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Abstract: 
Therapies targeting specific molecular processes, in particular kinases, are major 

strategies to treat cancer. Genomic features are commonly used as biomarkers for 

drug sensitivity, but our ability to stratify patients based on these features is still 

limited. As response to kinase inhibitors is a dynamic process affecting largely signal 

transduction, we investigated the association between cell-specific dynamic signaling 

pathways and drug sensitivity. We measured 14 phosphoproteins under 43 different 

perturbed conditions (combination of 5 stimuli and 7 inhibitors) for 14 colorectal 

cancer cell-lines, and built cell-line-specific dynamic logic models of the underlying 

signaling network. Model parameters, representing pathway dynamics, were used as 

features to predict sensitivity to a panel of 27 drugs. This analysis revealed 

associations between cell-specific signaling pathways and drug sensitivity for 14 of 

the drugs, 9 of which have no genomic biomarker. Following one of these 

associations, we validated a drug combination predicted to overcome resistance to 

MEK inhibitors by co-blockade of GSK3. These results underscore the value of 

perturbation-based studies to find biomarkers and combination therapies 

complementing those based on a static genomic characterization. 
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[Main Text:] 
Introduction 

Patient response to anticancer therapies is extremely variable and understanding the 

reasons for this variability is a major challenge in cancer research. One approach to 

address this problem is to identify biomarkers which correlate with therapy response. 

However, except for a few examples, no efficient biomarkers are available (1). The 

problem of finding biomarkers has become even more important with the advent of 

targeted cancer therapies that are designed to affect specific molecular changes in 

cancer cells which drive the cancer, and which provide a larger number of treatment 

options. However, biomarkers that can be used to stratify patients for targeted drugs 

also remain largely elusive (2). 

 

The most common approaches for patient stratification are currently based on 

genomic biomarkers, typically consisting of either expression or mutation of specific 

genes. The popularity of those biomarkers has been favoured by the advancements 

of sequencing technology and their subsequent decrease in cost, and, for some 

drugs, they have shown strong potential (3–5). However, for many other cases no 

efficient genomic markers for patient stratification exist, and for those where markers 

exist, they have rather low power due to the complex nature of cancer. Furthermore, 

their actual clinical significance for precision oncology is questionable (1).  

 

Many modern drugs target signaling molecules, and elicit a response of the signaling 

network. Therefore, investigating the functioning of signaling pathways can provide 

new insights into these mechanisms and may help to unveil new therapeutic 

strategies and biomarkers (6, 7). Understanding how drugs affect the signaling 

network as a whole is particularly important as signaling dynamic differs not only 

between tumors of different tissue, but also between tumors of the same tissue. For 

instance, for colon and liver cancer cell-lines, the dynamics of signaling networks 

have been shown to differ strongly between different cells of the same tissue of 

origin (8–10). 
 

Furthermore, models parameterized and experimentally calibrated using a specific 

cell-line have been used to define pathway dynamic biomarkers of therapeutic 
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outcome, such as drug sensitivity (11) or patient survival (12), based on model 

simulations in breast cancer and neuroblastoma, respectively. 
 

The understanding of mechanisms of cellular response (network structure and 

dynamic behaviour), can be also useful to tackle the development of compensatory 

signaling mechanisms of drug resistance (13), which is a recurrent problem for 

targeted therapy and is challenging to predict based only on genomic information. 

Signal transduction results from the integration of complex dynamic networks which 

can be modulated by mutations in oncogenes or tumor suppressors. The complex 

wiring confers a robustness to the cells that helps them to escape most single-agent-

targeted treatments. Based on this idea, modeling of signaling pathways has been 

recently used to suggest combinatorial targeted therapies to effectively block multiple 

molecular pathways  (8, 14, 15): by integration of prior pathway knowledge with 

experimental observations cell-line-specific models were built, which could be used 

to simulate and thus prioritize possible combinatorial perturbation experiments.   
 

In this paper, we investigate to what extent dynamic interactions between different 

signaling pathways play a role in characterizing the specific cellular responses to 

drugs  and suggesting targeted combinatorial therapies. Furthermore we were 

interested to assess how these dynamic features fare against static genomic traits as 

markers of drug response. We do so by characterizing cell-type-specific models for a 

panel of 14 different colorectal cancer (CRC) cell-lines that are integrated with a 

large-scale drug screening (16). We found associations with model parameters for 

14 of the 27 drugs targeting our pathways of interests, for 9 of which there were no 

genomic biomarkers. These associations was used to define pathway dynamic 

biomarkers and interesting combinatorial therapies. 
 

