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Abstract

Background: Transposable element (TE) insertions are among the most
challenging type of variants to detect in genomic data because of their repetitive
nature and complex mechanisms of replication. Nevertheless, the recent
availability of large resequencing datasets has spurred the development of many
new methods to detect TE insertions in whole genome shotgun sequences. These
methods generate output in diverse formats and have a large number of software
and data dependencies, making their comparative evaluation challenging for
potential users.

Results: Here we develop an integrated bioinformatics pipeline for the detection
of TE insertions in whole genome shotgun data, called McClintock
(https://github.com/bergmanlab/mcclintock), that automatically runs and
generates standardized output for multiple TE detection methods. We
demonstrate the utility of the McClintock system by performing comparative
evaluation of six TE detection methods using simulated and real genome data
from the model microbal eukaryote, Saccharomyces cerevisiae. We find
substantial variation among McClintock component methods in their ability to
detect non-reference insertions in the yeast genome, but show that non-reference
TEs at nearly all biologically-realistic locations can be detected in simulated data
by combining multiple methods that use split-read and read-pair evidence. In
general, our results reveal that split-read methods detect fewer non-reference TE
insertions than read-pair methods, but generally have much higher positional
accuracy. Analysis of a large sample of real yeast genomes reveals that most, but
not all, McClintock component methods can recover known aspects of TE
biology in yeast such as the transpositional activity status of families, tRNA gene
target preferences, and target site duplication structure, albeit with varying levels
of positional accuracy.

Conclusions: Our results suggest that no single TE detection method currently
provides comprehensive detection of non-reference TEs, even in the context of a
simplified model eukaryotic genome like S. cerevisiae. In spite of these
limitations, the McClintock system provides a framework for testing, developing
and integrating results from multiple TE detection methods to achieve this
ultimate aim, as well as useful guidance for yeast researchers to select appropriate
TE detection tools.
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Background
The widespread availability of genomic data over the last two decades has provided

unparalleled opportunities to learn about the abundance, diversity, and functional

consequences of transposable elements (TEs) in modern genomes. However, the

computation analysis of TE sequences in both reference and resequenced genomes

remains a challenging area of bioinformatics research because of the repetitive na-

ture of these sequences. Development of bioinformatics tools for the detection and

annotation of TEs in reference genomes is now a relatively mature field [1–3], al-

though many open questions remain about choosing the best tools for specific bi-

ological applications [4]. In contrast, detection of reference and non-reference TE

insertions in whole-genome shotgun (WGS) resequencing data is an active research

area (reviewed in [5]), with a wide array of methods published in recent years [6–32].

Because of the wide array of available methods, it remains unclear which method

for detecting TEs in resequenced genomes is best suited for particular genomic prob-

lems, leading to substantial investigator effort in terms of installation and testing,

or the application of sub-optimal bioinformatic approaches. Most papers report-

ing new methods to detect reference or non-reference TEs in WGS data provide

some measure of their own performance to relative using simulations, benchmark

genomic data, or PCR-based validation. However, only a handful of papers have

reported new methods that include performance evaluation relative to other meth-

ods [5, 23, 25, 27–29, 32], and these are often limited in scope to only a single

organism or TE family. In addition to being incomplete, comparative analysis of

bioinformatic systems in papers that report new methods can fall victim to the

“self-assessment trap” [33]. Moreover, there is no common format for the annota-

tion of non-reference TE insertions [34, 35], making direct comparison of predictions

from different methods more challenging. Recently, Rishishwar et al. [35] performed

an independent comparative evaluation of seven WGS-based TE detection methods

using human genomic data, which revealed many method-specific predictions and

recommended combining the results of multiple systems followed by manual cura-

tion (see also [5]). Rishishwar et al. [35] also highlighted the challenges users face

when installing and running multiple TE detection methods, and provide helpful

advice for users and developers.

As a step towards a fully automated framework for running and evaluating mul-

tiple methods to detect TEs in WGS resequencing data, we have developed an in-

tegrated pipeline called McClintock (https://github.com/bergmanlab/mcclintock)

that generates standardized output for multiple WGS-based TE detection methods.

The primary goal of the McClintock pipeline is to lower the barrier to installation,

use, and evaluation of multiple WGS-based TE detection methods. Several key fea-

tures of the McClintock pipeline are that it automates formatting of key input files

and standardizes output of multiple TE detection methods to allow easy compar-

isons of results from different systems, as recommended by [35]. In the initial version

of McClintock, we incorporate six complementary TE detection methods that make

predictions based on split-read or read-pair based evidence in Illumina WGS data.

Here we describe the McClintock system and its component methods, and perform

comparative evaluation using simulated and real yeast genome data. Our analysis

supports previous conclusions that no single TE detection method provides compre-

hensive detection of non-reference TEs [5, 35], but provides a framework for further
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testing, development and integration to achieve this ultimate aim, as well as useful

guidance for yeast researchers to select appropriate TE detection tools.

Implementation
McClintock component methods and their dependencies

We initiated our design of McClintock with a literature search for candidate bioinfor-

matic systems that can detect TE insertions from NGS data in 2014, which yielded

33 potential systems. Our main project objective was to develop a system that au-

tomatically detects non-reference TE insertions in raw WGS data for any species.

Thus, we excluded systems that required any wet-lab enrichment further consider-

ation. Systems that did not make their code available were also rejected. This left

a list of 12 candidate software systems. After preliminary testing of these 12 meth-

ods, six were rejected from further testing because of difficulties during installation

(Tangram [21], VariationHunter [9]), reliance on data for a specific organism (TEA

[13], VirusSeq [18]), inability to detect non-reference insertions (T-lex [11]), or the

inability to distinguish general structural variations from TE insertions (HYDRA

[10]). Six remaining methods (ngs te mapper [12], TE-locate [14], PoPoolationTE

[15], RetroSeq [36], RelocaTE [17] and TEMP [20]) had publicly-available code that

could be installed reproducibly and met project objectives were selected for incor-

poration into the initial McClintock pipeline. Since the original selection of methods

for inclusion in McClintock, a number of additional methods that meet the initial

project requirements (“pecnv teclust” [19], TIF [22], TE-Tracker [23], Mobster [24],

ITIS [25], Jitterbug [27], TIDAL [28], ISmapper [29], MELT [37] SPLITREADER

[30], and TEPID [38]) and new versions of some methods (PoPoolationTE2 [31] and

RelocaTE2 [32]) have been released. These methods have not yet been incorporated

into McClintock, but the flexible architecture of the system permits their inclusion

in the future.

