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Abstract

Mutations provide the raw material of evolution, and thus our ability to
study evolution depends fundamentally on whether we have precise measure-
ments of mutational rates and patterns. Here we explore the rates and patterns
of mutations using i) de novo mutations from Drosophila melanogaster muta-
tion accumulation lines and ii) polymorphisms segregating at extremely low
frequencies. The first, mutation accumulation (MA) lines, are the product of
maintaining flies in tiny populations for many generations, therefore render-
ing natural selection ineffective and allowing new mutations to accrue in the
genome. In addition to generating a novel dataset of sequenced MA lines, we
perform a meta-analysis of all published MA studies in D. melanogaster, which
allows more precise estimates of mutational patterns across the genome. In the
second half of this work, we identify polymorphisms segregating at extremely
low frequencies using several publicly available population genomic data sets
from natural populations of D. melanogaster. Extremely rare polymorphisms
are difficult to detect with high confidence due to the problem of distinguish-
ing them from sequencing error, however a dataset of true rare polymorphisms
would allow the quantification of mutational patterns. This is due to the fact
that rare polymorphisms, much like de novo mutations, are on average younger
and also relatively unaffected by the filter of natural selection. We identify
a high quality set of ∼70,000 rare polymorphisms, fully validated with rese-
quencing, and use this dataset to measure mutational patterns in the genome.
This includes identifying a high rate of multi-nucleotide mutation events at
both short (∼5bp) and long (∼1kb) genomic distances, showing that muta-
tion drives GC content lower in already GC-poor regions, and finding that the
context-dependency of the mutation spectrum predicts long-term evolutionary
patterns at four-fold synonymous sites. We also show that de novo mutations
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from independent mutation accumulation experiments display similar patterns
of single nucleotide mutation, and match well the patterns of mutation found
in natural populations.

Author Summary

Mutations provide the raw material of evolution, and thus our ability to study evolu-
tion depends fundamentally on whether we have precise measurements of mutational
rates and patterns. Yet, because a large proportion of new mutations are detrimen-
tal, our ability to detect new mutations is severely limited. In this paper, we use
both experimental and population genomic approaches to generate a large dataset of
∼70,000 genetic variants in the fruit fly Drosophila melanogaster, and subsequently
use these data to quantify rates and patterns of new mutations. We identify many in-
teresting features of the mutation spectrum, including a high rate of multi-nucleotide
mutation events and context-dependent mutational patterns.

Introduction

Mutation is the ultimate driver of genetic diversity. All genetic differences found both
within and between species originated in the mutational process, and then survived
the stochastic and selective forces acting on every allele’s frequency dynamics. As a
result, the patterns in population genetic and evolutionary data are a combined result
of both selective and mutational forces. Studies of natural selection thus depend
fundamentally on whether we can correct for the confounding factors of mutational
biases.

Our ability to study mutation is severely limited both because mutation rates are
generally extremely low, and because a substantial fraction of new mutations are dele-
terious and thus purged from populations by purifying selection. These two problems
can, at first glance, be overcome with divergence-based measurements, in which rates
of substitution within nonfunctional genomic regions are calculated across taxa [1–3].
Here the use of vast phylogenetic timescales allows one to observe large numbers of
even very rare mutational events, while the use of neutral sequences eliminates the
confounding effects of natural selection. Unfortunately, these divergence-based meth-
ods are compromised by the necessity of identifying large numbers of regions that
behave truly neutrally [4–6], and by the fact that even mutations residing in truly
neutral regions can be subject to the selection-like force of biased gene conversion [7,8]
or to selection on genome properties such as GC content or genome size [9–11]. Fur-
thermore, divergence based methods produce long term averages for the mutational
spectrum, and thus may be sensitive to variation in life history traits such as gener-
ation time [12] and may obscure mutation rate variation through time [13].

The ideal approach for the study of mutational processes is to identify truly new
mutations. The optimal study would capture de novo mutations via sequencing of
sets of parents and offspring, and implement this strategy in an enormous sample in
order to overcome both inter-individual mutation rate variation and the small number
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of events that occur per individual. The advent of next-generation sequencing has
made this possible, however it is still quite expensive and only recently beginning to
be realized, primarily in humans [14]. Thus, in order to measure mutational rates and
biases in organisms that do not receive the same level of funding support as humans,
or in order to survey human mutational rates and patterns across diverse populations
on a reasonable budget and timescale, we must use alternative approaches.

Two such alternative approaches include mutation accumulation (MA) experi-
ments in model organisms [15], and a more recently proposed method in which
very rare polymorphisms in natural populations are used as a proxy for new mu-
tations [16, 17]. These approaches have complementary strengths and weaknesses.

The MA approach is implemented by maintaining an organism in a population
so small (N ∼ 1 − 2) that selection is ineffective (Ns � 1) for even strongly dele-
terious mutations, thus allowing (nonlethal) mutations to be passed along through
the generations [15]. This experiment results in an accumulation of new mutations
on the chromosomes, which, with enough individuals or enough generations, turns
the relatively infrequent event of mutation into an observable process. A testament
to the utility of this method is perhaps the sheer number of organisms in which MA
has been deployed: Arabidopsis (thaliana, floriosa, and douglasiana), Caenorhabditis
(elegans and briggsae), Chlamydomonas reinhardtii, E. coli, O. myriophila, S. cere-
visiae, VSV, φ6 virus and Drosophila melanogaster [15]. MA experiments have the
benefit of allowing researchers to precisely measure both mutational rates and mu-
tational patterns in a controlled laboratory environment. However therein also lie
the weaknesses of MA approaches: i) the controlled environment and the use of lab
strains makes it possible that mutational rates and patterns are not representative
of what occurs in natural populations, ii) the accumulation of deleterious mutations
during the course of the MA experiments may itself change the spectrum and rate
of new mutations, and iii) the MA experiments can be extremely laborious and thus
limited in the sheer number of events they are likely to generate.

The second approach to studying the mutational spectrum uses very rare poly-
morphisms as a proxy for new mutations. The rationale of this approach is that very
rare polymorphisms are younger on average and have frequency dynamics dominated
by stochastic forces rather than by natural selection or biased gene conversion [16,18].
An ideal example of such a mutation would be a singleton, or in other words, a mu-
tation present on just a single chromosome in a population (or population sample).
Such a mutation was likely generated in the germline of the previous generation and
thus private to the current individual within which it resides, and it’s frequency rel-
atively unaffected by natural selection. Thus, the expectation is that as we look at
polymorphisms at lower and lower population frequencies, we should observe classes
of genetic variants with probabilities that become primarily determined by mutational
biases. The principal advantages of this approach are that we can study mutational
patterns as they occur in nature, and that we can obtain very large numbers of events
economically. This strategy also has its own drawbacks, however, including: i) the in-
ability to directly measure mutation rates, ii) the challenge of ensuring that selection
has had minimal effect on the patterns of mutations, and iii) the difficulty of dis-
tinguishing true variants from sequencing and alignment errors. The last problem is
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particularly daunting. As Achaz (2008) noted, increasing the number of individuals in
the sample does not help - the number of errors and the number of true variants both
scale linearly with sequence length, but an increase in sample size causes the number
of true variants to scale only logarithmically while the number of errors still scales
linearly [19]. Thus, in the pursuit of a deep catalogue of genetic variation in natural
populations, it is quite possible that as more and more individuals are sequenced, we
will be adding disproportionately more errors than real polymorphisms.

In this study we leverage the opportunity to combine the MA strategy with the
rare polymorphism approach, thus avoiding the drawbacks of either method in iso-
lation while also benefiting from the strengths of both. Mutations generated in the
controlled environment of the laboratory provide an exciting opportunity to directly
measure mutation rates, while also generating a neutral expectation which can be
compared with a much larger dataset of rare polymorphisms segregating in natural
populations. This combined approach allows a nuanced characterization of the mu-
tational spectra, whether generated in the laboratory or in natural populations, and
creates deep enough data that mutational patterns can be studied across the genome
in fine detail.

The fruit fly Drosophila melanogaster, as both a model organism and a species
with a large number of sequenced natural isolates, provides an excellent opportunity
to implement this integration of approaches. In the first half of this study, we combine
results from five MA experiments, including our own novel dataset, to arrive at a set
of 2,141 de novo mutations which were generated in the laboratory. Then, in the
second half of this study, we use 3 large datasets of sequenced natural populations in
order to extract a large set (∼ 70, 000) of high quality rare (< 0.1%) polymorphisms
which, unlike other studies, have been fully validated via resequencing. We use these
data to validate both MA and rare polymorphism approaches for the study of new
mutations, to provide the most precise estimate to date of the rate and patterns of
point mutations, and to detect substantial neighbor-dependency of mutation in D.
melanogaster.

Results

De novo mutations identified in MA experiments

While mutation accumulation studies within the fruit fly community have a history
dating back to the early 20th century [20], it’s only in the last several years that re-
searchers have been able to directly measure the single base pair mutation rate using
sequencing methods [21–24]. A number of different experimental designs have been
used, and perhaps the most marked difference between them is the choice of whether
to use the homozygous vs heterozygous MA strategy. Homozygous MA is essentially
inbreeding in a small population (N ∼ 2) which therefore forces new mutations to
eventually be homozygosed (Figure 1A, right). The heterozygous MA experiment
uses a cross scheme which instead passes the MA chromosome in a heterozygous
state through a single male in every generation (Figure 1A, left). These different ap-
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proaches result in different amounts of selection that occurs against recessive strongly
deleterious mutations, a class of mutational events that are both critical to fitness
and common in many natural populations [25]. At the outset of this study there were
two prior publications that sequenced MA lines, both of which used a homozygous
MA strategy [21,22], and thus we sought to contribute a novel dataset generated via
heterozygous mutation accumulation. When MA experiments were first invented the
heterozygous strategy was often implemented with the inversion-rich balancer chro-
mosomes, that may be prone to distortions in homology-directed repair processes. We
thus implemented a more conservative approach of using un-inverted chromosomes
carrying recessive markers (see Methods), which more closely mimic nature. Since we
began our experiments, there have been two more recent datasets published [23, 24].
In this work we present our own novel dataset from a heterozygous MA experiment,
and then generate the first meta-dataset of all MA studies in the fruit fly yet pub-
lished, with which we precisely estimate mutational patterns both across experiments
and within the combined dataset.

A new dataset of 325 point mutations

Briefly, our new heterozygous MA dataset was generating using the following ex-
perimental and sequencing pipelines: 17 independent lines of D. melanogaster were
allowed to accumulate mutations for 36-53 generations in a heterozygous state (Fig-
ure 1A, left). Each line was then sequenced to ∼20-25X (sample coverage map can be
seen in Figure S1), sequencing reads processed (trimmed, mapped to release 5.57 of
the flybase reference, filtered for duplicates, and realigned around indels), and vari-
ants called with a combination of GATK and Varscan. A variant was considered a de
novo mutation if it was called with high confidence in one strain and simultaneously
never present on more than a single sequencing read in either the ancestral strains
or any other MA line. In total 325 new mutations were identified, of which 30 were
randomly chose for visual confirmation in a pileup file and an additional 30 were
randomly chosen for PCR/Sanger sequencing. We successfully validated 29 of the 30
that were Sanger sequenced, giving a ∼ 3% error rate, although we note that upon vi-
sual inspection of the single unconfirmed mutation, we verified that both the original
genotype call and the resequence data to be of very high quality, and consequently we
suspect the PCR primers may have inadvertently been haplotype-specific and thus
amplified the non-MA chromosome. See Methods for additional details of pipeline,
and Tables S1, S2, and S3 for details of the 17 MA strains, 325 de novo mutations
identified, and 30 mutations Sanger sequenced.

The 325 de novo mutations identified in this study reveal a notably consistent
mutation rate across strains, chromosomes, and time. Plotting the quantiles of mu-
tation counts on chromosomal arms against the quantiles of a Poisson distribution
(with a mean equal to the sample mean) gives a markedly linear relationship (Fig-
ure 1B), affirming that mutation counts are indeed Poisson distributed. Consistent
with previous findings [21, 22], we find no significant difference in mutation counts
across the major chromosomal arms (Figure 1C, χ2 test p-value = 0.47). Addition-
ally, we find no significant difference in mutation rates between generations 36 and
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53 (Poisson exact p=0.76, Figure S2), although it is likely we were underpowered to
test for small variations in rates across generations. Given the presence of mutator
lines in previous MA experiments [22, 23] it was also important to test for variation
in the total mutation rate across strains, and we find no evidence for any variation
in mutation rates across strains (Figure 1D, χ2 test p-value = 0.89). Finally, in our
experiment we found a single base pair mutation rate of 4.9e-9 per generation (95%
CI 4.4 – 5.5e-9).