Results 

To identify biomarkers of drug response from dynamic logic models, we proceed as 

follows (Fig. 1). First, cell-line-specific models were built for 14 colorectal cancer 

(CRC) cell-lines. Each model is a set of logic ordinary differential equations (17) 

based on a prior knowledge network (PKN) manually curated from literature (Fig. 
1A) that is refined using CellNOpt (18) based on experimental data. Second, 

sensitivity data for our 14 cell-lines in response to drugs targeting nodes in the PKN 
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or first neighbours were retrieved from the Genomics of Drug Sensitivity in Cancer 

(GDSC) panel (16) (Fig. 1B). Third, we investigated correlations between model 

parameters and drug response using Elastic Net (19) to select strong associations 

(Fig. 1C). All steps will be detailed in the following sections. 
 

Strategy for model optimization: a toy example 

Our starting point is a prior knowledge network (PKN), which is generic in the sense 

that it contains information about different cell types and is hence not clear about 

how many of the contained interactions are functional in a given cell type. To identify 

cell-specific functional components, the PKN was trained as a logic model to cell-

specific data. The dynamics of the system were modelled using a formalism based 

on logic ordinary differential equations (ODEs) (17), where a set of ODEs (one for 

each species in the model) was derived from the logic structure using a continuous 

update function (see Materials and Methods). Each species (i.e. node in the 

network) was characterized by a parameter τi (with i=1,...,N where N is the number of 

species in the model) representing its life-time (τ=0 meaning that the node is not 

functional), and each regulatory interaction was defined by a sigmoid function, where 

a parameter ki,j characterizes the strength of the regulation of species i dependent on 

species j (ki,j=0 meaning no regulation). 
 

In order to be able to deal with large-scale networks including the effect of multiple 

signaling pathways and their cross-talks, building on (18, 20) we developed a new 

calibration approach that uses L1 regularization to prune the network by inducing 

sparsity thus reducing the size of the model. The approach can be illustrated using 

the in silico model in Fig. 2A, where the PKN includes 9 nodes and 14 edges. A 

subnetwork (10 edges shown in black in Fig. 2A) was used to generate in silico data 

for 2 readouts (nodes shown in blue in Fig. 2A), consisting of 9 perturbations, which 

are some of the possible combinations of 2 stimuli (green nodes) and 2 inhibitors 

(targeting red nodes). In silico data were generated for 10 random sets of 

parameters (one example shown in Fig. 2B) and were then used to optimize the 

model by minimizing QLS(τ,k), which is defined as the sum of the squared difference 

between model predictions and true (in silico) values. Although the fit of the 

optimized models to the data was perfect, parameters could not be well estimated 

due to model redundancy and low identifiability. In order to improve parameter 
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estimates, we redefined the objective function Q introducing a L1 regularization term 

on the parameters τi to help the model remove the unconnected nodes (e.g. P4 and 

P5 in Fig. 2A). This was achieved by penalising the complexity of the model as: 

 where    (1) 

The term λτ controls the importance of the regularization term. We plotted the effect 

of increasing values of λτ for the in silico model on P and QLS (Fig. 2C), and on the 

accuracy of parameter estimates (as a sum of the square of the difference between 

estimated and true parameters) (Fig. 2D). As expected, for increasing values of λτ, 

QLS tends to increase (worse fit to the data) while P tends to decrease (sparser 

model). Good values of λτ are those on the elbow of the L-shaped curve in Fig. 2C, 

corresponding to the best compromise between good fit and sparse model. 

Interestingly, these values (especially λτ=0.001 which represents the most 

conservative choice in terms of regularization) also correspond to the best accuracy 

in estimating the parameters in Fig. 2D. Looking at the estimated parameters we 

could verify that for λτ=0.001 the parameters τP4 and τP5 were indeed set to zero 

thanks to the regularization term in the objective function. 
 