A summary of the main features of the six component methods included in Mc-

Clintock is shown in Table 1. These six component systems have many dependencies

on other pieces of software, which must all be correctly installed before the com-

ponent system will function correctly. These software dependencies are listed in

Table 2. Several of these component dependencies require end user licenses, and

thus it was not possible to fully automate installation of all component methods.

McClintock therefore assumes component dependencies are installed system-wide,

but automates installation of the component methods themselves. A passive check

is performed during installation of McClintock that reports whether component

dependencies are available, though installation is not halted if they are missing. Be-

cause of the large number of component dependencies and subsequent development

of components themselves, we developed McClintock to use specific versions of com-

ponents and their dependencies. Table 2 also lists the version of each dependency

that was used with McClintock to obtain the results presented here.

McClintock component methods also have a variety of data dependencies that

are required as inputs, which are listed in Table 3. The component methods incor-

porated into McClintock together require a total of 13 different data dependencies

to run. However, since many of these data dependencies can be automatically gen-

erated or are format alterations that can be automatically achieved with simple
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pre-processing steps, the number of data dependencies can be reduced to three re-

quired inputs for McClintock: a fasta file of the reference genome, a fasta file of the

canonical TE sequences, and fastq files of NGS reads (paired or single ended).

A more detailed overview of the component methods, their software/data depen-

dencies, and limitations is provided in the Description of McClintock Component

Methods section of Additional File 1.

The McClintock Pipeline

An overview of the data flow and processing steps performed by the McClintock

pipeline is shown in Figure 1. In the following sections, we describe the options

for running the McClintock pipeline, then describe how component methods are

executed and parsed in the context of the McClintock pipeline.

Options

Reference TE annotation options If a pre-existing annotation of the TE sequences

in the reference genome is available, a one-based GFF file of this data can be used

as input for the McClintock pipeline. If a reference TE annotation is provided, then

the user must also create and supply a TE “hierarchy” file as another input. The

hierarchy file contains two tab-delimited columns, the first listing the name of each

instance in the reference TE annotation and the second listing the canonical TE

family that instance belongs to. If no reference TE annotation is provided, then

a reference TE annotation and hierarchy file is created automatically by running

RepeatMasker and post-processing RepeatMasker output files.

Reference genome sequence options McClintock provides options to automatically

create various different modified reference genomes. These options were imple-

mented because some component methods (RetroSeq and TE-locate) require an

instance of a TE to exist in the reference genome for non-reference instances of

that family to be detected in a resequenced sample. This is important because, in

some cases, like the D. melanogaster P -element [39], the reference genome does not

include any copies of a TE family that occurs in natural populations. This situation

may also occur when a TE family has been introduced experimentally into a strain

lacking that TE to study its transposition. To allow for these cases, McClintock has

an option to generate modified reference genomes that include additional “chromo-

somes” comprised of canonical TE sequences or TE sequences extracted from the

reference genome. An annotation of TEs in the additional “chromosomes” is then

appended to the reference TE annotation file. PoPoolationTE requires a modified

reference genome with canonical TE sequences and reference TE sequences added as

additional “chromosomes.” Thus these reference genome modifications are always

made specifically for PoPoolationTE, regardless of whether user-supplied options to

modify the reference genome are provided globally for other component methods.

Run options McClintock offers additional options to customize the way the

pipeline is run. It is possible to specify which component methods are executed,

allowing tailored output and shorter run times. McClintock and its component

methods produce short-read alignment files and other intermediate files that can be
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very large, and thus an option is provided to remove unwanted intermediate files.

BAM files output by McClintock may be useful for other purposes, so an option is

provided to eliminate all intermediate files other than BAM files. The location of

all output files can be changed to any absolute path that the user requests. Within

the specified location, all output files will be produced in a directory named after

the reference genome sequence with results for each sample stored in subdirectories

named after the fastq files for that sample, allowing multiple samples for the same

reference genome to re-use common index files.

Overview of the McClintock process

From the limited set of inputs and options the user provides, McClintock then auto-

matically generates all other input files required to run all six component methods.

If the reference TE annotation and hierarchy file are provided by the user, the Re-

peatMasker step is skipped and the user-supplied reference TE annotation is used

to make a hard-masked version of the reference genome using BEDTools (a step

that is required only for PoPoolationTE). If the reference TE annotation and TE

hierarchy file are not supplied by the user, McClintock launches RepeatMasker,

which creates a reference TE annotation in GFF format that is in turn used by

McClintock to create the TE hierarchy file. If specified, modifications can be made

to the reference genome prior to automatic generation of the reference TE annota-

tion and hierarchy file (see Options section above). McClintock then converts the

reference TE annotation to BED format, as required by TEMP and RetroSeq.

Prior to running any of the component methods, McClintock runs FastQC on

the input fastq files to provide the user information to help interpret McClintock

output. FastQC results are stored in a quality control subdirectory for each sample.

Next, all indexing steps for the reference genome are performed. If only single-ended

NGS data is provided, this is automatically detected by McClintock, and only the

component methods that can analyse single-ended NGS data (ngs te mapper and

RelocaTE) are launched. In this case, the main BWA-MEM alignment step is not

performed because ngs te mapper and RelocaTE execute their own internal align-

ments. If paired-end NGS data is provided, then the main BWA-MEM alignment

of the NGS data to the reference genome is launched and stored in SAM format. If

TE-locate or TEMP are to be run, then the median insert size is calculated based

on the distance between aligned pairs of reads in this SAM file. If TE-locate is to

be run, then the SAM output of BWA-MEM is lexically sorted and a new SAM file

is retained. If TEMP or RetroSeq are to be launched, then the SAM alignment file

is sorted, converted into BAM format and indexed. In addition, if a BAM file is cre-

ated, then McClintock will launch SAMtools flagstat to produce mapping summary

statistics that are stored in the quality control subdirectory for each sample.