Five MA experiments, different single base pair mutation rates

We next compared and combined our dataset with data from four previously pub-
lished experiments [21–24]. Across all five experiments there are in total 163 lines
which went through between 36 and 262 generations, however of those there were five
lines (four from [22], one from [23]) with elevated mutation rates, and thus we reduced
the set to the 158 non-mutator strains for our combined analyses. We restrict our
comparisons to the major autosomes only (chromosomes 2 and 3), as these were the
chromosomes used across all five MA experiments and upon which most mutations
resided (note that the inbreeding MA strategy does allow accumulation on chromo-
somes X and 4 as well). Additionally, we masked repeats in all data sets (see Methods
for additional details of obtaining and processing these data). This procedure of fil-
tering out mutator lines, chromosomes X and 4, and repeat regions, reduces the total
number of mutations across all experiments from 3,187 to 2,141. We work with the
dataset of 2,141 mutations when doing comparisons across experiments, however we
also make the entire dataset available for download.

A comparison of experiments and single base pair mutation rates can be found in
Table 1. Our mutation rate is significantly higher than that reported by the homozy-
gous MA accumulation studies of both Keightley et. al. (Poisson exact p=2e-4) and
Schrider et. al. (Poisson exact p=3e-6), significantly lower than that reported by the
heterozygous MA of Sharp et. al. (Poisson exact p=1.5e-3), and not significantly
different from that reported by Huang et. al. (Poisson exact p=0.35) (see Methods
and Table S4 for additional details). Overall, the experimental designs which used
heterozygous accumulations, fewer generations, and newer sequencing technologies,
tended to have higher mutation rate estimates, emphasizing that experimental design
is an important consideration in MA studies.

The neutral expectation is reached in all five experiments

We can next look at functional regions in the genome in order to test whether the
mutational spectra across the five MA experiments are truly unbiased by natural selec-
tion. While polymorphisms within functionally important sites (i.e. nonsynonymous
or nonsense, which tend to be deleterious) typically do not reach high frequencies in
natural populations, we do expect that de novo mutations occurring in coding re-
gions should cause a nonsynonymous change ∼75% of the time, and cause a nonsense
change ∼4% of the time. As can be seen in Figure 2A-B, the five mutation accumu-
lation experiments do indeed exhibit the expected fractions of 75% nonsynonymous
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and 4% nonsense (no significant difference between experiments, χ2 test p=0.03 and
p=0.69 for nonsynonymous and nonsense respectively), although note that the counts
are not high enough to give a well-defined point estimate for the nonsense fraction.

Another method to test if the MA mutations were generated in the absence of
selection is to classify all sites in the genome by their conservation status across phy-
logenetic timescales, and then ask whether the distribution of mutations from the
MA experiments meet the neutral expectation. To do this we employed the publicly
available phastCons scores for the D. melanogaster reference genome, which are
a measure of evolutionary conservation across twelve Drosophila species, mosquito,
honeybee, and the red flour beetle [26]. Indeed, as we can see in Figure 2C, the distri-
bution of phastCons scores are similar across MA experiments, and not significantly
different from the neutral expectation as given by the distribution of scores in the
reference genome (bootstrap KS test p=0.31).

Mutational spectra are comparable across all five experiments

Mutations can be collapsed into six basic types, and, after scaling for the D. melanogaster
genome GC content of 43%, their relative mutation rates calculated (Figure 2D, Ta-
ble S5). We find that these six relative rates are indeed significantly different across
experiments (χ2 test, p=0.003), however the p-value is not very low. Indeed, compar-
isons of various subsets of the data gave generally insignificant differences, such that
no specific mutation type nor specific experiment was found to be driving the varia-
tion (tests of single mutation types or single experiments against the sum of the rest
gave χ2 test corrected p-values>0.01). We next combined the datasets to generate
a more precise estimate of the six relative rates (bottom right Figure 2D, Table S5).
The C → T/G → A mutation type, in addition to occurring at comparable relative
rates across experiments (χ2 test p=0.15), is by far the most common mutation (0.4
relative rate, 95% CI 0.38-0.42). In D. melanogaster it occurs at ∼7X the rate of the
least common A→ C/T → G mutation type. This is despite the paucity of cytosine
methylation in D. melanogaster [27], which in humans, for example, drives a relative
rate of C → T/G → A of ∼0.48 (which is ∼ 11X the least common mutation type
in humans) [14]. Our finding is consistent with previous work in Drosophila and
recent work in yeast [28–30] showing an elevated mutation rate at cytosines despite
minimal or no methylation in the genome, suggesting that the sensitivity of cytosines
to mutation may be a general feature of cytosines in a cellular context.

Using the counts and relative rates of the six mutation types we can now look at
transition:transversion ratios and GC equilibrium, which we find to be similar across
experiments. When considering the number of transition mutations (2 possible types)
and transversion mutations (4 possible types), we find transition:transversion ratios
that do not vary significantly across experiments (G test of independence, p=0.21),
and which for the combined dataset reaches a ratio of 2:1 (95% CI 1.9-2.2) (Table 2).
Next, by considering mutations which change the GC content of the mutated base
pair, we can ask if the mutational process tends to drive the genome towards A:T base
pairs or G:C base pairs by calculating the GC equilibrium. The GC equilibrium has
only been reported by one MA experiment [21], however we can systematically quan-
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tify it across all five experiments (Table 2, significantly different between experiments,
G test p=0.01). Interestingly, while the oldest MA paper reported a GC equilibrium
of 30% (with a large CI of 24-40% [21]), we find that newer studies have consis-
tently found a lower value. For the combined dataset the GC equilibrium reaches
∼23% (95% CI 0.21-0.25). In contrast, the D. melanogaster genome has an actual
GC content of 43%, and thus the lower GC equilibrium found here emphasizes the
importance of non-neutral processes in driving the genome GC content higher [8].

Lastly, we can also test for neighbor-dependent variation in the mutation spec-
trum. There is evidence in some organisms that single base pair mutation rates can
vary depending on the neighboring base pair context [17, 24, 29]. To test this in
D. melanogaster using our combined MA dataset we considered triplet contexts, in
which the center base is mutated. All possible triplets were collapsed into their for-
ward/reverse sequence, and then we quantified within each triplet the relative rates
of the three mutation types that can occur at the center base pair of the triplet (e.g.
CAG/CTG triplet can have A→T/T→A, A→C/T→G, or A→G/T→C mutations).
In contrast to quantifying the total mutation rate within each triplet, measuring the
relative rates within each triplet provides an internal control for the triplet content in
the genome, which will vary across MA publications depending on which masks were
applied to the reference genome (information that is not consistently documented
across publications). Using the combined set of 2,141 de novo mutations from the
five MA experiments, we do in fact find heterogeneity in the mutation spectrum across
triplet contexts (Figure 2E, G test of independence, p=0.008 and p=0.007 for GC and
AT base pairs respectively). However, 2,141 mutational events is not a large enough
dataset to detect whether any particular triplet is driving the heterogeneity (G test,
corrected p values > 0.01 , Table S6). Thus, despite compiling the largest Drosophila
dataset of de novo mutations yet available, it would be desirable to generate an even
larger number of mutational events.

Rare polymorphisms identified in natural populations

Identification and validation of rare polymorphisms

As a proxy for new mutations, we seek to identify a class of ultra-low-frequency poly-
morphisms. To this purpose, we use three publicly available datasets (Table 3) and
employ the method depicted in Figure 3A and briefly described here: i) We first
downloaded 621 genomes from the Drosophila Genome Nexus (DGN) [31], which rep-
resent predominantly monoallelic genomes from 35 populations across 3 continents
that underwent the same iterative mapping pipeline before variant calling. These
data represent an extremely high quality set of genotype calls, and thus we identi-
fied all genetic variants with which we will be working using these data (Step 1 in
Figure 3A, Methods). ii) We next leveraged the availability of pooled sequencing
data generated by our and collaborating labs, which collectively represent >17,000X
coverage of >4,000 genomes from across the east coast of the USA and Europe [32]
[plus additional unpublished data]. Pooled sequencing data is not ideal for rare vari-
ant identification, due to the difficulty of distinguishing a rare polymorphism from
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a sequencing error [33]. In order to circumvent this, we used the set of high quality
DGN singletons identified in Step 1, i.e. those at 1/621 frequency, and filtered them
down by removing those that appeared in the pooled sequence data. This allowed the
identification of DGN singletons at a frequency that is an order of magnitude lower
(frequency ∼1/5000 = 0.0002) (Step 2 in Figure 3A, Methods). iii) Finally, the third
public resource we leveraged is resequence data made available by the DGRP and
DPGP1 projects, which independently resequenced 29 strains (present in the DGN)
using 454 and illumina sequencing [unpublished but available online]. Given that any
pipeline which filters down to polymorphisms unique to a single genome is likely to
be enriching for sequencing error (i.e. a polymorphism segregating in multiple indi-
viduals or multiple datasets is less likely to be an error), we further validated our
rare DGN variants by requiring an identical genotype call to be made in the rese-
quence data (Step 3 in Figure 3A, Methods). This procedure does reduce the number
of polymorphisms down to only those which appeared in the 29 resequenced strains
(Table 4), however this dataset is of extremely high quality.

This procedure confirms that, indeed, the proportion of artifactual variants in-
creases as their frequency decreases (Figure 3B-D), and as a consequence it is ab-
solutely critical to validate rare variants using resequence data. We find that while
common DGN variants are confirmed in the resequence data at a rate close to ∼100%,
the rarest DGN variants, at frequency ∼1/5000, have a much lower confirmation rate
in the resequence data of <60% (Figure 3B, green points, Table 4). We find this to
be primarily driven by sites that are not genotyped at all during resequencing, due
to the fact that if we look at only DGN variants which were successfully genotyped
in the resequence data, we find the confirmation rate rises back to ∼100% (Figure
3B, purple points). This low confirmation rate for rare polymorphisms appears to
be largely driven by low complexity and indel-rich regions (Figure 3C-D). As can
be seen in Figure 3C, rarer DGN polymorphisms have a lower confirmation rate in
intronic and intergenic regions (Figure 3C, left and center panels), an effect which is
negligible for common variants (Figure 3C, right panel), and which disappears when
looking at only DGN variants with a genotype call in the resequence data (Figure 3C,
purple points). As can be seen in Figure 3D, despite masking each DGN genome for
indels before calling variants in that individual (Methods), rare DGN variants have a
low confirmation rate within sites at which indels are segregating in other individuals
(Figure 3D, left and center), an effect that is exacerbated as the indel frequency (i.e.
copy count) increases in the DGN population. This effect is again negligible for com-
mon variants (Figure 3D, right panel), and disappears when looking at only DGN
variants with a genotype call in the resequence data (Figure 3D, purple points).

These results beg the question of whether more severe filtering can approximate
the quality-control achieved with resequencing, i.e. does the confirmation rate recover
if we filter down to DGN genotype calls which have better scores for metrics like depth
and quality score? To ask this we measured confirmation rate after implementing
standard filters used by most researchers (site has QUAL > 20, QD > 2, 3>DP>100
(note mean depth of data is ∼ 25X)), as well as much more severe filters (site has
QD > 3, QUAL > 55, 9>DP>100, genotype data in ≥ 85% of samples, indels in
≤ 10 samples). As can be seen in Figure 3E, the standard filters used by many
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researchers give rare polymorphisms that still have a confirmation rate as low as
∼70%, and while severe filters do better at a ∼90% confirmation rate, this rate is
not ideal given that a tenth of the data may still be error-prone. These results make
sense if we look at the distribution of DP and QUAL scores within the DGN data
for sites that are confirmed, disconfirmed, and ungenotyped in the resequence data.
While the distributions of scores are significantly different, they also overlap (Figure
S3), and thus even severe filters are likely to let through variant calls that may
be errors. These results emphasize the importance of resequencing genomes when
working with polymorphisms that are segregating at low frequency. The final count
of rare polymorphisms that we will use in this study, all confirmed via resequencing,
can be seen in Table 4.

The reduced confirmation rate within introns and intergenic regions, as well as
near indels, emphasizes the difficulty of validating rare polymorphisms within low-
complexity regions. It has been observed before that artifactual variant calls in high-
coverage sequencing samples are largely driven by alignment errors [34]. This is
potentially worrisome when testing for mutational biases in the genome, because
some tests rely inherently on our ability to ‘count the reference’, meaning accurately
quantifying in the reference genome the relative proportions of sequence contexts in
which we might be interested. For example, it is known that regions with higher GC
content tend to have higher coverage [35], and thus potentially a higher discovery
rate of genetic variants. Thus, even when we are confident our genetic variants are
real, when working with rare polymorphisms we must be careful not to confound
intrinsic rates of detection with intrinsic rates of mutation. For this reason, when
using metrics which rely on quantifying relative proportions of sequence context in
the reference genome (e.g. GC equilibrium, six relative rates, neighbor-dependency),
we prefer to work with higher complexity zones such as coding regions (as in Figure
4), or alternatively re-frame the metric in such a way as to not be sensitive to this
factor (as in Figure 2E). We note that a similar approach is used in other studies of
context-dependent mutational patterns [17], and that while our results are robust to
this choice we consider it to be the more conservative approach.