Generation of cell-line-specific models 

The previously illustrated approach was applied to systematically characterize how 

signaling pathways mediate differential cellular responses to drugs in colorectal 

cancer. For this purpose we performed a large-scale perturbation screening 

consisting of 14 phosphoproteins measured in 14 genetically heterogeneous 

colorectal cancer (CRC) cell-lines in 43 different perturbed conditions. This sums up 

to a total of 8428 different experimental data points which are represented in Fig. 3  
(experimental details in Materials and Methods). Perturbations consist of 

combinations of 7 kinase specific inhibitors (targeting IKK, MEK, PI3K, BRAF, TAK1, 

TBK1, mTOR) and 5 stimuli (EGF, HGF, IGF1, TGFb, TNFa). 
 

To characterize the signaling pathways we started from a comprehensive general 

prior-knowledge network (PKN) derived from the literature and public databases 

using OmniPath (21). The PKN was first compressed to reduce model complexity 

without affecting logic consistency as described in (22) (complete PKN in fig. S1), 

while maintaining interactions between the measured nodes (in blue in Fig. 4A), the 

inhibited nodes (in red) and the simulated nodes (in green). The definition of the 
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general model also took into consideration that one of the kinase inhibitors, 

PLX4720, works as selective BRAF inhibitor in cell-lines where BRAF is mutated in 

V600E (i.e. HT29 and SNUC5 in our panel), but induces a paradoxical activation of 

wild type BRAF cells, therefore- we modeled it as a stimulus for those cell-lines.  
 

The following three-step optimization procedure was used for each cell-line (see 

Materials and Methods for more details). First, L1 regularization was applied to 

parameters τi to remove unconnected nodes, as described in Equation 1. Secondly, 

values of τi were fixed to the values estimated in Step 1 (shown in Fig. 4C) and 

optimization was repeated applying this time the L1 regularization to parameters kij to 

induce sparsity in the network. Thirdly, bootstrap distribution was then obtained for 

parameters kij by repeating the optimization on resampled experimental data with 

replacement (150 times). Median values for the kij parameters estimated at Step 3 

are shown in Fig. 4C for all cell-lines. The resulting models were comparably sparse 

across cell-lines, with a percentage of values set to zero ranging between 12-28% 

for parameters τi and 51-73% for parameters kij. The optimized models showed good 

fit to the experimental data for all cell-lines, with mean squared error (MSE) within 

the range [0.013, 0.036] as shown in Fig. 4B.   
 

Heterogeneity of the cell-line specific models 

We further analysed the heterogeneity of the estimated parameters kij, in order to 

understand the variability in signal processing across the cell-lines. For each 

parameter, distributions across all cell-lines were compared using Kruskal-Wallis 

rank sum test (one-way analysis of variance on ranks) to test if estimated 

parameters (from bootstrap) stem from the same distribution for all cell-lines. For 46 

out of 63 parameters the null hypothesis was rejected (p-value<0.05 after Bonferroni 

correction, and large effect size w > 0.5, see Materials and Methods), meaning that 

bootstrapped  parameters come from a different distribution for at least one cell-line. 

The 17 Parameters for which the null hypothesis of equal mean rank was accepted 

showed a median value equal to zero for all cell-lines. For the remaining 46 

parameters, post hoc pairwise tests (91 possible combination of 14 cell-lines) were 

performed using Wilcoxon rank sum test to additionally explore how many cell-lines 

have different parameter distributions (i.e. p-values Bonferroni corrected for multiple 

hypothesis testing < 0.05 and high r effect size > 0.5, see Online Methods).  The 
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resulting percentages are shown in Fig. 4A as numbers next to each corresponding 

edge (only for the 46 edges passing the one-way analysis of variance test) and 

mapped as width of the edge, while edge colour intensity maps its mean value 

across cell-lines. As we might expect, genetic alterations alone are not 

representative of clusters of cell-lines neither at the level of phosphorylation 

response (Fig. 3) nor at the level of pathway models (Fig. 4C). 
 

Among the 46 parameters kij showing different distributions across cell-lines, only 34 

were different from zero in at least three cell-lines. For further analysis, we defined 

these parameters as highly heterogeneous. As for parameters τi, only 1 out of 25 

parameters was set to zero across all cell-lines and 21 parameters were different 

from zero in at least three cell-lines. Among these, 12 were defined as highly 

heterogeneous, showing reasonable variability across cell-lines (standard deviation > 

0.04).  Although we are aware that the negative interaction between IKK and ERK 

might be artificial due to unspecific effect of the used IKK inhibitor, which causes an 

increase in ERK phosphorylation (8), we decided to keep the interaction in the model 

as we are interested in capturing all differential responses between cell-lines. From 

our analysis, we conclude that cell-lines are very different and hence it is important 

to characterize each cell-line with a specific signaling model. 
  