To launch ngs te mapper, the basic inputs to McClintock are sufficient and no

additional pre-processing is required. To launch RelocaTE, “TSD=UNK” is au-

tomatically added to each identifier line in the canonical TE fasta file, providing

maximum flexibility for this method. The custom reference TE annotation required

by RelocaTE is produced from the user-supplied GFF or created from Repeat-

Masker output. To run TEMP, soft links are created to the BAM and BAM index

files to ensure they have the required suffixes (“sorted.bam” and “sorted.bam.bai,”
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respectively). To run RetroSeq, the canonical TE file or reference TE annotation

file is split into one file per TE family, and a file-of-files is produced with these

file locations. For RetroSeq, McClintock uses the less computationally-intensive ap-

proach of assigning discordant reads to a TE family based on reference TE locations,

rather than alignment of the reads to canonical TE sequences using Exonerate (we

found the latter approach caused frequent failures during testing). The code to

run the Exonerate step is included in McClintock if a user has data and a com-

patible computing environment. To launch PoPoolationTE, the basic TE hierarchy

file is reformatted to add additional columns required by this method. Also, the

identifiers of reads in the fastq input files are also changed so that they end with

“\1” or “\2” for each member of a pair of reads. Finally, the median insert size of

fragments is calculated based on the distance between aligned pairs of reads in a

PoPoolationTE-specific SAM file (created using the BWA-ALN algorithm), and the

read length is obtained from the fastq files. These values are passed to a patched

version of PoPoolationTE that allows sample-specific parameters to be set for clus-

tering TE-supporting reads. To run TE-locate, the reference TE annotation file is

modified using the TE hierarchy file to ensure that the correct family level of an-

notation is provided in the column required by TE-locate. TE-locate also requires

that the reference genome has more than five chromosomes. Should this not be

the case, McClintock will add as many false chromosomes as required to produce

five in total. Once these pre-processing steps are performed, each of the component

methods are run following the guidelines described in their publications and man-

uals. (See Description of McClintock Component Methods in Additional File 1 for

further details).

To make McClintock runs more efficient for large resequencing datasets from

the same species, input files that are reference genome specific but not sample

specific (for example, genome indexes and reference TE annotations) are saved

separately in the highest level of the output directory. If another sample is run for

the same reference genome in the same output location, then these files can be

reused, saving both space and time. As noted above, files that are not required,

such as intermediate output and large genome alignments, can be deleted once

used to minimize disk space held throughout the run. Also, if a subcomponent of

McClintock is not run then, where possible, McClintock will not create any input

files that are solely required for that method.

Post-processing and standardization of output format

The component methods within McClintock produce their output in different file

formats and annotation frameworks (see [34] for discussion). Therefore, McClintock

performs a number of post-processing steps to standardize outputs from different

methods into a common annotation framework. Details of the native annotation

framework for component methods and the post-processing steps made by Mc-

Clintock can be found in the Post-processing and Standardisation of Component

Method Output section of Additional File 1). Before performing these steps, the

original (unedited) results for each method are saved in the output directory for

that sample. If TE predictions are made by any component method in the addi-

tional “chromosomes” added in modified reference genomes (see Options section
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above), these results are removed from the standard results files and retained in a

subdirectory within the results directory called “non-ref chromosome results”.

The output file format chosen to standardize results for all component methods

is zero-based BED6 format, because it allows easy integration with the BEDTools

and UCSC genome browser. BED format provides a fourth column to contain a

name for the annotated feature. All records in these BED files contain the name of

the TE family predicted at that location and whether the prediction is of a non-

reference or reference TE. The name column also reports the sample ID from the

fastq input file and the name of the component method that made the prediction.

The type of evidence used for the prediction is also listed, either “sr” representing a

prediction made from split-read evidence, “rp” representing a prediction made from

read-pair evidence, or “nonab” for TEMP reference TE predictions that rely on no

evidence for the absence of the TE in the sample. In addition, filtering and redun-

dancy removal was performed within the result file for each component method.

No redundancy filtering is performed by McClintock across component methods,

allowing users to more directly compare output from different methods. To facili-

tate viewing of results on the UCSC genome browser, a header is included in each

BED file. This header is read by the UCSC browser and lists the sample name and

McClintock component system that produced the results as the track name and

description, allowing multiple result files for the same sample to be merged and

visualized simultaneously.

Results and Discussion
Application of McClintock to simulated S. cerevisiae genomes with single synthetic

TE insertions

To test McClintock and its component methods, we used simulated WGS datasets

based on the genome of the model eukaryote, S. cerevisiae. We chose S. cerevisiae

for testing McClintock because its reference genome is relatively small and has been

completely determined [40], it has large samples of publicly-available resequenced

genomes [41–43], and the genome biology of its TEs is well-characterized [44, 45].

In addition, the six TE families in S. cerevisiae (Ty1, Ty2, Ty3, Ty3 1p, Ty4, and

Ty5 ) are all long terminal repeat (LTR) retrotransposons, a type of TE that can be

processed effectively by all six McClintock component methods. We first performed

control analyses by simulating WGS resequencing of unmodified S. cerevisiae ref-

erence genome samples and applying McClintock to these datasets (see Simulating

Resequencing of the S. cerevisiae Reference Genome in Additional File 1). While not

the major focus of this study, these reference genome simulations allowed us to eval-

uate how often McClintock component methods detected reference TEs and, more

importantly, how often component methods detected false positive non-reference

TEs (in the absence of any true, non-reference TE insertions). An example of ref-

erence TE predictions for all six component methods is shown in Additional Figure

1A. In general, analysis of unmodified simulated reference genomes showed that

McClintock component methods cannot detect all reference TEs, but also typically

have low false positive rates for predicting non-reference TE insertions when they

are truly absent (see Additional Table 1 and Additional Table 2). Additionally,

these simulations showed that McClintock had better performance at 100X versus
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10X coverage, and that neither the choice of reference TE annotation nor reference

genome options substantially affected the detection of reference or non-reference

TEs for most McClintock component methods.