Rare polymorphisms approach the neutral expectation within coding re-
gions

We next sought to confirm that, in contrast to common polymorphisms, the rarest
class of polymorphisms approach the neutral expectation for new mutations. To do
this we applied the same tests implemented for the MA experiments to polymorphisms
occurring in coding regions (Figure 4). Due to coding regions being the regions most
susceptible to natural selection, any biases here will allow a gauge of how closely our
rare polymorphisms approximate the neutral expectation.

Recalling that the neutral expectation for coding regions is that ∼75% of muta-
tions will cause a nonsynonymous change (an expectation reached by MA experiments
at 73.2% (CI 68.9-77.1%) nonsynonymous changes). While common polymorphisms
in coding regions only consist of 17.9% (CI 17.7-18.2%) nonsynonymous changes,
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we find that the rarest polymorphisms are significantly higher with 67.2% (CI 64.1-
70.3%) of rare variants in coding regions causing a nonsynonymous change (Figure
4A, G test of independence p-value <2.2e-16), although this is still shy of the ne-
tral expectation of 75%. We can also look at the fraction of mutations in coding
regions that cause nonsense changes, where the neutral expectation is ∼4%. In the
MA data the fraction of coding changes which cause a nonsense change is 1.94% (CI
0.97-3.70%) nonsense changes, however the event count is too low to detect whether
a substantial fraction of nonsense changes are ‘missing’. When looking at the poly-
morphism dataset, we find that rare polymorphisms in coding regions have 1.03%
nonsense changes (CI 0.51-1.97%, not significantly different from MA dataset). This
is significantly higher than within common polymorphisms, which consist of 0.06%
(CI 0.05-0.09%) nonsense changes (Figure 4B, G test of independence pvalue=1.9e-8).

Lastly, recalling that phastCons scores are a measure of conservation, we can com-
pare the distribution of phastCons scores in the D. melanogaster reference genome
to the distribution of scores in sites harboring rare polymorphisms. Compared to
common polymorphisms, the rarest frequency classes indeed have a distribution of
phastCons scores closer to the neutral expectation (Figure S4).

Missing deleterious events among both rare polymorphisms and conserved
sites.

The analyses described above and depicted in Figure 4 illustrate that rare polymor-
phisms indeed approach the neutral expectation, however there remains a small ‘miss-
ing’ fraction of deleterious events within coding regions, presumably because natural
selection is efficient enough to remove them even at rare frequencies. Noting that
the rarest frequency class consists of ∼67.2% nonsynonymous changes, this is ∼8/75
=11% of nonsynonymous mutations that are likely strongly deleterious, as they were
unable to reach a frequency of ∼1/5000=0.0002. Similarly, the rarest frequency class
consists of only ∼1% nonsense changes where we expect 4% from neutrality, and thus
approximately three-quarters of the nonsense mutations are missing. Interestingly,
frequency class is actually a better indicator than conservation status for whether the
spectrum of polymorphisms will approach neutrality: while rare polymorphisms con-
sist of ∼67.2% nonsynonymous changes, polymorphisms within the least conserved
sites (phastCons=0) only reach a nonsynonymous fraction of ∼50.1% (Figure 4A,
rightmost points) and thus, despite their nonconserved status, are missing about a
third of the nonsynonymous mutations expected from neutrality. This trend is sim-
ilar for nonsense, where the fraction of nonsense changes within coding regions is
closer to the neutral expectation for rare polymorphisms than for nonconserved sites
(∼1.0% vs 0.5% respectively) (Figure 4B, rightmost points, note ‘nonconserved’ is
phastCons=0).

One possible explanation could be that these missing nonsynonymous and non-
sense mutations could in fact be recessive lethals, and thus potentially underrepre-
sented in our set of resequenced rare polymorphisms. This could occur because the
resequenced lines were exclusively inbred strains, and thus recessive lethals either re-
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moved via purifying selection during the inbreeding process, or lying within regions
known to be enriched for recessive lethals in repulsion [?], and thus masked in the
final genotype calls by virtue of appearing in residually heterozygous regions. To
test the second possibility we went back to the DGN raw genotype calls and pulled
out singletons occurring in a heterozygous state that were also confirmed in the re-
sequencing data. We found that even in this dataset there are only ∼1% nonsense
changes and ∼60% nonsynonymous changes within coding regions (Figure S5), sug-
gesting that balanced recessive lethals are not a substantial fraction of the missing
deleterious mutations. This however does not preclude the possibility that the in-
breeding process permitted strongly deleterious recessive alleles to be purged out of
the genomes [25].

Lastly, we can gain insight into which biological features are most susceptible to
the deleterious effects of mutation by performing a GO analysis. Consider that sites
susceptible to deleterious events are expected to be over-represented in conserved sites
and under-represented among polymorphisms. Indeed, by performing these tests for
over- and under-represented terms, we find similar sets of GO terms across all analy-
ses (Table S7). The 5 GO terms which came out in all analyses included: chromatin
assembly or disassembly, cytosol, nucleosome, nucleosome assembly, and protein het-
erodimerization activity. Note that our analysis of over-represented terms within
conserved sites gave similar results to previous studies [26]. Overall, implementing
this GO analysis on rare polymorphisms permits additional resolution into which or-
ganismal processes are critically important.

No evidence for mutagenic effects of transcription.

There is evidence in some organisms for transcription-associated mutagenesis [36,37].
This is an effect which appears to be clade-specific, and which may be mediated by
the extended changes in DNA strand conformation that occurs during transcription,
and/or conflicts that occur between transcription machinery and the machinery of
other cellular processes. In some organisms, such as humans, transcription-coupled
repair can correct lesions incurred on the transcribed strand, although this repair pro-
cess can, in and of itself, cause other biases in the mutation spectrum. Trancription-
coupled repair is thought to be absent from D. melanogaster, and thus mutational
patterns we find at highly transcribed genes should reflect the mutation spectrum of
the transcription process itself rather than any associated repair activities.

We can test whether transcription is mutagenic in D. melanogaster using our data,
by measuring the density of polymorphisms within genes that are expressed in the
germline. We would suspect that for common polymorphisms there would be a neg-
ative correlation between their density within a gene and expression level, reflecting
natural selection purging deleterious mutations from important genes. If our rare
polymorphisms indeed capture the neutral expectation then we should find this neg-
ative correlation to disappear, and in the case of transcription being mutagenic we
should find this correlation to turn positive. To test this we downloaded the publicly
available expression data generated from the D. melanogaster germline by the mod-
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Encode project [38], and measured the density of polymorphisms within genes that
are binned by expression level (bin levels 1-8 for low-to-high expression, see Methods).
We find that common polymorphisms indeed display a negative correlation between
their density and expression level within genes, and this correlation disappears for
the rare frequency classes of polymorphisms (Figure 4C). This result confirms again
that our rare polymorphism data approach the neutral expectation, and suggests that
transcription may have no mutagenic effect in D. melanogaster.

Six relative mutation rates, and their dependency on neighbor context
among both rare polymorphisms and evolved four-fold synonymous sites

Relative mutation rates within rare polymorphisms have spectra sim-
ilar to MA data. We have calculated the relative rates of the six mutation types
across frequency classes (Figure 5A, coding regions only). We find that while com-
mon polymorphisms have a spectra significantly different from the mutations that
occurred during MA experiments (Fig. 5 χ2-test pvalue < 2.2e-16), the rarest poly-
morphisms have relative mutation rates which approach the MA spectra (Fig. 5A,
χ2-test comparison with MA gives p-values =0.0003 and =0.06 for rare polymorphisms
at frequencies ∼1/5000 and ∼1/621 respectively). Differences between the rare poly-
morphisms at frequency ∼1/5000 and MA data are driven by the C → T/G → A
mutation type (χ2-tests without this mutation class give corrected p-values>0.01).

Relative mutation rates vary with neighbor-context. Recall that, using
the MA dataset of 2, 141 mutations, we were able to detect significant heterogeneity
in the mutation spectrum across triplet contexts, however we were unable to detect
whether particular triplets were driving the variation (Figure 2E). Now, with our
dataset of ∼ 70, 000 rare polymorphisms, we can again ask whether the mutational
spectrum is dependent on neighbor context.

To this end, we again collapsed all possible triplets into their forward/reverse
sequence, and then quantified within each triplet the relative rates of the three mu-
tation types that can occur at the center base pair of the triplet (e.g. CAG/CTG
triplet can have A→T/T→A, A→C/T→G, or A→G/T→C mutations). We tested
for heterogeneity in the mutation spectrum using rare polymorphisms, and indeed
found a quite significant effect of triplet context (Figure 5B, G test, p-value < 2.2e-16
for both GC and AT base pairs). Additionally, we can detect triplet specific effects,
where we find 6/16 triplets centered at G:C basepairs to have significant effects, and
14/16 triplets centered at A:T basepairs to have significant effects (G tests, corrected
p values < 0.01, Table S8).

Neighbor-dependent relative mutation rates predict evolution at four-
fold synonymous sites. We wished to test whether our measured context-dependent
effects had any predictive power during the course of Drosophila evolution. In par-
ticular, we were curious whether evolution at four-fold synonymous sites could be
predicted, as these sites are known to have particular biases in codon-usage, however
the contribution of mutation to these patterns has yet to be fully elucidated [39,40].
This was a particularly intriguing test due to the fact that the neighbors on either
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side of four-fold sites are, by definition, nonsynonymous, (see schematic in Figure 5D,
left), and thus potentially provide a long-term conserved triplet context that could
affect evolutionary patterns at the center base pair.

To test this, we identified four-fold synonymous sites within the D. melanogaster
genome [6] that we could use to measure triplet-context dependent evolution, or in
other words nonconserved four-fold sites with conserved neighbors. As depicted in
Figure 5D, we required the neighbors of the four-fold synonymous site to have a
phastCons score of 1 as well as the same base identity across D. melanogaster, D.
simulans and the outgroup D. yakuba. Additionally, we required that the four-fold
synonymous site itself to be relatively nonconserved with a phastCons score ≤0.05,
and also required that the site had a substitution occur in the D. melanogaster
branch while simultaneously having no substitution occur on the D. simulans or D.
yakuba branches (i.e. a diallelic site where D.sim. and D.yak. have the same allele,
and D.mel has a different allele) (see Methods for more detail).

Using these data we then measured the context-dependent effects similarly to be-
fore, where within each triplet we quantified the relative rates of the three substitution
types that could occur at that triplet (Figure 5C). We found significant heterogeneity
across triplet contexts in the spectra of substitution types in D. melanogaster (G
test p-value < 2.2e-16 for both A:T and G:C base pairs), as well as significant effects
of 10/16 and 12/16 triplets centered at A:T and G:C basepairs respectively (G tests,
corrected p values < 0.01, Table S9).

We then wished to test whether the patterns of substitutions were significantly
more similar to the patterns of rare polymorphisms than expected by chance. To
achieve this, we conducted a permutation test as follows: 1) the total G-value was
found by summing G-values for each triplet, where the spectrum of mutation types
for rare polymorphisms was the expectation and the spectrum for substitutions was
the observed, and then 2) the triplet labels of the substitutions were permuted and
the total G value was re-calculated, and 3) this permuted G-value was obtained for
1000 different randomizations. The total G value of the original observed substitution
data fell below the zero-percentile of the distribution of G-values for the permuted
data. This confirms that mutation, as predicted by the spectrum of rare polymor-
phisms, does have a significant (p < 0.001) impact on the evolution of codon usage
at four-fold synonymous sites.