Association of model parameters with drug response data 

We next investigated if the previously defined highly heterogenous model 

parameters can be associated with the efficacy of drugs. We reasoned that since the 

mode of action of multiple drugs involves affecting the functioning of the pathways 

we were modeling, their functional status should affect the efficacy of the drugs. 

Since all our 14 colorectal cancer cell-lines are part of the Genomics of Drug 

Sensitivity in Cancer (GDSC) panel (16), we could make use of the drug sensitivity 

data included in this comprehensive dataset in response to a large panel of drugs. In 

particular, in order to focus on biologically relevant associations, we selected only 

those drugs targeting nodes in our network (PKN) or first neighbours, i.e. targets that 

directly regulate a node in the PKN based on Omnipath (21), which is a curated 

ensemble of multiple pathway resources. We additionally excluded drugs showing a 

low variability in the response across our 14 cell-lines (less than three sensitive and 

three resistant cell-lines based on the classification used in (16)) and those for which 
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sensitivity data were missing for more than three of our 14 cell-lines. For the 

remaining 27 drugs, we investigated the association with our model parameters 

using cross-validated Elastic Net (details in Materials and Methods), using IC50s 

(half maximal inhibitory concentration) as a measure of drug sensitivity. We found a 

total of 146 robust associations (out of the 1242 possible ones), with 14 of our 27 

drugs being explained by at least one model parameter. Top 50 associations are 

shown in Fig. 5A and all associations are shown in fig. S2. Resulting associations 

were then compared with those between drugs and genomic alterations (functional 

mutations and copy number alterations) acting on PKN nodes or first neighbor. 

Genetic biomarkers were identified using ANOVA as described in (16) (without 

correction for multiple hypothesis testing due to too large number of comparisons, 

see fig. S3) resulting in associations for 12 of our 27 drugs, five of which also 

showed associations with model parameters (corresponding genetic biomarkers are 

reported for the drugs in Fig. 5A). 
 

Interpretation and validation of the dynamic biomarkers 

We then focused on the 9 drugs whose efficacy was not significantly associated with 

mutations or copy number alterations but instead with pathway biomarkers, to 

explore how our approach provides insights in otherwise unexplained drug efficacy. 

Top associations are illustrated in Fig. 5B, visualized on the network (PKN) to show, 

for each drug, both the target(s) and the associated pathway parameter(s). 
 

For example, multiple parameters related with MEK-ERK pathway showed 

association with EGFR signaling inhibitor (HG-5-88-01) and with BRAF inhibitors 

(SB590885 and Dabrafenib). Interestingly, many recent studies reported synergistic 

effects when combining MEK inhibitors with EGFR inhibitors (8, 23, 24) or with BRAF 

inhibitors (8, 25, 26) in different cancer types. In particular, focusing on colorectal 

cancer, combination of EGFR and MEK inhibitors was suggested to overcome 

resistance to MEK inhibitors in BRAF and KRAS mutants (8, 27) and it was 

suggested in (24) as potential therapy for CRC patients who become refractory to 

anti-EGFR therapies. A significant increase in response was also shown on a phase 

I study for CRC patients treated with a combination of three drugs targeting MEK, 

BRAF and EGFR respectively,  in BRAF V600E mutants (28) and is currently in 
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Phase I/II study (NCT01750918 in clinicaltrials.gov). These examples underline the 

potential of our approach in suggesting targeted combinatorial therapies. 
 