Next, we simulated WGS samples for reference genomes that include a single

synthetic TE insertion (placed at biologically-realistic locations upstream of tRNA

genes) to evaluate the ability of McClintock component methods to detect true

positive non-reference TE insertions. To do this, WGS reads were simulated for 598

samples, each with a different synthetic TE insertion placed upstream of one of

the 299 tRNA genes in the yeast genome. 299 samples were created for synthetic

insertions the positive orientation upstream of tRNA genes and 299 samples for

synthetic insertions in the negative orientation. Genomes with synthetic insertions

were created by selecting a five bp sequence 12-17bp upstream of a tRNA start site

for Ty3 or 195-200bp upstream of a tRNA start site for Ty1, Ty2, and Ty4. This

five bp sequence formed the basis of a synthetic target site duplication (TSD) and

became the location into which a full-length Ty canonical sequence was inserted

in the sacCer2 reference genome. All single insertion samples were simulated at

100X coverage since the ability of component methods to detect reference TEs

improved with increasing coverage and to match analysis of real yeast genomes (see

Application of McClintock to 93 yeast genomes). An illustration of non-reference

TE predictions for all six component methods in a genomic segment containing a

synthetic TE insertion is shown in Additional Figure 1B. In the following sections,

we detail the analysis of these single synthetic insertion simulated samples in terms

of overall numbers of reference and non-reference TE predictions and positional

accuracy of non-reference TE predictions.

Numbers of reference and non-reference TE predictions

Table 4 shows the mean number of reference and non-reference TE insertions pre-

dicted across all 299 simulated single-insertion samples on the positive and negative

strands, respectively. Table 4 also shows the mean number of correct non-reference

insertions predicted per sample at a given distance threshold. If all single TE in-

sertion samples were predicted correctly for a method, it would lead to an average

value of exactly one non-reference TE predicted per sample. Comparing row one

of Table 4 (single insertion simulation) with row nine of Additional Table 1 (un-

modified reference simulation), we can infer that the inclusion of single synthetic

insertions into the yeast genome does not substantially alter the ability of any Mc-

Clintock component method to predict reference TEs. As expected, comparing row

two of Table 4 (single insertion simulation) with row nine of Additional Table 2

(unmodified reference simulation), we see gains in the numbers of non-reference TE

insertions predicted for all methods, demonstrating that McClintock components

can detect true positives above false positive baselines in our simulation framework.

For ngs te mapper, the average number of non-reference predictions shows this

method systematically under-predicts non-reference TE insertions. However, the av-

erage number of predictions made overall per sample is only slightly higher than the

average number of exact predictions. Consistent with unmodified reference genome

simulations (see row nine of Additional Table 2), this result indicates that only a

small number of non-reference predictions made by ngs te mapper are false posi-

tives. Moreover, whenever ngs te mapper makes a prediction of a non-reference TE
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(that is within 500bp of the true insertion site), the prediction was always at the

exact TSD, suggesting high accuracy in terms of position and TSD structure for

this method (see below). We also observed that ngs te mapper detected fewer in-

sertions when the synthetic insertion is on the negative strand relative to the tRNA

gene, suggesting there can be strand bias in the detection of non-reference TEs.

This bias could be due to yeast genome organization, our simulation framework,

the ngs te mapper algorithm or a combination of these factors.

RelocaTE produced, on average, slightly more than one non-reference TE pre-

diction per sample. At face value, this result suggests that RelocaTE may detect

essentially every synthetic insertion, but also make occasional false positive pre-

dictions. In fact the average excess number of predictions made by RelocaTE in

single insertion simulated genomes is very close to the false positive rates observed

in simulations of unmodified reference genomes (see row nine of Additional Table

2). However, only about 50% of the total RelocaTE predictions are made within

500bp of the true insertion. Thus, it appears that the inclusion of single synthetic

insertions increases the rate of false positive non-reference TE predictions Relo-

caTE relative to unmodified reference genomes. Nevertheless, RelocaTE produces

more correct predictions within 100bp of the true insertion site than ngs te mapper,

the other purely split-read method despite producing fewer exact predictions than

ngs te mapper. Thus many of the non-exact RelocaTE predictions within 100bp of

the true location are likely to be accurately positioned, but simply not have the

correct TSD structure (see below). Like ngs te mapper, RelocaTE also appears to

have a slightly higher true positive rate for positive strand insertions, with the dif-

ference in the number of correct predictions on the positive strand being greater in

the exact prediction category.

The average total number of non-reference TE predictions for TEMP is nearly one

(0.90), confirming results from unmodified reference genome simulations (see row

nine in Additional Table 2) that TEMP makes very few false positive non-reference

predictions. Moreover, the total number of non-reference TE predictions for TEMP

is the same as the average number that are accurate within 100bp of the true

insertion site. These results suggest TEMP is correctly predicting most simulated

insertions, but not to base pair accuracy (see below). Some positional inaccuracy

is expected for TEMP since not all predictions for this method are supported by

split-read evidence. For TEMP, there appears to be no difference in detection ability

for TE insertions on the positive or negative strand.

