982; Drummond et al. 2002), along with other default 

settings, to perform the phylogenetic reconstruction and record the posterior tree. We 

discarded the first 25% of the posterior trees in the series generated by BEAST, as they 

might not have reached equilibrium, and collected the remaining 75% of the trees for 

analysis.  

For ClonalFrame, we converted the binary genomes into sequences of A and T, and 

fed them into the ClonalFrame program with default setting. We manually extracted the 

posterior tree series from the ClonalFrame output file using a sister program in the 

ClonalFrame package, and used the entire tree series for analysis. 

We considered three sets of parameters in our simulation, which correspond to 

populations of prokaryotes with low, intermediate and high level of recombination (ρ/μ = 0.2, 

0.5, 10, see above sessions). We prepared 100 groups of genomes for each parameter set, 

and applied CGP, RAxML, BEAST and ClonalFrame to reconstruct their phylogenies. Each 

of the four algorithms outputs a series of trees, and we compared the topology and branch 

length of the reconstructed trees in the series with authentic tree of the genomes.  

To appraise the accuracy of the topology predictions of different algorithms, we 

defined the topology similarity score stopo, also denoted as ‘efficiency’ (Didelot and Falush 

2007), which is the probability for an internal node of the authentic tree, excluding the root 

node, to find its corresponding internal node on a posterior tree that groups the leaves into 

ingroup and outgroup the same way as it does. Suppose the true phylogeny of five genomes 
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A, B, C, D, E is described by tree T0, and an internal node m in T0 has A and B as ingroup 

leaves; if Ti is a tree in the posterior tree series generated by a phylogenetic reconstruction 

algorithm to represent the phylogeny of the five genomes, and there exists a node in Ti with 

exactly A and B as ingroup leaves, then node m in T0 has a corresponding node in Ti that 

divides the leaves into two groups as m does. Moreover, if a reconstructed tree Tj has an 

internal node with ingroup leaves C, D and E, then m also has its corresponding node in Tj 

because Tj groups A and B together in the outgroup; this allows the topology score 

compares not only rooted ultrametric trees, but also unrooted tree such as those 

reconstructed by RAxML. The topology similarity score is bounded,  0≤stopo≤1, and the 

higher the score the more accurate are the reconstructed posterior trees. 

To evaluate the deviation of the node ages and branch lengths between the authentic 

tree and the posterior trees of different algorithms, we defined the node age deviation dage, 

which is the error between the age (normalized by the total branched length of the tree) of an 

internal node in the authentic tree and that of its corresponding node in a posterior tree. Let 

m be an internal node in the authentic tree T0, and let τm be the normalized age of the 

authentic tree, i.e., age of m divided by the total branch length of the tree. Also, let m’T be the 

corresponding node on a reconstructed tree T that divides the leaves in the same way that 

T0 does; an internal node in T0 that does not have a corresponding node in T is not 

considered. The node age deviation is defined by the following expression: 

𝑑𝑎𝑔𝑒 = √
∑ ∑ (𝜏𝑚 − 𝜏𝑚′𝑇

)2
𝑚𝑇

∑ ∑ 1𝑚𝑇

 

 

Since the node age deviation is like a standard error, it is bounded below by zero, dage≥0, 

and the smaller the deviation the more accurate is the node age prediction. 

Testing phylogenetic reconstruction algorithms with real E. coli genomes 

We also tested the accuracy of CGP, BEAST and ClonalFrame on real genomic 

sequences, using different combinations of genomes chosen from the 55 E. coli strains. We 

represent each strain its concatenated nucleotide sequence and also amino acid sequence 

of the core genes. Moreover, as pointed out in Dixit et al. (Dixit et al. 2015), when the 

nucleotide sequence divergence between a pair of E. coli genomes goes beyond 1.3%, all 

their segments have been recombined after their separation from the MRCA. Since 

recombination erases clonal signal, we expected difference in the accuracy of phylogenetic 

reconstruction using CGP. Hence, we separately tested the algorithms using genomes with 

lower and higher divergence. We conducted two tests, each with its own constraint to select 

the strains in the test groups: 
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1. low divergence strains: the pairwise nucleotide sequence divergence between all 

pairs in a group is ≤1.3%; 

2. high divergence strains: no constraint on sequences divergence; 