Another interesting example is the association of different MEK inhibitors (AZD6244, 

RDEA119, Trametinib, PD-0325901, CI-1040) with multiple model parameters 

related to GSK3 (τGSK3, kRSKp90,GSK3, kAKT,GSK3), as shown in Fig. 6A-C, with each 

parameter being associated with at least two of the inhibitors. The top association 

among these (which is overall ranked 8th in Fig. 5A), between AZD6244 and τGSK3, is 

shown in the centre of Fig. 6D. Our model predictions suggest that the combination 

with a GSK3 inhibitor could improve the sensitivity for cell-lines resistant to MEK 

inhibitors (i.e. high IC50) and with functional GSK3 (i.e. high τGSK3). On the contrary, 

cell-lines with nonfunctional GSK3 (i.e. low τGSK3) should not be affected by GSK3 

inhibitors. In order to experimentally test this hypothesis, we combined a MEK 

inhibitor (Trametinib) with two GSK3 inhibitors (SB216763 and CHIR-99021) at 

increasing concentration (see Materials and Methods) as shown in the external 

plots in Fig. 6D. As expected, cell-lines with nonfunctional GSK3, based on the 

corresponding model parameter, do not show an increased sensitivity when treated 

in combination with any of the two tested GSK3 inhibitors, regardless of their 

response to MEK inhibitors (e.g. HT29 and SNUC2B for a sensitive and a more 

resistant case). On the contrary, cell-lines with more functional GSK3 tend to show 

an improved sensitivity under the combinatorial treatment  (see HT115, SW1116, 

SW1463 and CCK81) even at the low drug concentrations tested. 
 

Discussion 

While it is broadly accepted that alterations in the functionality of signaling pathways 

largely determine the efficacy of kinase inhibitors used in the clinic, a complete 

understanding of their relationship is lacking. In this study we investigate this 

relationship and we show that the dynamic of signaling pathways can determine the 

efficacy of targeted drug treatments, in particular in cases where genomic data 

cannot. Additionally, we show that this information can be used to guide 

combinatorial therapies. 
 

Our means towards this end were cell-specific mechanistic models of signal 

transduction for 14 colorectal cancer cell-lines trained with dedicated 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2016. ; https://doi.org/10.1101/094755doi: bioRxiv preprint 

https://doi.org/10.1101/094755
http://creativecommons.org/licenses/by/4.0/


11 

phosphoproteomic data upon perturbations. We built our models based on 

differential equations to capture the continuous aspects of signal strength and time-

dynamics, but using a logic formalism that allowed for straightforward interpretability 

of the model parameters in terms of life-time of each species in the network and 

strength of the regulatory interactions. We could then study how these model 

parameters, which determine the dynamic behaviour of the pathway, are related with 

the global cellular sensitivity to cancer drugs. We found some strong correlations 

between model parameters and drug sensitivity, such as between GSK3 life-time 

and MEK inhibitors, that suggest that the functionality of pathway interactions is 

indeed related to the efficacy of the drugs.  

A key aspect of our study is the opportunity to analyze the heterogeneity of dynamic 

functionality (which is described by the model parameters) of signal transduction 

among a large panel of colorectal cancer cell-lines and how it relates to therapeutic 

drug response. The investigation of the heterogeneity of signaling pathways was 

empowered by the uniqueness of our dataset, consisting in 14 phospho-proteins 

measured under 43 differently perturbed conditions, which allowed us to characterize 

cell-line-specific models for 14 cell-lines derived from the same tissue of origin. We 

found that about half of the model parameters are highly heterogeneous in our panel 

of cell-lines and that heterogeneity cannot be explained by genomic alterations 

alone. Since these findings were obtained with a relatively limited sampling of the 

signaling status, we expect that many more associations can be found with a 

broader characterization. Mass-spectrometry based approaches, while still more 

costly and laborious, are under active development and likely to enable such an 

analysis in the near future.  
 

Associations between model parameters and drug sensitivity were used to define 

interesting points of intervention to overcome resistance to specific drugs in specific 

cell-lines, thus paving the way for personalized combinatorial therapies. Some of the 

combinatorial therapies suggested using this approach, like the combination of MEK 

inhibitors with EGFR and/or BRAF inhibitors, are supported by literature (as reported 

in the Results) and are currently in clinical trials. We could also suggest novel 

combinatorial interventions, like the combination of MEK and GSK3 inhibitors, that 

we validated experimentally. Interestingly, the inhibition of GSK3 showed promising 

anticancer effect in recent studies on cancer cell-lines (29, 30) and its potential 
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interaction with MEK-ERK pathway has also been suggested in this context (30, 31) 

but, as far as we know, no proven synergistic effect had previously been reported.  
 