RetroSeq predicted nearly as high an average number of non-reference TE predic-

tions per sample as TEMP, but the proportion predicted correctly was lower than

TEMP for all length thresholds. The fact that not all RetroSeq predictions are

within 500bp of the true insertion suggests that RetroSeq can produce some false

positive predictions of non-reference TE insertions when the sample is not identical

to the reference genome, unlike what was observed for simulations of unmodified

reference genomes (see row nine of Additional Table 2). Because RetroSeq does not

use split-read information, no predictions from this method were exact, however

most predictions were generally within 100bp of the true location. For RetroSeq

there is a only slight reduction in ability to detect non-reference TE insertions on

the negative strand compared with the positive strand at all length thresholds.
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PoPoolationTE produces an average of slightly more than one non-reference TE

prediction per sample, but this method shows the lowest proportion of true positive

predictions at all length thresholds (0.16), suggesting most predictions are false pos-

itives. This result supports those obtained from unmodified reference genomes that

PoPoolationTE makes approximately one false positive prediction per genome in

the absence of any synthetic non-reference TE insertions (see row nine of Additional

Table 2). Because PoPoolationTE does not use split-read information and the span

predicted by this method is often large (see Additional Figure 1), no predictions

made by PoPoolationTE were exact. For PoPoolationTE there appears to be no

difference in ability to detect non-reference TE insertions correctly on the positive

or negative strand.

TE-locate produced an average of nearly one non-reference TE prediction per

sample. However, these include some false positive predictions or at least predictions

that are more than 500bp from the actual insertion location. The proportion of

correct non-reference TE insertion predicted by TE-locate drops steadily from 500bp

to 100bp, with TE-locate predicting the lowest number of correct insertions for any

method at the 100bp scale. As with the other read-pair methods, no predictions

could be considered exact because TE-locate does not predict a TSD. These numbers

indicate that, though the ability of TE-locate to detect the presence of a TE in the

general vicinity of its true location is good, the annotation will not be as positionally

accurate as other read-pair methods like TEMP or RetroSeq. For TE-locate there

appears to be a reduction in detection ability at all thresholds for TE insertions on

the negative strand compared with the positive strand.

Positional accuracy of non-reference TE predictions

To visualize more clearly the positional accuracy of McClintock component meth-

ods, the positions of predicted non-reference insertions were plotted around the

known location of synthetic insertions (Figures 2 and 3). Plots were produced for

each TE family and method to determine if the family of the synthetic insertion

affected results for a particular method. Table 4 showed that for split-read methods,

there was no increase in the accuracy at thresholds above 100bp and many predic-

tions were exactly correct. For read-pair methods, it appeared predictions could be

several hundred base-pairs from the correct location. As such, split-read (Figure 2)

and read-pair (Figure 3) results were plotted on different spatial scales. Since TEMP

could use both split-read and read-pair evidence, results for this method were parti-

tioned into two categories for visualization. For a small number of cases, RelocaTE

(one location) and PoPoolationTE (five locations) predicted non-reference TE in-

sertions at the same genomic location in multiple samples. These predictions must

include false positives based on the fact that each synthetic genome had only a sin-

gle insertions at different genomic locations. Inclusion of these high-frequency false

positive predictions dominated the visualization of results for these two methods,

and thus predictions for these six cases were filtered prior generating Figures 2 and

3 (see Methods for details).

Figure 2 shows that when ngs te mapper makes a prediction, it produces the TSD

at the correct location, apparently with no TSDs called too long or too short. Direct

analysis of TSD length distributions supports this conclusion: for simulated data,
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ngs te mapper always predicts the correct TSD length for non-reference insertions

(Additional Figure 2). For Ty1, Ty2 and Ty4, ngs te mapper detected insertions

on the positive or negative strand with similar accuracy. Thus, the main difference

in detection rates on the positive and negative strands for ngs te mapper observed

in Table 4 appears to be for Ty3 insertions, where many fewer insertions were

detected correctly on the negative strand. Because Ty3 targets an exact location

upstream of tRNA genes and the synthetic TE insertions were also made at this

location, some synthetic Ty3 insertions could have been nested in reference copies

of Ty3, potentially explaining the Ty3 -specific loss in accuracy. Plots for RelocaTE

show that for Ty1, Ty3 and Ty4, the predicted TSD is in approximately the correct

location but with a coordinate range that is frequently too short (see also Additional

Figure 2). As with ngs te mapper, RelocaTE shows the biggest difference in ability

to detect Ty3 insertions on the negative strand relative to the positive strand.

TEMP split-read predictions for Ty1, Ty3 and Ty4 are often predicted correctly but

with the TSD often annotated to be longer than its true length (see also Additional

Figure 2). Surprisingly, TEMP made no predictions for non-reference Ty2 insertions

using split-read evidence, perhaps because of the ambiguous signal arising from the

similarity of Ty1 and Ty2 LTR sequences. For TEMP, there is no difference in

detection ability for insertions on the positive or negative strand for any family.

Results of the positional accuracy for read-pair methods are shown in Figure 3. For

Ty1, Ty3 and Ty4 there were very few insertions (only three per family) that TEMP

did not have split-read supporting evidence for, and thus few insertions for these

families are plotted in Figure 3. In contrast, all Ty2 predictions made by TEMP in

the single insertion simulations had read-pair evidence. For all families, when only

read-pair evidence is used, TEMP generally predicts an insertion at the correct site,

but with some slight inaccuracy on either side. The majority of RetroSeq predic-

tions appear to be clustered close to the true insertion locations, but there appears

to be a slight bias for RetroSeq to predict insertions 3’ of where the true TE is

located on reference genome coordinates. This bias is potentially introduced by the

breakpoint determination step of RetroSeq, which always scans in the 5’ to 3’ direc-

tion (see section Additional File 1 Description of McClintock Component Methods).

PoPoolationTE produced the highest number false positive predictions (Table 4).