We generated 100 genome groups in each test, in each group ten strains are randomly 

chosen from the 55 E. coli strains, following the criterion of the test; further, instead of 

concatenating sequences of all orthologous gene families that are universally present in the 

55 strains to make a ‘super-gene’ for each strain, we randomly chose 100 universal 

orthologous gene families to represent the strains in the group to save computational 

resources. We concatenated the nucleotide sequences of the 100 chosen orthologous gene 

families to make a concatenated nucleotide sequence for each of the ten strains; we also 

concatenated the amino acid sequences of the 100 chosen orthologous gene families to 

make a concatenated amino acid sequences for each of the ten strains (see Supplementary 

File S2 for the strains and orthologous gene families chosen in each test group). There are 

45 pairs in a ten strain group, we calculated the 45 SSP distributions based on the segments 

of nucleotide sequences of 100 orthologous gene families, and another 45 SSP distributions 

based on the segments of the amino acid sequences of the 100 orthologous gene families, 

to prepare for the CGP algorithm (see above sections). We then performed phylogenetic 

reconstruction to infer the ultrametric tree of each 10-strain-group in five different ways: 

1. CGP on nucleotide sequences (ls=30, lscutoff=30, and also ls=300, lscutoff=80); 

2. BEAST (Drummond et al. 2012) on nucleotide sequences with HKY substitution 

model (Hasegawa et al. 1985), strict clock, constant size coalescence (Kingman 

1982; Drummond et al. 2002) and other default settings; 

3. ClonalFrame (Didelot and Falush 2007) with default setting on the nucleotide 

sequences; 

4. CGP on amino acid sequences (ls=10, lscutoff=10, and also ls=100, lscutoff=80); 

5. BEAST (Drummond et al. 2012) with Blosum2 substitution model (Henikoff and 

Henikoff 1992), strict clock, constant size coalescent (Kingman 1982) and other 

default settings. 

We then summarized the results of each phylogenetic reconstruction using a representative 

tree. For CGP, we collected the posterior trees generated in the last 200,000 steps, applied 

‘treeannotator’—a program that is bundled with the BEAST package (Drummond et al. 

2012)—to calculate the maximum clade credibility tree and use it to be the representative 

tree of the phylogenetic reconstruction; for BEAST, we discard the first 25% of the posterior 

trees and summarised the remaining 75% using its default program ‘treeannotator’ to 

generate its representative tree; for ClonalFrame, its output file already contains one 

consensus tree, and we used it as the representative tree. 
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We evaluated the accuracy of the representative tree by comparing the 

representative tree with the phylogenetic signals encoded in the absence and presence of 

genes across different genomes. We considered each internal node of the representative 

tree to be an ancestral strain, and used the maximum likelihood algorithm GLOOME (Cohen 

et al. 2010), along with the default parameters of the online version of GLOOME 

(Evolutionary model: fixed gain/loss ratio, rate distribution Gamma), to reconstruct the 

presence and absence of different orthologous gene families in the ancestral strains. 

GLOOME reconstructs the ancestral genomes based on the representative tree and the 

gene profile—the presence and absence of different orthologous gene families across the 

strains considered. We used Proteinortho (Lechner et al. 2011) to map the orthologous gene 

families in the 55 genomes, and an orthologous gene family is present in an extant strain if 

there is one or more alleles there, and absent otherwise. GLOOME reports the probability for 

different orthologous gene families to be present in the ancestral genomes, and also the 

GLOOME posterior likelihood (GPL) for the ancestral genome reconstruction. We used GPL 

to quantify the accuracy of the representative tree, because the higher the GPL, the more 

consistent is the representative tree with the phylogeny inferred from the absence and 

presence of genes across different genomes. 

Furthermore, we evaluated the accuracy of the representative tree by analyzing the 

horizontal gene transfer events that it infers. Using the output data of GLOOME, we 

considered orthologous gene families with present probability P≥0.5 in an ancestral genome 

to be present, and P<0.5 to be absent. Orthologous gene families that are not presents in 

the ancestor of a branch but present in the descendent of a branch are transferred into the 

branch horizontally. Since multiple orthologous gene families can be added in a single 

horizontal gene transfer (HGT) event, we used a greedy algorithm to group the genes 

transferred into the same branch into HGT events. Assuming that genes transferred together 

will not get separated into different clusters on the genome, we put two transferred genes 

into the same HGT event if they are located on any 30kb segments in any of the 55 extant 

genomes. We used 30kb as the capacity of the HGT agent, because the length distribution 

of DNA segments acquired horizontally cuts off at a distance of 30 kb (Bobay et al. 2014; 