Our findings underscore the value of studying signaling pathways dynamic to better 

understand tumor phenotypes and to exploit this knowledge to suggest new 

therapeutic strategies (32). Such an approach is fundamentally different from the 

currently common characterization of various ‘omics’ layers at the basal level and it 

can be exploited to prevent the dynamic adaptation mechanisms underlying drug 

resistance (14).  Accordingly, we were able to find various pathway dynamic 

biomarkers for drugs with no genetic biomarkers. Hence, we believe that a 

perturbation-based strategy, even if restricted to fewer genetic backgrounds and only 

monitoring selected proteins, can provide a complementary strategy for biomarker 

discovery in cancer and beyond. 
 

Materials and methods 

Definition of logic ordinary differential equations 

The logic ordinary differential equation formalism (17) is based on ordinary 

differential equations derived from logic models using a continuous update function 

 for each species , which can assume continuous values . The differential 

equation for species  is defined as follow: 

 
Where  is the life-time of species .  means that the node is disconnected by 

the rest of the network and higher values of  represent faster response, that can be 

interpreted as more functional species.  are the N regulators of  and 

each regulation is defined by a transfer function  with parameters  and : 

 

Where parameters  were fixed to 3 and parameters  were optimized 

(constrained between 0 and 1 included). As shown in  fig. S4,  means that the 

transfer function is equal to 0 for any value of the regulator j and can be interpreted 

as the edge j→i is not functional. Higher values of  represent increasing strength of 

the regulatory interaction. For consistency with Boolean models (see (17) for more 
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details), the transfer function is defined to be  for  (except for the 

 case)  

Optimization of parameters  and  was performed using MEIGO (33) and CNRode 

add-on of the CellNOptR package (18) using a modified version of the objective 

function to include the parameter regularization described in the paper, as well as an 

additional penalty to promote that the simulated values at t=30 min (corresponding to 

the measured time point) are at steady state in order to match the experimental 

assumptions. 
 

Experimental setup of perturbation screen 

Human colorectal cell-lines (CAR1, CCK81, COLO-320-HSR, DIFI, HCT116, HT115, 

HT29, SK-CO-1, SNU-C5, SW1116, SW1463, SW620 and SW837) are described in 

the COSMIC cell-lines project database (http://cancer.sanger.ac.uk/cell_lines). All 

cell-lines were cultured in either RPMI or DMEM/F12  medium with 10% FBS and 

were incubated at 37°C and 5% CO2. Before perturbation commenced cells were 

starved overnight in serum free medium. At 90 minutes before lysis the cells were 

treated with inhibitors (or solvent control DMSO) and at 30 minutes before lysis cells 

were stimulated with ligand (or solvent control H2O). This procedure was conducted 

for all single and combined inhibitor-ligand perturbations. The following inhibitors 

were used: MEKi AZD6244 (4µM), PI3Ki AZD6482 (10µM), mTORi AZD8055 (2µM), 

TBK1i BX-795 (10µM), IKKi BMS-345541 (25µM), BRAFi PLX4720 (5µM) and TAK1i 

5Z-7-Oxozeanol (5µM). Concentrations were selected to inhibit target while 

minimizing off-target activity.  We further used the following ligands: EGF (25ng/ml), 

HGF (50ng/ml), IGF1 (10ng/ml), TGFb (5ng/ml) and TNFa (10ng/ml). After treatment 

and incubation, lysates were collected and analyzed with the Bio�Plex Protein Array 

system (Bio�Rad, Hercules, CA) as described earlier (8) using magnetic beads 

specific for AKTS473, c-JunS63, EGFRY1068, ERK1/2T202,Y204/T185,Y187, GSK3A/BS21/S9, 

IkBaS32,S36, JNKT183,Y185, MEK1S217,S221, mTORS2448, p38T180,Y182, PI3KY458, 

RPS6S235,S236, p90RSKS380 and SMAD2S465,S467. The beads and detection antibodies 

were diluted 1:3. For data acquisition, the Bio�Plex Manager software and R 

package lxb was used.  
 

Drug combination experiments 
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Experiments were performed using MEKi Trametinib (0.005µM) as anchor drug and 

testing its effect on our 14 colorectal cancer cell-lines alone and in combination with 

5 concentrations (from 10µM with 4-fold dilutions: 0.039µM, 0.156µM, 0.625µM, 

2.5µM, 10µM) of two GSKi (SB 216763  and CHIR-99021). For available replicates 

median value was computed. Dose-response curves were normalised between 0 

and 100 with 100 corresponding to the negative control (cells with no treatment) and 

0 to the positive control (cells treated with Staurosporine 2µM). Same DMSO volume 

was maintained for all experiments (negative and positive controls, single drug and 

drug combination). Cell number was measured after 3 days of constant drug 

exposure using CellTiter-Glo reagent as described by the manufacturer (Promega). 
 