When these false positive non-reference predictions are filtered from the results, all

predictions for Ty1 and Ty2 in the windows around simulated insertions are elimi-

nated. The effect of removing false positives is probably most pronounced for Ty1

because Ty1 is the most common TE family in S. cerevisiae, and thus would be the

most likely family to have a reference insertion with sequence similarity to the syn-

thetic insertion in the vicinity of tRNA genes. PoPoolationTE makes no predictions

for Ty2, even including false positives. For Ty3 and Ty4, PoPoolationTE has the

capability of producing relatively accurate predictions, albeit with low resolution

(nearly 100bp around the true insertion site). For TE-locate, many predictions are

made within 500bp of the true insertion, but they are clearly spread further from

the true insertion location than other methods. TE-locate also appears to have a

slight bias to predict insertions 5’ of the true insertion location on reference genome

coordinates.
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Overlap between methods

To understand the concordance of predictions made by the McClintock compo-

nents, we investigated the overlap among methods for predictions that were made

correctly at the sites of synthetic insertions. As shown in Figures 2 and 3, differ-

ent methods have different positional accuracy, and thus we used different windows

to classify if a method made a “correct” prediction for a known insertion or not.

Predictions for ngs te mapper, RelocaTE, TEMP (both split-read and read-pair)

and PoPoolationTE were classified as correct if the had any overlap with the true

location of the TSD, while predictions for RetroSeq and TE-locate were classified

as correct if they occurred within a 100 or 500bp window, respectively, of the cor-

rect location of the TSD. Neither the orientation nor the TE family was taken into

account when classifying a prediction as correct or not. The overlap of correctly

detected insertions are shown in Figures 4A and 4B for split-read and read-pair

insertions, respectively. The overlap of correct predictions made by all split-read

methods versus all read-pair methods is shown in Figure 4C.

Figure 4A shows that the majority of split-read predictions are supported by at

least two methods (n=340, 57%) but that each method made many correct TE

predictions that were not made by any other method. RelocaTE and TEMP made

a greater number of correct overlapping predictions with each other than either of

these method did with ngs te mapper. Figure 4A also shows that 16% (n=94) of

synthetic insertions were not predicted by any split-read method at the threshold of

positional accuracy used here. Figure 4B shows that the vast majority of synthetic

TE insertions (n=428, 72%) are predicted by at least two of the read-pair methods,

but that only 24% (n=143) of insertions are supported by three or more methods.

RetroSeq and TE-locate make the highest number of unique correct predictions.

Approximately 10% (n=58) of synthetic insertion samples were not predicted by

any read-pair method at the threshold of positional accuracy used here. Finally,

Figure 4C shows that, while the overwhelming the majority are predicted by at least

one split-read and one read-pair method (n=470, 79%), there are many insertions

that are only predicted using one type of evidence or the other (n=104, 17%) given

the thresholds of positional accuracy used here. Nevertheless, use of all six methods

recovers nearly 96% of synthetic insertions, demonstration the utility of integrating

multiple TE identification methods enabled by McClintock.

Application of McClintock to 93 yeast genomes

The previous sections presented results on the accuracy of McClintock component

methods on simulated resequencing data. Simulations are useful for testing methods

under controlled settings, but do not capture all aspects of how methods perform

when applied to real data. Since much is known about the expected insertion pref-

erences of TEs in S. cerevisiae [44, 46–55], analysis of real WGS datasets can be

used as an alternative approach to evaluate if McClintock component methods can

recapitulate the known genome biology of yeast TEs. To do this, we analyzed 93

high-coverage S. cerevisiae WGS datasets from Strope et al. [42] using McClintock

to generate TE predictions for all six component methods. Figure 3 and Additional

Figure 5 show how many of non-reference and reference TEs per strain, respectively,

are detected by the different McClintock component methods across all 93 samples.
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In general, split-read methods predict between 5-20 non-reference TE insertions

per strain, whereas read-pair methods predict approximately 40-100 non-reference

TE insertions per strain (Figure 3). Numbers of reference TEs predicted per strain

in real data (Additional Figure 5) are generally lower than in simulated genomes

(Table 4 and Additional Table 1). The exceptions to this pattern are TEMP and

PoPoolationTE, which show similar or higher numbers of reference TE predictions

per strain in real data relative to simulations. We note that for a few strains in the

Strope et al. [42] dataset, TE-locate predicted several hundred non-reference inser-

tions; these strains did not appear to be outliers in terms of their non-reference TE

content based on other methods (results not shown).

We evaluated the quality of non-reference TE predictions made by McClintock

component methods on the Strope et al. [42] dataset using three aspects of the

known biology of TEs in S. cerevisiae: (i) activity of families, (ii) tRNA targeting,

and (iii) TSD length. Our expectations based on prior knowledge of yeast TE biology

are that methods that make high quality non-reference TE predictions should (i)

show few non-reference predictions for inactive TE families (Ty3 1p and Ty5 ), (ii)

show a high proportion of non-reference predictions in the vicinity of tRNA genes,

and (iii) show characteristic 5 bp TSDs for non-reference predictions made by split-

read methods.

Prediction of active and inactive families

Table 5 shows numbers of non-reference TE predictions made by McClintock com-

ponent methods across all strains in the Strope et al. [42] dataset. As expected,

all methods predicted multiple non-reference insertions for TE families that are

known to be active in this species. Additionally, ngs te mapper and TEMP make

no non-reference TE predictions for both inactive families in S. cerevisiae, support-

ing simulation results above that show these methods have low false positive rates.

RelocaTE makes non-reference TE predictions for Ty3 1p but not Ty5, PoPoola-

tionTE makes non-reference TE predictions for Ty5 but not Ty3 1p, and both

RetroSeq and TE-locate predict non-reference insertions for Ty3 1p and Ty5. Re-

locaTE is the only split-read method that predicts non-reference insertions for an

inactive family, suggesting that split-read methods generally have higher ability

to discriminate active from inactive TE families. Compared to the total numbers

predicted for other active TE families, the three pure read-pair methods predicted

fewer non-reference insertions for both Ty3 1p and Ty5, suggesting false positive are

not so numerous as to overwhelm true signal. The one exception is for TE-locate,

which predicted relatively high numbers of Ty5 insertions, which is likely related to

the outlier samples noted above where TE-locate predicts hundreds of presumably

false-positive insertions.