Equilibrium GC content impacted by neighbor context, but not recombi-
nation

GC equilibrium as a function of neighboring GC content. It has been
observed before that GC-rich regions tend to favor nucleotide changes towards G:C
base pairs among common polymorphisms [9], however it is unclear whether this
pattern is driven by selective or mutational forces. Thus, we next sought to test for
context dependent effects on the mutationally-driven GC content of the genome. We
chose to look at GC equilibrium at a site as a function of the GC content of the
neighboring base pairs on either side of that site. To this end, we collapse triplet
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contexts to both strand-indifferent (i.e. an A:T neighbor base pair is the same as a
T:A neighbor base pair) and site-indifferent (i.e. the center base can be A, T, C, or
G) contexts, such that there are only six contexts total (i.e. see legend of Figure 6A).
Note, the only characteristics thus distinguishing these six neighbor contexts is the GC
content of the neighboring bases, and how the neighbor base pairs are oriented towards
each other. Using these six simple contexts we can calculate the GC equilibrium at
the center site using the MA combined dataset and the rare polymorphism dataset.
We find a positive correlation between GC equilibrium and the GC content of the
neighboring base pairs (Figure 6A), as well as a positive correlation between GC
equilibrium and the GC content of the center base pair in the reference genome
(Figure S6). These correlations are not significant for the MA combined dataset (p
= 0.11 and p = 0.15 respectively), but does meet the significance threshold for the
rare polymorphism dataset (p = 0.02 and p = 0.01 respectively). This result suggests
two equally interesting possibilities - either mutational forces are contributing to GC-
biased nucleotide changes within GC-rich regions or, probably less likely, selection is
driving GC-bias in GC-rich regions even within the rarest polymorphism class.

Recombination rate does not affect GC equilibrium. In some organisms
it has been found that recombination promotes mutation [41]. It can be difficult
to test for whether recombination is mutagenic due to the confounding effect of se-
lection. Natural selection is more efficient in regions of higher recombination and
consequently can cause a positive correlation between diversity levels and rates of
recombination [42] - the same signature we’d expect to find if recombination is mu-
tagenic. However, we can employ the GC equilibrium metric to test for whether
recombination affects the spectrum of mutation types. If, for example as has been
found in humans [41], recombination inflates the rate of C → T transitions relative to
non-recombining regions, we would then expect GC equilibrium to decrease with in-
creasing recombination rate. To measure the relationship between recombination and
GC equilibrium, we downloaded publicly available genome-wide estimates of both
crossover and gene conversion rates [43], and estimated GC equilibrium as a func-
tion of these recombination rates using different frequency classes of polymorphisms
(Methods). We find no correlation of GC equilibrium with either crossover or gene
conversion rates (Figure 6B-C), thus suggesting that recombination does not alter the
spectrum of new mutations.

Multinucleotide mutations comprise ∼4-10% of rare polymorphisms, sig-
nificantly more is than expected by chance

We last sought to test for evidence that singletons cluster together within each strain
significantly more than would be expected if all events were independent, indicating
multinucleotide mutation events. The first measure we used was the relative propor-
tions of the different type of multinucleotide mutations, which can be seen in Figure
7A and Table 5. The nearest neighbor distance was calculated for every singleton
(i.e. distance to the closest neighboring singleton within the same strain), and the
expectation was calculated by permuting the strain IDs across all singletons and
re-calculating the nearest-neighbor distances for each sample’s singletons, and then
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taking the average of 500 permutations. As can be seen in Figure 7A and Table 5,
4% of singletons occur in clusters within 1-5bp, where the expectation is only 0.02%.
Note that this dramatic enrichment of multinucleotide mutations is robust to a num-
ber of strategies for calculating the expected distribution (Figure S7). Among the
singletons occurring within 1-5bp of each other, about a quarter of them are ‘duples’,
a pair of singletons directly next to each other, and the rest are singletons which occur
up to 5bp away from another singleton in the same strain (Table 5). Interestingly,
there are even significantly more singletons clustering in the 1-10kb range than is
expected by chance, suggesting regional increases in mutation rate may be occurring
as well.

This skew towards shorter distances can also be seen by considering that, if muta-
tions occurred independently, then we expect the the distances between consecutive
singletons (within a given individual) to be exponentially distributed. To test this,
the quantiles of the distances within the sample data were plotted against the quan-
tiles of an exponential distribution with the a rate equal to the average singleton rate
across all strains. As can be seen in Figure 7B, the observed sample data have a
distribution that is skewed towards smaller distances.

Discussion

Mutations provide the raw material of evolution, and thus fundamental to our ability
to study genome evolution is the need to have precise measurements of mutational
rates and patterns. To this end, we have united multiple strategies, both experimental
and computational, to generate the largest and highest quality dataset of de novo and
rare polymorphisms yet available in Drosophila.

Experimental approach (MA studies). With respect to the experimental
approach, we contribute a novel dataset of 325 de novo point mutations generated
during a heterozygous mutation accumulation (MA) experiment, and also contribute
the first meta-analysis to be done on all sequenced Drosophila MA lines. In our meta-
analysis, we find that the spectrum of mutation types is remarkably similar across
experiments, while the single base pair mutation rate is significantly different. At
first glance this seems a surprising result, however upon closer consideration these
observations may not be so incongruous.

The published studies which reported lower mutation rates tended to use homozy-
gous accumulation, older technology, and longer generation times. Anywhere from
one to all of these factors may be driving the difference in reported rates, but there
is no substantial evidence that these particular factors would drive a difference in
mutation spectra. For example, if the difference in mutation rates is driven by older
vs newer technologies (such that older studies had lower rates of mutation detection),
as long as the detection rates of different technologies do not vary by mutation type,
then the mutation spectrum should not vary either. Alternatively, if the difference
in base pair mutation rates is mediated by the heterozygous vs homozygous exper-
imental design (which, respectively, do and do not allow recessive lethals), there is
nonetheless little data supporting the idea that recessive mutations would have a dif-

16

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 18, 2016. ; https://doi.org/10.1101/095182doi: bioRxiv preprint 

https://doi.org/10.1101/095182


Discussion

ferent spectra of mutation types [44, 45]. There is also recent evidence from Sharp
et. al. (2016) [24] suggesting that the single base pair mutation rate and spectra are
robust to experimental design. In their work, the MA experiment was done in dif-
ferent genetic backgrounds (wildtype and deleterious), and they found a difference in
the fitness decline over time that was mediated by a difference in the indel mutation
rate, not the single base pair mutation rate or spectra. Interestingly, it has also been
found in yeast that that the single base pair mutation rate is consistent across MA
strains and experiments but the indel mutation rate is not [46]. Overall, we think
the significantly different total mutation rates across Drosophila MA strains do not
reflect a fundamentally different single base pair mutation process across strains, but
rather a difference in experimental design and technology.

These observations, in combination with our findings that the single base pair
mutation spectra in all experiments fit the neutral expectation, validates the MA
approaches for characterizing the spectra of new single base pair mutations, and
further validates combining the data across the five experiments and 158 lines into
one large dataset. We have made the entire meta-dataset of 3,191 point mutations
available for download, along with the curated set of 2,141 point mutations which
reside on the major autosomes, outside of repetitive regions, and within non-mutator
lines. Using the dataset of 2,141 truly new mutations we have made the highest
precision estimates yet available for the spectrum of new mutations in Drosophila.

Computational approach (assaying rare polymorphisms). We have united
disparate genomic resources in the D. melanogaster community to generate the first
massive set (∼70,000) set of high quality, fully-validated, rare polymorphisms, with
which we precisely measure mutational patterns across the genome.

The identification of rare polymorphisms in natural populations allows us to cir-
cumvent the laborious MA experiment and create a dataset of mutations which, due
to being rare, are relatively unaffected by the filter of selection. The challenge to this
strategy, however, is distinguishing rare polymorphisms from sequencing and align-
ment artifacts. To address this challenge, we leveraged the availability of resequence
data for 29 strains of Drosophila melangaster in order to fully validate our entire
polymorphism dataset. We show that the rate of validation of segregating polymor-
phisms actually decreases with their observed frequency, a result which emphasizes
the importance of using resequence data to validate even high coverage genomes.
Furthermore, by investigating which genotype calls were not confirmed during rese-
quencing, we find that artifactual calls are more likely to occur in low complexity
regions and near sites enriched for segregating indels.

Our finding that rare variants are conflated with artifactual genotype calls at a
high rate, even when called in high-coverage genomes and with severe filtering on
quality scores, should be of broad interest to the genomics community because the
majority of genetic variants segregating in natural populations are rare. For example,
many widely-used statistical tests that rely on the site frequency spectrum [47–50]
are sensitive to erroneous rare variant calls [19,51–54]. Additionally, there is an ever-
expanding catalogue of disease alleles that are found to be private to individuals or
families [55–57], and thus erroneous calls can potentially affect patient diagnosis and
treatment. Our work reaffirms that artifactual variant calls disproportionately affect
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rare variants, and that it would be best to incorporate resequencing into any study
which analyzes them.

In order to detect whether our dataset provides a valid method for the study of
mutational patterns, we looked at whether rare polymorphisms approach the neutral
expectation within coding regions. We expect random mutations in coding regions
to cause nonsynonymous changes ∼75% of the time. While common genetic vari-
ants consist of ∼20-25% nonsynonymous changes (reflecting the filter of selection),
and MA experiments consist of ∼75% nonsynonymous changes (reflecting the neutral
expectation), we find that our dataset of rare polymorphisms reaches ∼68% nonsyn-
onymous changes. This dataset is thus significantly closer to the neutral expectation
as compared to genetic variants segregating at higher frequency, confirming that rare
polymorphisms provide a reasonable approach for studying mutational patterns.

With our massive set of rare polymorphisms, we detect significant fine-scale het-
erogeneity in the mutation spectrum across different sequence contexts (‘triplets’).
Context-dependency of mutation has been detected in other organisms, including
humans [17, 24]. Our novel contribution here is, in addition to the highest preci-
sion estimate of context-dependency yet available in Drosophila, a demonstration
that our detected mutational patterns are relevant to the course of evolution within
coding regions. The context-dependent rates of mutations, as measured from rare
polymorphisms, predict the spectra of substitutions which occurred at four-fold syn-
onymous sites in the D. melanogaster phylogenetic branch. This shows that, in
addition to forces like selection for translational efficiency [39,58] or biased gene con-
version [59, 60], the mutation process itself is contributing to biased codon usage
patterns at synonymous sites.

Genome-wide GC content in Drosophila is ∼43%. Using both MA data and rare
polymorphisms, we establish that mutational processes by themselves are expected to
drive the genome GC content to ∼25%. The pattern of mutational GC equilibrium
being significantly lower than actual genome GC content is common across the tree
of life [10], and presents a question of which forces drive the genome GC content to
such high values in general, and in Drosophila specifically. Although in many species
weak selection and/or biased gene conversion were implicated in the evolution of high
GC content, this explanation is unlikely to be valid in Drosophila. This is because
the common polymorphisms do not display a substantial bias towards higher GC
values (∼28%), and neither does this bias increase with recombination rates. Both of
these patterns would be expected under the models of weak selection or biased gene
conversion. It is likely instead that the high GC content of the Drosophila genome
reflects its high functional density and the elevated GC content of those functional
sequences. Consistent with that model, the parts of the genome that are expected to
have lower functional density do have substantially lower GC content. For example,
the average GC content of short introns is ∼32% [61], indicating that the even the
best neutral-standard available for Drosophila may still have some slight constraint.

We observe another interesting relationship between genome GC content and GC
equilibrium - a correlation between the mutational GC equilibrium and the local
genome GC content, such that mutational processes drive GC content to lower levels
in already GC-poor regions. It has been observed before that common polymorphisms
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in intergenic regions display this same pattern of a lower GC equilibrium in GC-poor
regions [9, 61]. It was thought that such a pattern is largely driven by selective
forces. However, our dataset of de novo MA mutations and also rare polymorphisms
is large enough to show that the pattern persists even among genetic variants that
have little-to-no filtering from natural selection (or biased gene conversion). Thus,
while mutational processes drive genome GC content down and selective forces drive
genome GC content up, we find that mutation is most strongly biased to lowering
GC content in already GC-poor regions.

Lastly, we were able to show that multinucleotide mutations occur significantly
more than is expected by chance, and we have precisely quantified the relative rates
of each type of multinucleotide event. In Drosophila MA studies which used a set of
∼ 1000 de novo mutations [22,24], it has been found that about ∼3-4% of single base
pair events occur in clusters of size ≤50bp, coinciding closely with our finding that
∼4% of events occur in clusters of ≤5bp and another ∼2% in 6-50bp. Similar rates of
small multinucleotide clusters have been found in other organisms [62–64]. With our
larger dataset we can take the analysis a step further and find that as many as ∼10%
of single base pair mutations occur in clusters of size ≤1kb (where the expectation is
only ∼4%). This result is consistent with some recent work done in humans [14, 62]
which also suggests that such regional increases in mutation rate may be a common
occurrence in the genome.

In combination, the MA approach and the rare polymorphism approach have pro-
vided complementary methods for studying the spectrum of new mutations, enabling
precise estimate of both total mutation rates and subtle mutational biases. We hope,
with an ever-growing catalog of deep sequence data from natural populations being
made available to the scientific community, that researchers will take advantage of
the opportunity to apply the methods described here to studying mutational patterns
in other organisms.