Pang and Lercher 2016). Let us denote a set S to contain all the orthologous gene families 

transferred into a branch; the procedure of the greedy algorithm to group transferred genes 

into HGT event includes: 

1. identify the start positions of every gene in S in all 55 genomes; 

2. pick a random gene gA in S and put it in a new set P; 

3. for each gene g not included in P (represented by g∉S\P in set theory convention), 

enumerate the number of extant genomes that accommodate it along with other 

genes included in P within a 30 kb segment; 
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4. pick the one gene outside P supported by the highest segment count, and add it to P; 

if there are multiple genes that can be chosen, pick one randomly; 

5. repeat step 3 - 4, test each remaining gene in S outside P by enumerating the 

genomes that support its grouping with other genes in P; the one gene with the 

highest support is then added to P; 

6. when no more genes can be added to P, the genes in P are then grouped into an 

HGT event; these genes are removed from S, and P is emptied; step 2 - 5 is 

repeated to reconstruct another HGT event, until every gene is assigned to an HGT 

event. 

In this way, we grouped all the genes transferred into the branches of the representative tree 

into different HGT events, and the number of HGT events is denoted as NHGT. We used NHGT 

to quantify the accuracy of the representative tree, because the more the representative tree 

deviates from the authentic phylogeny, the more likely for GLOOME to assign co-transferred 

genes into different branches, and the higher NHGT gets. 

Measuring the cpu-time of phylogenetic reconstruction of different algorithms 

We have also measured the computational cost of different algorithms. For each 10-

genomes test group of both test 1 and 2, we performed phylogenetic reconstruction using 

CGP, BEAST, ClonalFrame on the nucleotide sequences, and CGP, BEAST on the amino 

acid sequences. As every algorithm that we tested is single-threaded, we assigned each run 

a cpu-core of ‘Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz’ with operating system 

‘Scientific Linux release 6.5 (Carbon)’, and used the ‘Benchmark’ package in perl to measure 

its wall-clock time of each run (see Supplementary File S2 for the table of computational 

costs). 
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Tables 

Table 1. A summary of average topology similarity score stopo and average node age 

deviation dage for different algorithms. Cells with dark background correspond to the best 

algorithm for topology and node age prediction at different recombination level. 

 

HR1  level 

 

ρ/μ 

topology similarity score stopo node age deviation dage 

CGP RAxML BEAST CF2 CGP RAxML BEAST CF2 
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low 0.2 0.9725 0.9946 0.9971 0.9847 0.0073 - 0.0154 0.0214 

intermediate 5 0.9426 0.9167 0.9244 0.8708 0.0107 - 0.0252 0.0412 

high 10 0.9297 0.9024 0.9118 0.8134 0.0214 - 0.0312 0.0456 

1HR: homologous recombination 

2CF: ClonalFrame 

 

Table 2. Authentic parameters including ρ/μ, θ, δTE and their posterior counterparts 

measured by CGP averaged over different genome test groups. Extreme values are 

removed from the calculation of θ and δTE (θ>90% or δTE>90%). 

recombination 

level 

Parameters used in 

simulation  

(ρ/μ, θ, δTE) 

posterior (ρ/μ, θ*, δTE
*) 

arithmetic avg / SD geometric avg / SD 

low (0.2, 10*, 0.8*) (2.6±8.4, 13±24*, 7±21*) (0.19×e0±2.4, 2.7×e0±1.8*, 0.48×e0±2.1*) 

intermediate (5, 10*, 0.8*) (3.4±1.5, 49±28*, 1.3±3.1*) (3.1×e0±0.46, 34×e0±1.1*, 1.3×e0±0.18*) 

high (10, 5*, 0.8*) (6.4±4.4, 13±19*, 2.5±6.3*) (5.4×e0±0.58, 5.8×e0±1.2*, 1.7×e0±0.55*) 
*unit: % 

 

Table 3. Average accuracy of CGP, BEAST and ClonalFrame on nucleotide and amino acid 

sequences, tested with sequences of real E. coli genomes, measured with GPL (the higher 

the more accurate is the tree) and NHGT (the lower the more accurate is the tree) as 

indicators. Test 1 examined groups of real genomes with lower divergence, and Test 2 

examined groups of real genomes with higher divergence. The best algorithm in a test is 

highlighted with a dark background. 