 

Data preprocessing 

For each cell-line, data were processed separately for each of the 14 measured 

phosphoproteins. The value of the control (unperturbed condition)  was estimated as 

the median value of the 4 replicates (to decrease the risk of bias) and log2 fold 

changes with respect to the control were then computed for each of the 42 perturbed 

conditions. As required by our logic formalism, data were then linearly scaled 

between 0 and 1, with 0.5 corresponding to the basal (control) condition. 
 

Model optimization 

The optimization procedure applied to each cell-line is the following: 

1. L1 regularization was applied to parameters τi to remove unconnected nodes, 

as described in Equation 1, for five increasing values of λτ (λτ=0, 0.01, 0.1, 1, 

10). To increase the chances to obtain good solutions, 10 independent runs of 

the optimization were run in parallel. The best value for λτ was selected 

(λτ=0.1) which provided the optimal balance between fitting precision and 

network size as described in the example, using the L-shaped curves (fig. 
S5). 

2. Values of τi were fixed to the values estimated in Step 1 for λτ=0.1 and 

optimization was repeated applying this time the L1 regularization to 

parameters k to induce sparsity in the network, with objective function defined 

as: 

 where  
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As in step 1, optimization was repeated for increasing values of λk (λk=0, 0.01, 

0.1, 1, 10) with 10 independent runs each, and best λk was selected based on 

L-shaped curves (fig. S6) to λk=0.1.  

3. Bootstrap distribution was obtained for parameters kij (for λk=0.1 from Step 2) 

repeating the optimization by resampling experimental data 150 times with 

replacement. 
 

Elastic net 

In order to select only robust features, Elastic net training was iterated M times 

(where M is the total number of observations), each time leaving out one observation 

(sampling without replacement). For each iteration, leave-one-out cross-validation 

was applied to tune Elastic Net hyperparameters. Median values were computed for 

the weights of the features across the M iterations, in order to select only features 

appearing in at least half of the iterations. 
 

Statistical Analysis 

ANOVA was used to define genomic markers of drug sensitivity using the GDSC 

tools (https://pypi.python.org/pypi/gdsctools/0.2.0). Microsatellite instability was used 

as covariate and threshold on minimum size of the positive and negative population 

for each feature set to 3. The threshold for significance of the p-value was set to 

0.05, but no correction for multiple hypothesis testing was applied. 

Kruskal-Wallis rank sum test (which is a one-way analysis of variance on ranks) was 

used to test if estimated parameters (from bootstrap) derive from the same 

distribution for all 14 cell-lines (null hypothesis rejected if different for at least one 

group). Effect size w was computed as  where χ 2 is the statistics from the 

test and N is the number of observations. Effect size >0.5 is considered as large 

effect. P-values were Bonferroni corrected and threshold was set to 0.05. Wilcoxon 

rank sum test was then used for post hoc pairwise test on parameters passing the 

Kruskal-Wallis rank sum test, using as effect size , where Z is the statistics 

from the test and N is the number of observations. Effect size >0.5 is considered as 

large effect. P-values were Bonferroni corrected and threshold was set to 0.05. Rank 

type test were preferred over parametric tests because they are highly robust against 

non-normality. 
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Supplementary Materials 

Fig. S1. Extended version of the prior-knowledge network (PKN). 

Fig. S2. Associations between model parameters and drug sensitivity.  

Fig. S3. Genomic biomarkers of drug sensitivity. 

Fig. S4. Transfer function used in logic ordinary differential equations. 

Fig. S5. L-shaped curves for τ parameters. 

Fig. S6. L-shaped curves for k parameters. 
 

Data file S1 Optimised cell-line-specific models 

Data file S2-S15 Phosphorylation perturbation data for the 14 cell-lines (MIDAS 

format) 
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Figures and Tables 

 
Fig. 1. Schematic of the approach used to define biomarkers of drug response from pathway models. 