Materials and Methods

Mutation accumulation: Two strains are used for the experiment: DGRP strain
RAL-765 (wildtype genotype +

+
; +

+
; +

+
) which has red eyes, and a white-eyed laboratory

strain +
Y,hshid

; bw[1]
bw[1]

; st[1]
st[1]

generated by Mark Siegal at New York University, hereafter

referred to as hshid (for the ‘heat shock head involution defective’ genotype). The
hshid strain allows the easy acquisition of virgins, because all males die upon one-hour
heath shock during the larval stage. Using these two strains, the MA chromosomes
(i.e. DGRP) are always passed through red-eyed males that are heterozygous with the
hshid chromosomes, allowing the MA chromosomes to avoid recombination (because
males lack it) and to never be subjected to heat-shock (because only hshid chromo-
somes are heat-shocked). The crosses were as follows: A single male fruit fly from
DGRP strain RAL-765 was crossed with 6 virgin hshid females, after which a single
red-eyed male progeny (i.e. heterozgous for both bw and st and therefore carrying the
founder male’s 2nd and 3rd chromosomes) was taken and crossed to 6 hshid virgin
females. From this cross, 50 red-eyed male progeny were then isolated within vials,
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thus founding 50 MA strains with identical chromosome 2 and 3. Thereafter every
generation a single red-eyed male progeny from each strain was crossed to 3 hshid
virgin females, and as backup this was replicated using male siblings in 3 additional
vials each generation.

MA sequencing: As is common in MA experiments, some lines became sick and
died off as generations passed, such that we were able to sequence 17 lines out of the
original 50. From these 17 MA strains, five to fifteen flies were taken (thus heterozy-
gous for the MA chromosome) in generations 36, 37, 49, and 53, and DNA extracted
according to a standard protocol [65]. Paired-end barcoded DNA sequencing libraries
were prepared using illumina Nextera Sample Preparation Kit (FC-121-1031) and In-
dex Kit (FC-121-1012) and KAPA Biosystems Library Amplification Kit (KK2611),
modified for small volumes. In brief: Genomic DNA was diluted to 2.5ng/uL using
quantification with Qubit HS Assay Kit (Q32851), and then 1ul of DNA was ‘tag-
mented’ according to the Nextera protocol in a 2.5ul total volume (55◦C, 5 minutes),
then each library was amplified using the KAPA amplification kit with Nextera in-
dex primers (N7XX and N5XX) in a 7.5ul total volume (98◦C for 165sec, 8 cycles
of 98◦/62◦/72◦ for 15sec/30sec/90sec), and then reconditioned to add Nextera PCR
primers (required for illumina sequencing) in a 17ul total volume (95◦C for 5min, 4
cycles of 98◦/62◦/72◦ for 20sec/20sec/30sec). Libraries were sequenced on a HiSeq
2000 to a depth of 20-25X (see SM for sample coverage plot).

MA variant calling: In order to call de novo mutations in these strains het-
erozygous for the MA and hshid chromosomes, we sequenced the ancestral DGRP
and hshid strains in addition to each MA line, and then accepted genetic variants
which were strictly unique to each MA strain (thus hshid variants segregating across
the heterozygous MA strains were filtered out). The following pipeline was used to
call genetic variants in the MA sequencing data, where default settings for each tool
were used unless otherwise specified: Reads were trimmed with TrimGalore! v0.3.7
[http://www.bioinformatics.babraham.ac.uk/projects/trim galore] (trim galore -a

CTGTCTCTTATACACATCT -a2 CTGTCTCTTATACACATCT --quality 20 --length 30 --clip R1

15 --clip R2 15 --three prime clip R1 3 --three prime clip R2 3 --paired),
then mapped to release 5.57 of the Drosophila reference genome with BWA-MEM
v0.7.5a [66]. Next PCR duplicates were removed with PicardTools v1.105 [http://broadinstitute.github.io/picard.]
(MarkDuplicates REMOVE DUPLICATES=true), and then reads locally rearranged around
indels with GATK v3.2.2 [67] (RealignerTargetCreator and IndelRealigner tools).
Variants were called with GATK (HaplotypeCaller --heterozygosity 0.01) fol-
lowed by the GATK recommended conservative filters (VariantFiltration --filterExpression

"QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 || ReadPosRankSum

< -8.0"), and new mutations were considered the variants present in one MA strain
and absent from all the rest. Variants were also called with a less conservative
pipeline using SAMtools v0.1.19 [68] to generate a mpileup file (mpileup) followed by
Varscan v2.3.9 [69] to call variants (mpileup2cns --min-coverage 4 --min-reads2

2 --min-var-freq 0.01 --min-freq-for-hom 0.99 --strand-filter 0 --p-value

1), and again new mutations were considered the variants present in one MA strain
and absent from all the rest. Repetitive regions were then filtered out, including
from RepeatMasker [http://www.repeatmasker.org], from a run of TRF [70] on the
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Drosophila reference, and from a list of annotated transposable elements [71]. The
final list of new mutations was considered the intersection of the two variant call sets,
in order to ensure that a new mutation was both a high quality variant call (i.e. the
conservative GATK set) and also never observed in any other strain (i.e. noncon-
servative Varscan set). Thirty variants were amplified with PCR and then Sanger
sequenced, of which twenty-nine were confirmed. A summary of the mutation counts
and generations of mutation accumulation for each strain can be found in SM , along
with a summary of the mutations randomly chosen for validation via PCR/Sanger
sequencing and their corresponding primers.

MA data from references [21–24]: Lists of mutations from each experiment
were downloaded from each publication and then processed with in-house perl and R
scripts to generate a single VCF of all mutations, which is available as a supplemen-
tary file. For the ‘MA combined’ datasets, we filtered out repetitive regions (including
from RepeatMasker [http://www.repeatmasker.org], from a run of TRF [70] on the
Drosophila reference, and from a list of annotated transposable elements [71]), re-
moved mutator lines (line 19 from Huang et. al., and lines 33-27, 33-45, 33-5, and
33-55 from Schrider et. al.), and subsetted down to the major autosomes 2 and 3
only. For comparisons of the single base pair mutation rates with a poisson exact
test we require a time base in order to scale the different experiment counts, and
while the number of generations and number of lines were provided within the publi-
cations, the information on genome size was incomplete. Thus, given that mutation
rate µ = m/(n× t× l) (where m=mutation count, n=number of strains, t= number
of generations, and l = number of base pairs), we back-calculated l, which can be
found in the last column of SM .

Analyses in R: VCFs for all MA experiments were generated with perl scripts
and then loaded into R with Bioconductor. The majority of downstream analyses were
performed with Bioconductor tools, where the genome object BSgenome.Dmelanogaster.UCSC.dm3
[?] and the transcript annotation object TxDb.Dmelanogaster.UCSC.dm3.ensGene [?]
were used as references. The functional impact of variants was annotated using the
predictCoding and locateVariants tools.

DGN rare variant calling: Sequences of the 623 genomes provided by the
Drosophila Genome Nexus [31] were downloaded and converted into VCFs, repeat
regions (as described above) and were masked, and singletons, doubletons, etc were
identified. Additionally, the DGN indel VCFs were downloaded and sites with segre-
gating indels were masked in all strains for the length of the segregating indel plus
five base pairs on either side. Variants were confirmed in a subset of strains that had
resequence data available from the DPGP1 project’s Solexa (now illumina) sequenc-
ing [www.dpgp.org/dpgp_solexa_r1.0.tar], and from the DGRP [72] project’s 454
sequencing data [ftp://ftp.hgsc.bcm.edu/DGRP/freeze1_July_2010/snp_calls/
454/]. Singletons confirmed in this way were further filtered down into a set of ex-
tremely rare variants by removing any which appeared in NESCENT [?] data, a
project which sequenced X wild-caught flies from X populations in North America.
These extremely rare variants (‘singletons-noPool’) were removed from the singleton
set, in order to create non-overlapping variant sets.

Variant annotation and analysis: VCFs for MA and DGN data were loaded
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into R with Bioconductor. The majority of downstream analyses were performed with
Bioconductor tools, where the genome object BSgenome.Dmelanogaster.UCSC.dm3

[?] and the transcript annotation object TxDb.Dmelanogaster.UCSC.dm3.ensGene [?]
were used as references. The functional impact of variants was annotated using the
predictCoding and locateVariants tools.
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Figure 1 - Generation of 17 new MA lines via heterozygous 
mutation accumulation 

A B

C D

Figure 1: A summary of the experimental design and results for the single base pair mutation rate in this study. (A)
Diagram depicting the general cross schemes used in heterozygous (left) and homozygous (right) mutation accumu-
lation, where this study used the heterozygous design. (B) QQ plot of the quantiles of the mutation counts on each
chromosome arm of each strain, plotted against the quantiles of a Poisson distribution with mean taken from the
mean counts in the MA experiment, where color indicates the generation sequenced (green = generation 36, purple =
generation 53). (C) Mutation rates estimated for each chromosomal arm (Pearson’s Chi-squared test of independence,
X-squared = 2.55, df = 3, p-value = 0.47). (D) Mutation rates estimated for each strain, where color indicates the
generation sequenced (Pearson’s Chi-squared test of independence, X-squared = 7.99, df = 14, p-value = 0.89).
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Table 1 - Summary of MA experiments
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Table 1: A summary of the five mutation accumulation experiments analyzed here, which in addition to ours include
references [21–24]. The combined data we work with in this study consists of the ’filtered’ set of mutations, a subset
of the original data available from refs. [21–24], in which we use major autosomes, non-repetitive regions, and non-
mutator lines only (mutators include line 19 from Huang et. al., and lines from ancestor 33 in Schrider et. al.).
The mutation rates and 95% confidence intervals are the rates and intervals provided by the published studies. Note
that Huang et. al. reported the median mutation rate only, thus we approximated the mutator line’s rate from a
figure in the paper (Fig7) and we re-constructed a reasonable CI given the data. Our mutation rate (4.9e-09) is
significantly higher than the rates reported by both Keightley et. al. (Poisson exact p=2.03e-04) and Schrider et. al.
(Poisson exact p=3.4e-06), significantly lower than that reported by Sharp et. al. (Poisson exact p=1.5e-03), and not
significantly different from that reported by Huang et. al. (Poisson exact p=0.35).
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Figure 2: A summary of comparisons conducted between the five different MA experiments, including (A) the six
relative mutation rates (i.e. sum to 1) (B) the fraction of coding mutations which cause nonsynonymous changes,
where the dotted line indicates the neutral expectation of 75%, (C) the fraction of coding mutations which cause
nonsense changes, where the dotted line indicates the neutral expectation of 4%, and (D) the empirical cumulative
distribution for phastCons scores within each MA experiment.
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Table 2 - GC eq and TsTv

Note this is with ’noMask’ (only repeats masked)

Experiment Ts:Tv (95% CI)
MA combined 2.01 (1.88-2.16)
Assaf 2016 1.82 (1.51-2.17)
Sharp 2016 2.31 (2.07-2.61)
Huang 2016 1.86 (1.64-2.08)
Schrider 2013 1.86 (1.45-2.43)
Keightley 2009 2.00 (1.50-2.67)

Other lines:
Huang (mutator) 4.40 (3.22-6.26)
Schrider (mutator) 4.80 (4.04-5.77)

Experiment GC eq 95% CI regions
MA combined 0.23 (0.21-0.25) noMask
Assaf 2016 0.25 (0.20-0.31) noMask
Sharp 2016 0.21 (0.18-0.24) noMask
Huang 2016 0.20 (0.17-0.23) noMask
Schrider 2013 0.30 (0.22-0.38) noMask
Keightley 2009 0.32 (0.24-0.40) noMask

Other lines:
Huang (mutator) 0.28 (0.21-0.36) noMask
Schrider (mutator) 0.14 (0.11-0.18) noMask

Note this is with the ’noMask’ (ie just repeats masked, nothing else):
Note this is with the ’noMask’ (ie just repeats masked, nothing else):

1

Note this is with ’noMask’ (only repeats masked)

Experiment Ts:Tv (95% CI)
MA combined 2.01 (1.88-2.16)
Assaf 2016 1.82 (1.51-2.17)
Sharp 2016 2.31 (2.07-2.61)
Huang 2016 1.86 (1.64-2.08)
Schrider 2013 1.86 (1.45-2.43)
Keightley 2009 2.00 (1.50-2.67)

Other lines:
Huang (mutator) 4.40 (3.22-6.26)
Schrider (mutator) 4.80 (4.04-5.77)