  nucleotide amino acid 

  CGPn BEASTn CF2 CGPa BEASTa 

Test 1 
<GPL>* -26614 -27573 -26458 -25777 -26435 

<NHGT>* 931.9 940.9 1145.6 900.5 934.2 

Test 2 
<GPL>* -31483 -32336 -31451 -30590 -31112 

<NHGT>* 1132.1 1145.7 1367.5 1094.1 1103.5 

*<> represents averaging over different test groups 

n performed on nucleotide sequences 

a performed on amino acid sequences 

2CF: ClonalFrame 

 

Table 4. The arithmetic and geometric average and standard deviation of the posterior ρ/μ, θ 

and δTE in Test 1 (groups of real genomes with lower divergence) and Test 2 (groups with 
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higher divergence), measured by CGP in different tests, using ls=30 for nucleotide 

sequences, ls=10 for amino acid sequences, and ls
cutoff=ls. Each test involves the 

phylogenetic reconstruction of 100 genome groups. Extreme data points (θ>90%, δTE>90%) 

are removed from calculation of mean and standard deviation. 

  arithmetic avg / SD geometric avg / SD 

  ρ/μ θ* δTE
* ρ/μ θ* δTE

* 

Test 1 

nucleotide 
lp=30 

12±5.0 12±9.0 6.2±0.88 10×e0±0.47 11×e0±0.43 6.1×e0±0.13 

amino acid 
lp=10 

7.5±8.4 34±18 17±15 3.3×e0±1.5 30×e0±0.51 13×e0±0.68 

Test 2 

nucleotide 
lp=30 

7.5±3.2 14±6.9 6.1±0.68 6.8×e0±0.43 13×e0±0.35 6.1×e0±0.11 

amino acid 
lp=10 

7.4±11 36±15 17±13 3.1×e0±1.4 32×e0±0.49 14×e0±0.58 

*unit: % 

 

Table 5. The arithmetic and geometric average and standard deviation of the posterior ρ/μ, θ 

and δTE in Test 1 (groups of real genomes with lower divergence) and Test 2 (groups with 

higher divergence), measured by CGP in different tests, using ls=300 for nucleotide 

sequences, ls=100 for amino acid sequences, and ls
cutoff=80. Each test involves the 

phylogenetic reconstruction of 100 genome groups. Extreme data points (θ>90%, δTE>90%) 

are removed from calculation of mean and standard deviation. 

  arithmetic avg / SD geometric avg / SD 

  ρ/μ θ* δTE
* ρ/μ θ* δTE

* 

Test 1 

nucleotide 
lp=300 

14±9.9 7.5±9.0 10±17 10×e0±0.78 4.5×e0±0.95 3.3×e0±1.3 

amino acid 
lp=100 

10±13 13±15 3.4±6.7 5.2×e0±1.4 6.9×e0±1.1 2.2×e0±0.67 

Test 2 

nucleotide 
lp=300 

8.6±5.9 42±13 1.6±2.4 7.3×e0±0.57 37×e0±0.62 1.4×e0±0.33 

amino acid 
lp=100 

7.9±5.6 15±14 2.3±1.3 5.9×e0±0.89 9.3×e0±0.94 2.2×e0±0.34 

*unit: % 

 

Table 6. Average cpu-time of different phylogenetic reconstruction algorithms. The fastest 

algorithm, BEAST on amino acid sequence, is highlighted with a grey background. For CGP 

on nucleotide sequences, lp=30; For CGP on amino acid sequences, lp=10. 
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 nucleotide amino acid 

 CGPn BEASTn CF2 CGPa BEASTa 

<cpu-time> 

(second) 
1570 706 30423 810 79239 

*<> represents averaging over different groups 

n performed on nucleotide sequences 

a performed on amino acid sequences 

2CF: ClonalFrame 
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Supplementary Tables 

Supplementary Table S1. List of 55 genomes of E. coli and Shigella analysed in this study 

for model testing. 
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Supplementary Files 

Supplementary File S1. Scores of different algorithms to reconstruct the phylogeny of 

simulated genomes. 

Supplementary File S2. E. coli strains and genes used in different test groups, as well as 

their GPL, NHGT and computational costs of the phylogenetic reconstructions. 

Supplementary File S3. Source code to perform the CGP algorithm. 
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