Predicted insertions in tRNA regions

Active TE families in S. cerevisiae are known to target tRNA genes [44, 47–50, 53–

55]. The highest density of Ty1 and Ty2 insertions are in the 200bp upstream of

the tRNA transcription start site [44, 47, 50, 53, 54]. Ty3 targets a specific location

just upstream of tRNA gene transcription start sites [44, 48, 49, 55]. Patterns of

Ty4 insertions have not been experimentally determined, although the locations of
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insertions in the reference genome suggest a similar pattern to that of Ty1 and Ty2

[44].

To evaluate if non-reference TE insertions predicted by McClintock component

methods show expected hallmarks of tRNA targeting, we plotted locations of non-

reference TE insertions identified in the Strope et al. [42] strains using split-read

evidence and read-pair evidence in Figures 6 and 7, respectively. The expected

profiles of insertion into tRNA gene regions is observed for all Ty families for

ngs te mapper, RelocaTE, TEMP and RetroSeq, albeit with the different levels

of resolution that are characteristic of each method. Consistent with simulation

data (Figure 2), TEMP appears to have difficulty predicting Ty2 using split-read

data in real yeast genomes, and this effect also appears to impact prediction of Ty1

insertions using split-read data in real data (Figure 6). PoPoolationTE can predict

meaningful profiles of insertion for Ty3 and Ty4 (Figure 7), as expected based on

simulation data (Figure 3). However, in contrast to simulation data where only

putative false positives are predicted (Figure 3), PoPoolationTE also predicts non-

reference insertions for Ty1 and Ty2 in real data (Figure 7). Since PoPoolationTE

predicts reference and non-reference insertions in the same way, and since many

Ty1 and Ty2 insertions exist in the reference genome upstream regions of tRNA

genes, it is possible that these Ty1 and Ty2 insertions predicted in the Strope et al.

[42] dataset are actually reference insertions that are mislabelled by PoPoolationTE

as non-reference insertions. Finally, non-reference insertions predicted by TE-locate

are only weakly enriched in tRNA regions for all families, and the positional profiles

produced by TE-locate are shifted relative to expectations and predictions made by

other methods.

To quantify the proportion of non-reference TEs that were predicted in tRNA re-

gions, we counted predictions 1000bp upstream and 500bp downstream of a tRNA

gene, taking into account the orientation of the tRNA gene but not the orientation

of the TE insertion. The expected percentage of TEs located in these regions if

they were inserted randomly in the genome would be 0.037% ((299 tRNA genes ×
1500bp window) ÷ 12,162,995bp genome). Previous analyses of tRNA targetting of

TEs in the S. cerevisiae reference genome [44] assessed whether TEs were within

750bp of a tRNA gene or other RNA polymerase III gene (excluding other inter-

vening TE sequences). Here we use extended regions for tRNA targeting based on

the inaccuracy in non-reference predictions observed for some methods in the simu-

lations above. For comparison with previous results, we first applied our definition

of tRNA targeting to the reference TE annotation from Carr et al. [45] (Table 5).

Estimated proportions of Ty elements in tRNA regions for the Carr et al. [45] ref-

erence annotation are lower than those reported by Kim et al. [44], however, they

still show highly biased targeting towards tRNA regions.

Non-reference TE predictions of all four active Ty elements show the expected

enrichment in tRNA regions for each McClintock component method (Table 5).

For all methods, Ty3 is the active TE family most strongly associated with tRNA

regions, consistent with experimental data and observations based on the refer-

ence genome [44, 48, 49, 55]. Split-read methods predict a higher proportion of

non-reference TEs in tRNA regions relative to expectations based on TEs in the

reference genome. For read-pair methods, at least one TE family showed a lower
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proportion of non-reference TEs in tRNA regions relative to reference TEs. We

interpret this observation to be due to the lower positional accuracy of read-pair

methods. TE-locate consistently predicted the lowest number of TEs in tRNA re-

gions for active Ty families, though predictions for this method still showed a bias

towards insertion in tRNA regions relative to random insertions. We interpret the

low tRNA enrichment for TE-locate to be a consequence of the low positional ac-

curacy of read pair methods combined with the presence of outlier samples for this

method that have very high numbers of non-reference predictions.

As discussed above, non-reference predictions were made by RelocaTE, RetroSeq,

and TE-locate for the inactive Ty3 1p family. Despite most likely being false posi-

tives, these predictions were predominantly in tRNA regions, suggesting they could

either be non-reference Ty3 insertions that are miscalled as non-reference Ty3 1p, or

reference Ty3 1p insertions called as non-reference Ty3 1p insertions. Non-reference

predictions were also made by RetroSeq, PoPoolationTE and TE-locate for the in-

active Ty5 family. The majority of these predictions are made outside of the tRNA

regions, as is expected based on the known location of Ty5 insertions in the ref-

erence genome prior knowledge about Ty5 target preferences [44, 52, 56]. These

non-reference TE predictions may be false positives (possibly caused by mapping

inconsistencies in heterochromatic regions where Ty5 elements typically insert) or

real non-reference “insertions” present in sequenced strains that arose by recombi-

nation events rather than transposition events [57].

Prediction of TSDs by split-read methods

Finally, we evaluated the performance of split-read methods to predict the known

TSD lengths of active yeast Ty families in real WGS data. All available experimental

and genomic indicates that active yeast Ty families create five bp TSDs on insertion

[44, 46, 48, 51, 52]. TSD length distributions of unique insertion sites are shown for

Ty1, Ty2, Ty3, and Ty4 in Additional Figure 4. As observed in simulated data (Fig-

ure 2), ngs te mapper predictions had the highest proportion of correct TSD lengths

predicted per family. However, in contrast to simulated data, ngs te mapper can

infrequently make incorrect TSD length predictions in real data. Confirming simu-

lation results, RelocaTE generally under-predicts the length of TSDs, and TEMP

consistently over-predicts the lengths of TSDs for all families in real data. For all

split-read methods, the modal value of the TSD length distribution reflects the true

TSD length for all families. Thus, the modal TSD length provided by each of the

split-read methods yields biologically meaningful inferences about TSD structure.