Experiment GC eq 95% CI regions
MA combined 0.23 (0.21-0.25) noMask
Assaf 2016 0.25 (0.20-0.31) noMask
Sharp 2016 0.21 (0.18-0.24) noMask
Huang 2016 0.20 (0.17-0.23) noMask
Schrider 2013 0.30 (0.22-0.38) noMask
Keightley 2009 0.32 (0.24-0.40) noMask

Other lines:
Huang (mutator) 0.28 (0.21-0.36) noMask
Schrider (mutator) 0.14 (0.11-0.18) noMask

Note this is with the ’noMask’ (ie just repeats masked, nothing else):
Note this is with the ’noMask’ (ie just repeats masked, nothing else):

1

Table 2: A summary of the transition:transversion ratios across experiments, which are not significantly different
(G test of independence, p=0.21), and which for the combined set is ∼2:1. The 95% confidence intervals were
calculated via 1000 bootstraps of raw counts. Ts:Tv ratio is calculated as: (count of transition mutations) / ((count
of transversion mutations)/2).
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'DWD�VRXUFH &LWDWLRQ 'HVFULSWLRQ

'*1�JHQRPHV /DFN�HW��DO������

+LJK�FRYHUDJH�LQGLYLGXDO�JHQRPHV��$OO�JHQRPHV�ZHQW�WKURXJK�WKH�VDPH�LWHUDWLYH�PDSSLQJ�SLSHOLQH��ZKHUH�UDZ�
VHTXHQFH�UHDGV�ZHUH�VRXUFHG�IURP�WKH�VWXG\
V�DXWKRUV�DQG�VHYHUDO�DGGLWLRQDO�UHVRXUFHV�LQFOXGLQJ�'*53��'3*3���
'3*3���DQG�'635��7KH�VHTXHQFHG�IOLHV�ZHUH�GHULYHG�IURP�LVRIHPDOH�LQEUHG�OLQHV�ZKLFK�ZHUH�VHTXHQFHG�HLWKHU�DV�
LV�RU�DIWHU�JHQHUDWLQJ�KDSORLG�HPEU\RV�

3RROHG�ZLOG�
SRSXODWLRQV %HUJODQG�HW��DO������ +LJK�FRYHUDJH�VHTXHQFLQJ�RI�SRROHG�ZLOG�FDXJKW�IOLHV��'DWD�DFTXLUHG�YLD�WKH�1(6&(17�SURMHFW��XQSXEOLVKHG���

ZKLFK�FRQVLVWV�RI�!�����;�FRYHUDJH�RI�!�����JHQRPHV�IURP�a���SRSXODWLRQV�VHTXHQFHG�LQ�SRROV�

5HVHTXHQFH�
GDWD XQSXEOLVKHG

+LJK�FRYHUDJH�UHVHTXHQFLQJ�RI�LQGLYLGXDO�JHQRPHV���ZKLFK�DUH�LQFOXGHG�LQ�WKH�'*1���&RQVLVWV�RI����RI�WKH�LQEUHG�
VWUDLQV�IURP�WKH�'*53�SURMHFW��VHTXHQFHG�LQGHSHQGHQWO\�E\�WKH�'3*3��SURMHFW��VHSDUDWH�'1$�H[WUDFWLRQ�DQG�
OLEUDU\�SUHS��VHTXHQFHG�RQ�WKH�LOOXPLQD�SODWIRUP��DQG�RU�VHTXHQFHG�E\�WKH�'*53�SURMHFW��VDPH�'1$�H[WUDFWLRQ��
VHSDUDWH�OLEUDU\�SUHS��VHTXHQFHG�RQ�WKH�����SODWIRUP���

Table 3: A summary of the deep sequence data from natural populations of D. melanogaster used in this study for
the identification of low frequency polymorphisms.
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Figure 3 - The pipeline for identifying extremely rare polymorphisms 
in natural populations depends fundamentally on resequencing

noFilter StandardFilters SevereFilters2

0.4

0.6

0.8

1.0

1NP 1 1NP 1 1NP 1
Variant class

Co
nf

irm
at

io
n 

ra
te

fracID fracConfOfReseq fracConfOfReseqGeno

Filters are not sufficient to remove low quality rare variants

1NP 1 common

0.4

0.6

0.8

1.0

co
din

g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR

Functional location of variants

Co
nf

irm
at

io
n 

ra
te

fracID fracConfOfReseq fracConfOfReseqGeno

Rare variants have a higher validation rate in coding regions

1NP 1 common

0.4

0.6

0.8

1.0

0 2 5 8 10 0 2 5 8 10 0 2 5 8 10
Indel copy count at site

Co
nf

irm
at

io
n 

ra
te

fracID fracConfOfReseq fracConfOfReseqGeno

Rare variants are confirmed at a lower rate when occuring at sites which have segregating indels

1NP 1 common

0.4

0.6

0.8

1.0

0 2 5 8 10 0 2 5 8 10 0 2 5 8 10
Indel copy count at site

Co
nf

irm
at

io
n 

ra
te

fracID fracConfOfReseq fracConfOfReseqGeno

Rare variants are confirmed at a lower rate when occuring at sites which have segregating indels

A B

C

DE

Fraction DGN variants 
confirmed at sites with 
re-sequence data

1NP 1 common

0.4

0.6

0.8

1.0

0 2 5 8 10 0 2 5 8 10 0 2 5 8 10
Indel copy count at site

Co
nf

irm
at

io
n 

ra
te

fracID fracConfOfReseq fracConfOfReseqGeno

Rare variants are confirmed at a lower rate when occuring at sites which have segregating indels

Fraction DGN variants 
confirmed at sites with genotype 
calls in re-sequence data

1NP 1 common

0.25

0.50

0.75

1.00

co
din

g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR

Functional location of variants

Va
lid

at
io

n 
ra

te
(9

5%
 b

in
om

ica
l C

I)

fracID

fracConfOfReseq

fracConfOfReseqGeno

Rare variants have a higher validation rate in coding regions

No filter 1NP 1 common

0.25

0.50

0.75

1.00

co
din

g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR

Functional location of variants

Va
lid

at
io

n 
ra

te
(9

5%
 b

in
om

ica
l C

I)

fracID

fracConfOfReseq

fracConfOfReseqGeno

Rare variants have a higher validation rate in coding regions

1NP 1 common

0.25

0.50

0.75

1.00

co
din

g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR

Functional location of variants

Va
lid

at
io

n 
ra

te
(9

5%
 b

in
om

ica
l C

I)

fracID

fracConfOfReseq

fracConfOfReseqGeno

Rare variants have a higher validation rate in coding regions

1NP 1 common

0.25

0.50

0.75

1.00

co
din

g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR

Functional location of variants

Va
lid

at
io

n 
ra

te
(9

5%
 b

in
om

ica
l C

I)

fracID

fracConfOfReseq

fracConfOfReseqGeno

Rare variants have a higher validation rate in coding regions

1NP 1 common

0.25

0.50

0.75

1.00

co
din

g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR

Functional location of variants

Va
lid

at
io

n 
ra

te
(9

5%
 b

in
om

ica
l C

I)

fracID

fracConfOfReseq

fracConfOfReseqGeno

Rare variants have a higher validation rate in coding regions

1NP 1 common

0.25

0.50

0.75

1.00

co
din

g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR

Functional location of variants

Va
lid

at
io

n 
ra

te
(9

5%
 b

in
om

ica
l C

I)

fracID

fracConfOfReseq

fracConfOfReseqGeno

Rare variants have a higher validation rate in coding regions

1NP 1 common

0.25

0.50

0.75

1.00

co
din

g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR

Functional location of variants

Va
lid

at
io

n 
ra

te
(9

5%
 b

in
om

ica
l C

I)

fracID

fracConfOfReseq

fracConfOfReseqGeno

Rare variants have a higher validation rate in coding regions

1NP 1 common

0.25

0.50

0.75

1.00

co
din

g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR

Functional location of variants

Va
lid

at
io

n 
ra

te
(9

5%
 b

in
om

ica
l C

I)
fracID

fracConfOfReseq

fracConfOfReseqGeno

Rare variants have a higher validation rate in coding regions

1NP 1 common

0.25

0.50

0.75

1.00

co
din

g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR
co

din
g

five
UTR

int
erg

en
ic

int
ron

pro
mote

r

thr
ee

UTR

Functional location of variants

Va
lid

at
io

n 
ra

te
(9

5%
 b

in
om

ica
l C

I)

fracID

fracConfOfReseq

fracConfOfReseqGeno

Rare variants have a higher validation rate in coding regions

Standard filter Severe filter
~1/5000 ~1/621

~1/5000 ~1/621 ~1/5000 ~1/621 ~1/5000 ~1/621

~1
/50

00
~1

/62
1

~2
/62

1
~3

/62
1

~4
/62

1
~5

/62
1

~6
/62

1
~7

/62
1

~8
/62

1
~9

/62
1

~1
0/6

21
co

mmon

~1/621~1/5000

Frequency class

Frequency class

DGRPDPGP!
2 & 3

DSPR &!
others…

singleton !
absent!
from pool!
(~1/5000)

Resequenced 
genomes (DGRP)

*

*
*
*

confirmed !
tripleton ( ~3/621(c) )

confirmed !
singleton absent!
from pool ( ~1/5000(c) )

confirmed !
singleton ( ~1/621(c) )

DGRPDPGP!
2 & 3

DSPR &!
others…

St
ep

 1
St

ep
 3

St
ep

 2

Step 1: Within DGN, identify variants 
and assign frequency class

Step 2: Find the rarest class by 
identifying singletons that are absent 
from pooled sequencing data

Step 3: Filter down to only those 
variants which were confirmed with 
resequencing

DGN individual genomes Pooled wild-caught populations

singleton (~1/621)

tripleton (~3/621)

singleton (~1/621)

doubleton (~2/621)

quadrupleton (~4/621)

doubleton (~2/621)

doubleton (~2/621)

singleton (1/621)

Figure 3: Description of the data pipeline and quality used in the identification of low frequency polymorphisms. (A)
Diagram of Steps 1 thru 3 in identifying a high quality set of rare polymorphisms, (B)-(E) depict confirmation rate
where green indicates the fraction of genotype calls within the DGN data (identified in Step 1) which were confirmed
in the resequence data (Step 3), and purple indicates the fraction of genotype calls within the DGN data which were
not disconfirmed (i.e. using polymorphisms for which a genotype call exists in both the DGN and resequence data
to measure the confirmation rate). The confirmation rate is depicted as a function of (B) frequency, (C) of genomic
location, (D) of segregating indel copy number, and (E) of the filters applied to the dataset. For (E) the filters include
no filters, standard filters (QD > 2, QUAL > 20, 3>DP>100), and severe filters (QD > 3, QUAL > 55, 9>DP>100,
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Table 3 - Summary of polymorphism counts and 
confirmation rate, by frequency class

Frequency Count Count Count Confirmation
Resequenced Resequenced rate

and confirmed
1/5000 1,112,232 15,552 8,972 0.58
1/621 3,210,239 78,533 65,644 0.84
2/621 1,386,520 65,779 57,073 0.87
3/621 727,104 53,070 47,306 0.89
4/621 464,560 45,036 40,586 0.90
5/621 326,805 38,351 34,869 0.91
common 471,089 453,179 446,050 0.98

Table 4: The count of polymorphisms for each frequency class when looking across the entire dataset (second column),
the resequenced dataset (third column), and the dataset of variants resequenced and confirmed (fourth column). It
can be seen that the confirmation rate decreases with decreasing polymorphism frequency.
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Figure 4: Rare polymorphisms approach the neutral expectation in terms of (A) the fraction of events causing
nonsynoymous changes, (B) the fraction of events causing nonsense changes, and in (C) where, unlike common
polymorphisms, rare polymorphisms occur at a rate insensitive to levels of germline expression.
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A D Choosing four-fold synonymous sites

codon codoncodon codon

4-Fold Synonymous 
Nonconserved 

(phastcons<0.05) 
Yes substitution

Nonsynonymous 
Conserved 

(phastcons=1) 
No substitutions

Nonsynonymous 
Conserved 

(phastcons=1) 
No substitutions G  T  AG  T  A

G  C  A

G A G G C A T C T A

Figure 5: Six relative rates. (A) Six relative rates within MA, rare polymorphisms, and common polymorphisms.
(B) Six relative rates within singletons calculated across different triplet contexts, and (C) Six relative rates within
substitutions at four-fold synonymous sites, calculated across different triplet contexts. Note the six relative rates
within panel (C) are significantly closer to the six relative rates within panel (B) than is expected by chance (p<0.001).
(D) Schematic of how four-fold synonymous sites were chosen: the center base of the triplet acquired a substitution
on the D.melanogaster branch and is conserved in the rest of the Drosophila tree, and the outer bases of the triplet is
conserved across the entire Drosophila tree. Also note, the six relative rates within (C) are significantly closer to the
six relative rates within (B) than is expected by chance (p<0.001), indicating that mutational patterns within rare
polymorphisms have predictive power for evolution at synonymous sites.
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Figure 6: GC equilibrium. (A)GC equilibrium as a function of the GC content of neighboring bases, within MA,
singletons, and common polymorphisms (after repetitive regions masked in reference genome). (B) GC equilibrium
within singletons and as a function of the recombination rate, and (B) GC equilibrium within common polymorphisms
and as a function of the recombination rate.
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BA