A. Specific predictive models for 14 colorectal cancer (CRC) cell-lines were built from perturbation 

data and prior information about network structure (PKN). B. Drug sensitivity data for the same 14 

CRC cell-lines were retrieved from the Genomics of Drug Sensitivity in Cancer (GDSC) panel in 

response to 27 different drugs targeting the PKN or first neighbour. C. Elastic Net was used to select 

strong associations between model parameters and drug sensitivity. 
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Fig. 2. Toy example to illustrate modeling approach. A. Toy general network (PKN) with edges used 

for data simulation highlighted in dark grey. B. One (out of 10) example of simulated perturbation data 

used to illustrate L1 regularization. C. Goodness of fit (QLS, i.e. sum of squared residuals) versus 

model sparsity (P, i.e. sum of estimated parameters) for different values of λτ, (λτ=0, 0.001, 0.01, 0.1, 

10, 100) resulting in an L-shaped curve (each dot is the mean value obtained from the 10 in silico 

datasets). D. Mean accuracy (error bars represent standard deviation) of the estimated parameters 

(sum of the square of the difference between estimated and true parameters) as function of λτ. 

Optimal λτ is depicted in red. 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2016. ; https://doi.org/10.1101/094755doi: bioRxiv preprint 

https://doi.org/10.1101/094755
http://creativecommons.org/licenses/by/4.0/


22 

 

 
Fig. 3. Large-scale 

experimental perturbation 

dataset. Data for 14 

colorectal cancer cell-lines in 

response to 43 different 

perturbed conditions with 14 

measured phosphoproteins. 

Genomic alterations affecting 

investigated pathways are 

also shown and cell-lines are 

clustered based on 

phosphorylation profile 

across all perturbations. 
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Fig. 4. Results of cell type specific model optimization. A. Compressed PKN with edge width and 

values representing the level of heterogeneity of the corresponding model parameter among cell-lines 

(percentage of pairwise tests between cell-lines for which null hypothesis of equal distribution was 
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rejected) and edge colour representing median value of the corresponding parameter across all cell-

lines. B. Mean squared error (MSE) for each cell-line, error bars represent standard deviation derived 

from bootstrap. C. Estimated parameters kij (edge weight) and τi (node weight) which are different 

from zero in at least one cell-line. Clustering on the right is based on all estimated model parameters 

which does not correlate well with genomic alterations.  

 

 
Fig. 5. Associations between model parameters and drug sensitivity. A. Top 50 associations resulting 

from Elastic Net selection between a drug (first column) and a model parameter (second column). For 

each drug, the corresponding targets are shown in third column and the associated genomic 

biomarker (if any) in the fourth column. Analysis is limited to drugs and mutations acting on PKN or 

first neighbour. For both drugs and mutations, corresponding PKN targets are indicated with an arrow 

(-> for positive regulation; -| for negative regulation) if mutations and/or drug targets are first 

neighbour regulating nodes in the PKN (which are named after the arrow). B. Among the top 25 

parameter-drug associations, those involving drugs with no genetic biomarkers are schematically 

mapped to the signaling pathways. Drug targets for the 7 drugs listed as ellipses in the bottom panel, 

are shown in the compressed PKN (upper panel) using the corresponding coloured drug symbols. 

Corresponding model parameter associations for each drug are shown in the PKN using the same 

colour code to mark edges corresponding to regulator parameters kij (edge from i to j) and nodes 

border for corresponding life-time parameters τi (node i). 
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Fig. 6. Association between MEK inhibitors and GSK3 model parameters. A-C. Scatterplots of the 

three GSK3 related model parameter (τGSK3, kRSKp90,GSK3, kAKT,GSK3 in panel A, B and C respectively) 

versus the mean sensitivity of the respective associated MEK inhibitors (at least two for each 

parameter), with error bars representing the standard error. D. In the centre, scatterplot of the 

strongest association between MEK inhibitor (AZD6244) and GSK model parameter (τGSK3). In the 

external plots, dose-response curves when combining MEK inhibitor (Trametinib) (at fixed 

concentration 0.005 µM) with two GSK3 inhibitors (SB216763 and CHIR-99021) at increasing 

concentrations (0, 0.039, 0.156, 0.625, 2.5, 10 µM). Plots for the 14 CRC cell-lines are ordered 

clockwise according to their τGSK3 parameter value. 
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