Figure 7: Multinucleotide mutations occur more often than is expected by chance. (A) Histogram of nearest neighbor
distance, where every singleton was assigned the distance which was the shorter of the two distances on either side
(within a given individual). The expectation is taken from the average of 500 permutations of sample IDs. (B)
Quantile-quantile plot of distances between consecutive singletons (on both sides of singletons, within an individual).
The expectation is taken from an exponential distribution with a rate equal to the rate within the observed data.
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Singleton’s nearest Observed count Expected count
neighbor distance (percent of singletons) (percent of singletons)
1-5 1448 (4.00%) 6.92 (0.02%)

(duple) 457 (1.27%) 1.00 (⇠0.0%)
(triple) 22 (0.06%) 0.00 (0.0%)
(quadruple) 2 (⇠0.0%) 0.00 (0.0%)

5-10 241 (0.67%) 7.12 (0.02%)
10-20 255 (0.70%) 19.98 (0.06%)
20-50 346 (0.96%) 62.62 (0.18%)
50-100 458 (1.27%) 104.37 (0.31%)
100-300 1382 (3.82%) 395.48 (1.16%)
300-1000 3591 (9.92%) 1322.72 (3.87%)
1000-10000 15891 (43.9%) 11874.42 (34.7%)

Table 5 - multinucleotide mutations

Table 5: Count of multinucleotide events within singletons (freq∼1/621). The expectation was found by permuting
strain ID and recalculating the number of events, and taking the average of 500 repetitions of this procedure.
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Supplemental Materials, Figures, and Tables

Figure S1: Representative example of the coverage achieved across the genome for a given MA line in this study, here
from MA line 33 with a median coverage of 25X.

34

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 18, 2016. ; https://doi.org/10.1101/095182doi: bioRxiv preprint 

https://doi.org/10.1101/095182


Supplemental Materials, Figures, and Tables

Line Generation Total # chr2L chr2R chr3L chr3R
sequenced mutations count count count count

MA 6 36 17 5 0 5 7
MA 9 36 15 3 3 4 5

MA 11 36 11 4 2 1 4
MA 14 49 32 9 5 7 11
MA 16 53 27 7 5 9 6
MA 17 37 14 3 4 4 3
MA 20 53 21 5 4 5 7
MA 21 53 27 3 9 7 8
MA 22 36 15 7 0 2 6
MA 24 36 19 13 1 3 2
MA 27 36 14 3 2 3 6
MA 28 36 10 1 6 3 0
MA 29 53 21 8 3 6 4
MA 30 53 21 2 7 2 10
MA 33 53 28 7 1 12 8
MA 35 53 15 1 4 4 6
MA 50 53 18 5 3 6 4

Table S1: A summary of the strains sequenced in this study, including the generation at which each strain was
sequenced, and the number of mutations identified for each strain.
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Table S2: A list of all the de novo mutations generated in this study.
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Table S3: A summary of the 30 mutations chosen randomly from our MA experiment for validation via PCR/Sanger
sequencing. This resulted in either a double peak including the reference and alternate allele (’HET ALTERNATE’)
which validates the new mutation, or a single peak matching the reference allele (’HOMO REF’) which is inconclusive.
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Figure S2: A plot of the total count of mutations on each chromosomal arm for each strain as a function of generation
time in which sequenced. There was no significant difference in the rates between the generations, Poisson exact test
p-value = 0.757.
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6FKULGHU����� KRPR]\JRXV � ��� ��� ��� ����(��� ����������H���� ;���� ����(���

.HLJKWOH\����� KRPR]\JRXV � ��� ��� ��� ����(��� ����������H���� ;������ ����(���

2WKHU�OLQHV�

+XDQJ��PXWDWRU� � � � ��� ��� a�����(��� ����������H����LQIHUUHG� � ����(���

6FKULGHU��PXWDWRU� � � � ��� ��� ����(��� ����������H���� � ����(���

0XWDWLRQ�UDWH

Table S4: A version of Table 1, with two extra columns indicating the chromosomes used in the experiment, and the
back calculated genome length (lengths which were not consistently published within the MA papers). These were
used for calculating a time base in the poisson exact test comparing the different single base pair mutation rates
across experiments, and were found as follows: given that mutation rate µ = m/(n× t× l) (where m=mutation count,
n=number of strains, t= number of generations, and l = number of base pairs), we back-calculated l.
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Experiment A !C/T ! G A ! G/T ! C A ! T/T ! A C ! A/G ! T C! G/G ! C C ! T/G ! A

MA combined 0.06 (0.05-0.07) 0.11 (0.1-0.12) 0.12 (0.11-0.13) 0.18 (0.16-0.2) 0.13 (0.12-0.15) 0.4 (0.38-0.42)
Assaf 2016 0.04 (0.02-0.07) 0.14 (0.1-0.17) 0.13 (0.1-0.16) 0.19 (0.15-0.23) 0.16 (0.12-0.2) 0.34 (0.29-0.4)
Sharp 2016 0.06 (0.04-0.07) 0.11 (0.09-0.13) 0.12 (0.1-0.14) 0.18 (0.15-0.21) 0.1 (0.08-0.12) 0.44 (0.41-0.48)
Huang 2016 0.06 (0.04-0.07) 0.09 (0.07-0.11) 0.11 (0.09-0.13) 0.18 (0.15-0.21) 0.16 (0.13-0.19) 0.4 (0.37-0.44)
Schrider 2013 0.08 (0.04-0.12) 0.15 (0.1-0.2) 0.14 (0.1-0.2) 0.19 (0.13-0.25) 0.1 (0.05-0.14) 0.34 (0.27-0.41)
Keightley 2009 0.11 (0.06-0.16) 0.14 (0.1-0.21) 0.1 (0.05-0.15) 0.18 (0.11-0.24) 0.1 (0.06-0.16) 0.37 (0.29-0.45)

Other lines:
Huang (mutator) 0.04 (0.01-0.07) 0.21 (0.15-0.29) 0.05 (0.01-0.08) 0.19 (0.12-0.26) 0.04 (0.01-0.08) 0.47 (0.38-0.56)
Schrider (mutator) 0.04 (0.02-0.05) 0.08 (0.06-0.11) 0.08 (0.05-0.1) 0.09 (0.07-0.12) 0.07 (0.05-0.1) 0.64 (0.59-0.68)

Experiment A !C/T ! G A ! G/T ! C A ! T/T ! A C ! A/G ! T C! G/G ! C C ! T/G ! A

MA combined 153 289 303 357 255 784
Assaf 2016 17 53 50 56 47 102
Sharp 2016 50 97 104 121 68 300
Huang 2016 53 86 104 130 113 286
Schrider 2013 15 29 28 28 14 50
Keightley 2009 18 24 17 22 13 46

Other lines:
Schrider 33 18 43 39 36 27 245
Huang 19 6 33 7 22 5 55

Frequency Count Count Count Confirmation
Resequenced Resequenced rate

and confirmed
1/5000 1,112,232 15,552 8,972 0.58
1/621 3,210,239 78,533 65,644 0.84
2/621 1,386,520 65,779 57,073 0.87
3/621 727,104 53,070 47,306 0.89
4/621 464,560 45,036 40,586 0.90
5/621 326,805 38,351 34,869 0.91
common 471,089 453,179 446,050 0.98

2

Table S5: A summary of the six relative rates across the five MA studies, as well as a combined estimate. Note this is
for the major autosomes 2 and 3 and with repeats masked. The 95% confidence intervals are within the parentheses,
and were calculated using 1000 bootstraps of the raw counts.

MA:

ALTCOUNT tripCombo C->A/G->T C->G/G->C C->T/G->A GtestPvalue pCORR pSIG regions
MAcombined ACA/TGT 18 27 51 4.00E-02 6.50E-01 FALSE noMask
MAcombined ACC/GGT 14 11 31 9.70E-01 1.50E+01 FALSE noMask
MAcombined ACG/CGT 11 9 42 1.70E-01 2.70E+00 FALSE noMask
MAcombined ACT/AGT 20 18 45 7.30E-01 1.20E+01 FALSE noMask
MAcombined AGA/TCT 26 23 49 3.60E-01 5.80E+00 FALSE noMask
MAcombined AGC/GCT 29 26 49 1.30E-01 2.00E+00 FALSE noMask
MAcombined AGG/CCT 17 13 38 9.80E-01 1.60E+01 FALSE noMask
MAcombined CCA/TGG 41 11 71 6.80E-03 1.10E-01 FALSE noMask
MAcombined CCC/GGG 19 10 44 5.60E-01 9.00E+00 FALSE noMask
MAcombined CCG/CGG 23 6 34 5.30E-02 8.40E-01 FALSE noMask
MAcombined CGA/TCG 17 13 49 5.60E-01 9.00E+00 FALSE noMask
MAcombined CGC/GCG 15 16 36 5.00E-01 8.00E+00 FALSE noMask
MAcombined GCA/TGC 40 19 53 5.50E-02 8.80E-01 FALSE noMask
MAcombined GCC/GGC 22 11 52 4.00E-01 6.30E+00 FALSE noMask
MAcombined GGA/TCC 15 21 67 2.50E-02 4.00E-01 FALSE noMask
MAcombined TCA/TGA 29 21 72 8.20E-01 1.30E+01 FALSE noMask

MAcombined AAA/TTT 29 21 44 1.90E-03 3.00E-02 FALSE noMask
MAcombined AAC/GTT 7 18 21 6.20E-01 9.80E+00 FALSE noMask
MAcombined AAG/CTT 10 23 28 6.20E-01 9.90E+00 FALSE noMask
MAcombined AAT/ATT 7 16 25 2.60E-01 4.20E+00 FALSE noMask
MAcombined ATA/TAT 11 20 13 3.00E-01 4.80E+00 FALSE noMask
MAcombined ATC/GAT 6 14 16 8.20E-01 1.30E+01 FALSE noMask
MAcombined ATG/CAT 3 19 22 3.70E-02 6.00E-01 FALSE noMask
MAcombined CAA/TTG 13 26 14 9.00E-02 1.40E+00 FALSE noMask
MAcombined CAC/GTG 8 15 9 3.30E-01 5.30E+00 FALSE noMask
MAcombined CAG/CTG 8 12 24 1.60E-01 2.60E+00 FALSE noMask
MAcombined CTA/TAG 7 19 14 5.20E-01 8.40E+00 FALSE noMask
MAcombined CTC/GAG 6 17 11 4.00E-01 6.40E+00 FALSE noMask
MAcombined GAA/TTC 12 11 14 2.20E-01 3.50E+00 FALSE noMask
MAcombined GAC/GTC 6 22 14 1.90E-01 3.00E+00 FALSE noMask
MAcombined GTA/TAC 6 17 8 1.50E-01 2.30E+00 FALSE noMask
MAcombined TAA/TTA 14 17 26 3.70E-01 6.00E+00 FALSE noMask

With ALL SITES, so can compare rates:

2

Table S6: The results of G tests for triplet effect on the mutation spectrum, here for the MA combined dataset. From
left to right the columns refer to: variant dataset, triplet of interest (forward/reverse), mutation type 1, mutation
type 2, mutation type 3, p value for G goodness of fit test (expected is total counts), corrected p value, and whether
there is a significant effect of the triplet (p<0.01)
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Variant calls in the original sequencing experiment with lower depth, lower QUAL scores, and which are genotyped at a lower rate
are less likely to be confirmed or even genotyped during resequencing, and this behaviour is exacerbated in 1NP

Figure S3: Quantifying the DGN quality metrics of the DGN variants (1NP and 1 refer to variants at frequency
∼ 1/5000 and ∼ 1/621 respectively) after classifying them by whether in the resequence data the DGN variants
were confirmed, disconfirmed, or ungenotyped. Left panel is the total depth at the site in the DGN data, middle
is the QUAL score of the genotype call in the DGN data, and right panel is the number of samples with genotype
information in the DGN data. DGN variants which were confirmed in the resequence data consistently have higher
quality metrics, however there is also overlap in the distribution of DGN quality scores (i.e. DP, QUAL, NS) between
those variants which were confirmed, disconfirmed, and ungenotyped in the resequence data.
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Figure S4: The empirical cumulative distirubution of phastCons scores for different classes of polymorphisms, and
the reference genome
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Figure S5: The fraction nonsynonymous (left) and nonsense (right) alleles present in heterozygous sites in the DGN.
’hetSingletons conf’ indicates a DGN singleton (frequency ∼1/621) which was called as a heterozygote in DGN
and confirmed heterozygous in the resequence data. ’het conf neverHomo’ indicates all DGN polymorphisms (any
frequency) which were called heterozygous in the DGN and also resequence data, and additionally were never found
in a homozygous state in the DGN data. ’het conf’ indicates all DGN polymorphisms (any frequency) which were
called heterozygous in DGN and also in the resequence data.
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FRQVHUYHG

7KLV�UHYHDOV�ZKLFK�IXQFWLRQV�DUH�GHSOHWHG�RI
FRPPRQ�SRO\PRUSKLVPV��VXJJHVWLQJ�QHZ�PXWDWLRQV
WHQG�WR�EH�ZHDNO\�WR�VWURQJO\�GHOHWHULRXV

7KLV�UHYHDOV�ZKLFK�IXQFWLRQV�DUH�GHSOHWHG�RI�UDUH
YDULDQWV��VXJJHVWLQJ�QHZ�PXWDWLRQV�WHQG�WR�EH
VWURQJO\�GHOHWHULRXV

*2�FDWHJRULHV FKURPDWLQ�DVVHPEO\�RU�GLVDVVHPEO\ FKURPDWLQ�DVVHPEO\�RU�GLVDVVHPEO\ FKURPDWLQ�DVVHPEO\�RU�GLVDVVHPEO\

GLVFRYHUHG QXFOHRVRPH QXFOHRVRPH QXFOHRVRPH

QXFOHRVRPH�DVVHPEO\ QXFOHRVRPH�DVVHPEO\ QXFOHRVRPH�DVVHPEO\
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F\WRVRO F\WRVRO
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F\WRSODVP KHDW�VKRFN�PHGLDWHG�SRO\WHQH�FKURPRVRPH�SXIILQJ

PLFURWXEXOH�DVVRFLDWHG�FRPSOH[

QHXURJHQHVLV

QXFOHXV

SODVPD�PHPEUDQH

SURWHLQ�ELQGLQJ

UHJXODWLRQ�RI�WUDQVFULSWLRQ��'1$�WHPSODWHG
WUDQVFULSWLRQ�IDFWRU�DFWLYLW\��VHTXHQFH�VSHFLILF�'1$
ELQGLQJ

Table S7: The results of a GO analysis of over-represented terms within conserved sites (phastCons=1), under-
represented terms within sites containing common polymorphisms (frequency 0.2-0.5), and under-represented terms
with sites containing rare polymorphisms (frequency ∼1/621). See Methods for more detail on analysis.
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DGN triplet g tests

ALTCOUNT tripCombo C->A/G->T C->G/G->C C->T/G->A GtestPvalue pCORR pSIG regions
1 ACA/TGT 962 557 1740 2.20E-02 3.50E-01 FALSE noMask
1 ACC/GGT 538 293 952 3.50E-01 5.60E+00 FALSE noMask
1 ACG/CGT 515 211 973 2.40E-03 3.90E-02 FALSE noMask
1 ACT/AGT 670 421 1238 1.60E-03 2.60E-02 FALSE noMask
1 AGA/TCT 754 455 1471 2.70E-02 4.40E-01 FALSE noMask
1 AGC/GCT 924 469 1430 5.10E-05 8.20E-04 TRUE noMask
1 AGG/CCT 680 321 1045 1.40E-03 2.20E-02 FALSE noMask
1 CCA/TGG 1032 398 1538 2.00E-08 3.20E-07 TRUE noMask
1 CCC/GGG 669 297 1111 5.00E-02 8.00E-01 FALSE noMask
1 CCG/CGG 557 249 965 1.70E-01 2.80E+00 FALSE noMask
1 CGA/TCG 492 302 1431 6.80E-20 1.10E-18 TRUE noMask
1 CGC/GCG 698 329 1203 3.00E-01 4.80E+00 FALSE noMask
1 GCA/TGC 1183 483 1676 3.60E-11 5.80E-10 TRUE noMask
1 GCC/GGC 813 512 1733 2.10E-04 3.30E-03 TRUE noMask
1 GGA/TCC 553 389 1573 7.80E-19 1.20E-17 TRUE noMask
1 TCA/TGA 829 415 1728 1.20E-03 1.90E-02 FALSE noMask

1 AAA/TTT 676 833 1138 6.00E-31 9.60E-30 TRUE noMask
1 AAC/GTT 348 890 801 4.10E-02 6.60E-01 FALSE noMask
1 AAG/CTT 354 579 986 1.60E-23 2.50E-22 TRUE noMask
1 AAT/ATT 381 817 986 4.70E-04 7.60E-03 TRUE noMask
1 ATA/TAT 216 836 787 8.80E-13 1.40E-11 TRUE noMask
1 ATC/GAT 158 602 444 1.20E-10 1.90E-09 TRUE noMask
1 ATG/CAT 225 714 583 3.60E-06 5.80E-05 TRUE noMask
1 CAA/TTG 432 654 607 4.30E-14 6.90E-13 TRUE noMask
1 CAC/GTG 376 694 540 1.60E-11 2.60E-10 TRUE noMask
1 CAG/CTG 274 493 665 2.30E-06 3.70E-05 TRUE noMask
1 CTA/TAG 146 397 482 1.20E-04 2.00E-03 TRUE noMask
1 CTC/GAG 177 492 415 1.10E-02 1.70E-01 FALSE noMask
1 GAA/TTC 248 635 482 1.70E-05 2.70E-04 TRUE noMask
1 GAC/GTC 157 690 365 4.00E-28 6.50E-27 TRUE noMask
1 GTA/TAC 148 605 504 9.40E-11 1.50E-09 TRUE noMask
1 TAA/TTA 327 634 842 7.40E-07 1.20E-05 TRUE noMask

1

Table S8: The results of G tests for triplet effect on the mutation spectrum, here for the singletons at frequency
∼1/621. From left to right the columns refer to: variant dataset, triplet of interest (forward/reverse), mutation type
1, mutation type 2, mutation type 3, p value for G goodness of fit test (expected is total counts), corrected p value,
and whether there is a significant effect of the triplet (p<0.01)
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evolved four fold sites

tripID tripCombo C->A/G->T C->G/G->C C->T/G->A GtestPvalue pCORR pSIG regions
fourD ACA/TGT 542 317 1614 9.40E-06 1.50E-04 TRUE noMask
fourD ACC/GGT 1557 989 2744 1.80E-37 3.00E-36 TRUE noMask
fourD ACG/CGT 853 515 1973 1.10E-01 1.80E+00 FALSE noMask
fourD ACT/AGT 626 447 2431 2.00E-26 3.20E-25 TRUE noMask
fourD AGA/TCT 428 276 1580 3.50E-16 5.70E-15 TRUE noMask
fourD AGC/GCT 436 284 2069 1.20E-49 1.90E-48 TRUE noMask
fourD AGG/CCT 866 555 2006 3.40E-02 5.50E-01 FALSE noMask
fourD CCA/TGG 1620 917 2693 1.00E-41 1.60E-40 TRUE noMask
fourD CCC/GGG 1338 844 2119 1.30E-50 2.10E-49 TRUE noMask
fourD CCG/CGG 1187 777 2754 3.60E-03 5.80E-02 FALSE noMask
fourD CGA/TCG 454 312 2016 8.40E-38 1.30E-36 TRUE noMask
fourD CGC/GCG 973 614 3095 2.00E-13 3.20E-12 TRUE noMask
fourD GCA/TGC 822 501 1930 2.30E-01 3.70E+00 FALSE noMask
fourD GCC/GGC 1195 767 2718 1.20E-03 1.90E-02 FALSE noMask
fourD GGA/TCC 906 558 2013 3.10E-03 5.00E-02 FALSE noMask
fourD TCA/TGA 588 408 2491 2.20E-39 3.40E-38 TRUE noMask

fourD AAA/TTT 143 364 201 9.20E-02 1.50E+00 FALSE noMask
fourD AAC/GTT 254 633 180 3.30E-28 5.20E-27 TRUE noMask
fourD AAG/CTT 233 464 450 5.10E-10 8.20E-09 TRUE noMask
fourD AAT/ATT 83 432 295 2.20E-09 3.60E-08 TRUE noMask
fourD ATA/TAT 67 323 144 2.40E-06 3.90E-05 TRUE noMask
fourD ATC/GAT 141 382 331 1.40E-04 2.20E-03 TRUE noMask
fourD ATG/CAT 93 460 185 6.80E-11 1.10E-09 TRUE noMask
fourD CAA/TTG 232 641 227 6.90E-16 1.10E-14 TRUE noMask
fourD CAC/GTG 354 1094 422 6.00E-19 9.50E-18 TRUE noMask
fourD CAG/CTG 407 942 689 3.00E-03 4.90E-02 FALSE noMask
fourD CTA/TAG 126 456 314 2.80E-03 4.50E-02 FALSE noMask
fourD CTC/GAG 451 729 948 4.80E-49 7.60E-48 TRUE noMask
fourD GAA/TTC 209 492 455 1.20E-07 1.90E-06 TRUE noMask
fourD GAC/GTC 423 1041 654 9.30E-02 1.50E+00 FALSE noMask
fourD GTA/TAC 111 502 188 3.60E-12 5.80E-11 TRUE noMask
fourD TAA/TTA 77 411 306 3.10E-11 5.00E-10 TRUE noMask

3

Table S9: The results of G tests for triplet effect on the substitution spectrum at four-fold degenerate sites. From left
to right the columns refer to: evolved site dataset, triplet of interest (forward/reverse), mutation type 1, mutation
type 2, mutation type 3, p value for G goodness of fit test (expected is total counts), corrected p value, and whether
there is a significant effect of the triplet (p<0.01)
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Figure S6: The predicted GC equilibrium (as calculated from MA mutations and DGN polymorphisms, y-axis) is
correlated with the actual GC content of the reference genome (as calculated or the center base pair for each neighbor
context, x-axis)
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Ayroles, Dianhui Zhu, Sònia o nia Casillas, Yi Han, Michael M Magwire,
Julie M Cridland, Mark F Richardson, Robert R H Anholt, Maite Barrón, Crys-
tal Bess, Kerstin Petra Blankenburg, Mary Anna Carbone, David Castellano,
Lesley Chaboub, Laura Duncan, Zeke Harris, Mehwish Javaid, Joy Christina
Jayaseelan, Shalini N Jhangiani, Katherine W Jordan, Fremiet Lara, Faye
Lawrence, Sandra L Lee, Pablo Librado, Raquel S Linheiro, Richard F Ly-
man, Aaron J Mackey, Mala Munidasa, Donna Marie Muzny, Lynne Nazareth,
Irene Newsham, Lora Perales, Ling-Ling Pu, Carson Qu, Miquel Ràmia, Jef-
frey G Reid, Stephanie M Rollmann, Julio Rozas, Nehad Saada, Lavanya Turla-
pati, Kim C Worley, Yuan-Qing Wu, Akihiko Yamamoto, Yiming Zhu, Casey M
Bergman, Kevin R Thornton, David Mittelman, Richard a Gibbs, Maite O n, and
Miquel A mia. The Drosophila melanogaster Genetic Reference Panel. Nature,
482(7384):173–8, feb 2012.

53

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 18, 2016. ; https://doi.org/10.1101/095182doi: bioRxiv preprint 

https://doi.org/10.1101/095182

	Author Summary
	Introduction
	Results
	De novo mutations identified in MA experiments
	A new dataset of 325 point mutations
	Five MA experiments, different single base pair mutation rates
	The neutral expectation is reached in all five experiments
	Mutational spectra are comparable across all five experiments

	Rare polymorphisms identified in natural populations
	Identification and validation of rare polymorphisms
	Rare polymorphisms approach the neutral expectation within coding regions
	Missing deleterious events among both rare polymorphisms and conserved sites.
	No evidence for mutagenic effects of transcription.
	Six relative mutation rates, and their dependency on neighbor context among both rare polymorphisms and evolved four-fold synonymous sites
	Equilibrium GC content impacted by neighbor context, but not recombination
	Multinucleotide mutations comprise 4-10% of rare polymorphisms, significantly more is than expected by chance


	Discussion
	Materials and Methods
	Figures and Tables
	Supplemental Materials, Figures, and Tables