Conclusions
Here we described McClintock, an integrated pipeline for detection TE insertions

in WGS resequencing data. McClintock offers many advantages relative to running

multiple TE detection methods in isolation. Specific versions of compatible software

dependencies required to run each method are fully documented, allowing users to

easily set up their environment. The number of input files required to run all meth-

ods is reduced and complex processing of input files to create the correct custom

formats and file relationships is automated. In addition, the pipeline is structured

to allow parallel computations for multiple samples, so population datasets can be
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analyzed more quickly. Finally, results from individual methods are standardized to

facilitate comparisons across methods and easy visualization in the UCSC genome

browser. Overall, McClintock greatly lowers the barriers to to running multiple TE

detection methods, allowing users to gain more insight into how various methods

work for their samples. McClintock does not currently include all published TE de-

tection methods, although additional methods can be easily incorporated into the

pipeline due to the flexible architecture and open source nature of the project.

In addition, we have applied McClintock to simulated and real yeast WGS samples

to evaluate the performance of McClintock component methods. Simulations on the

unmodified S. cerevisiae reference genomes reveal that sequencing coverage influ-

ences detection of reference TEs, but that recovery of reference TE insertions and

false positive rates for non-reference TE insertions are generally low even at high se-

quencing coverage. Simulations on S. cerevisiae reference genomes including a single

non-reference insertion showed that pure split-read methods may detect fewer TE

insertions than read-pair methods, but they have much higher positional accuracy.

Single insertion simulations also revealed that the TE family affects the ability of

methods to detect non-reference TE insertions. We find substantial difference in

the ability of McClintock component methods to detect subsets of non-reference

insertions in the yeast genome, but that by combining multiple methods that use

split-read and read-pair data, non-reference TEs at nearly all biologically-realistic

locations can be detected in simulated data. Finally, application of McClintock to

a large sample of real yeast genomes reveals that most but not all McClintock

component methods can recovery known aspects of TE biology in yeast such as

family activity status, tRNA gene targeting, and TSD structure. Together, our re-

sults suggest that even in the context of a simplified model eukaryotic genome like

S. cerevisiae, current TE detection methods using short-read data do not provide

comprehensive recovery of all TE insertions in WGS resequencing samples. Further

performance studies in other genomic contexts including newer methods not cur-

rently included in McClintock are needed to generalize the results presented here,

and to provide a road map for developing more advanced systems for the detection

of TEs in unassembled short-read genomic data.

Methods
Analysis of simulated WGS datasets with single artificial TE insertions

To investigate the performance of McClintock component methods on data contain-

ing known, non-reference TE insertions, we created simulated S. cerevisiae genome,

each containing one synthetic non-reference TE insertion in an otherwise unmodified

S. cerevisiae reference genome. Since active S. cerevisiae TEs (Ty1, Ty2, Ty3 and

Ty4 ) are known to target tRNA genes [44, 47–50, 53–55], each synthetic insertion

was placed upstream of a different annotated tRNA gene in the reference genome,

taking the orientation of the tRNA gene into consideration. The annotation for 299

tRNAs was extracted from the SGD genome annotation for sacCer2 (SGD version

R61.1.1). Ty1, Ty2 and Ty4 have been shown to insert predominantly within the

first 200bp upstream of tRNA genes, and Ty3 appears to target more specifically

the region of RNA polymerase III transcription initiation, 16 or 17 nucleotides from

the 5’ ends of tRNA genes [44, 47–50, 53–55]. All active S. cerevisiae TEs produce
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five bp TSDs on insertion [44, 46, 48, 51, 52]. To mimic these insertion preferences

in our simulations, Ty1, Ty2, Ty3 and Ty4 were alternately selected for insertion,

a five bp TSD was created (either 200bp to 195bp upstream of a tRNA gene for

Ty1, Ty2 and Ty4, or 17bp to 12bp upstream of tRNA genes for Ty3 ), and the cor-

responding full length Ty canonical sequence was inserted in the reference genome.

299 insertions were produced with the TE sequence inserted on the positive strand

of the genome, and 299 were produced with the TE sequence reverse complemented

to test the effects of TE orientation on method performance.

We simulated resequencing of single-insertion synthetic genome using WgSim

(https://github.com/lh3/wgsim) [58] with parameters that resemble the proper-

ties of Illumina sequencing (as described by [59]). Read lengths were chosen to be

101 bases each with an insert size of 300 bases and 100X coverage to mimic the

properties of a large sample of WGS datasets collected by Strope et al. [42] used in

our analysis of real yeast genomes (see below). To generate an average read depth

of 100X across the length of sacCer2 reference genomes with additional single TE

insertions, in silico’ WGS samples were created with 6,024,220 read pairs for Ty1

insertions, 6,024,237 read pairs for Ty2 insertions, 6,023,936 read pairs for Ty3

insertions, and 6,024,369 read pairs for a Ty4 insertion.

McClintock (version e945d20da22dc1186b97960b44b86bc21c96ac27) was run on

each of these simulated datasets using reference TE annotations and canonical TE

sequences from Carr et al. [45], plus a manually produced hierarchy file based on

the reference TE annotation in [45]. We used the standard, unmodified reference

genome sequence option of McClintock for these single synthetic insertion simula-

tions. The mean of the number of non-reference and reference TEs predicted per

sample was calculated across all 299 simulated samples for each strand. The propor-

tion of correct predictions of non-reference TEs was calculated at four thresholds

of accuracy: (i) requiring the exact TSD to be annotated correctly, (ii) requiring a

prediction to be within a 100bp window either side of the TSD, (iii) within a 300bp

(the insert size of the simulated sequencing dataset) window either side of the TSD,

or (iv) within a 500bp window either side of the TSD. BEDtools window [60] was

used to calculate correct predictions within the given windows. A prediction was

classified as exactly correct only if the same TE family was predicted to occur at

the exact coordinates of the TSD of the synthetic TE insertion location. For non-

exact overlaps, BEDtools window allows a permissive definition of a true positive,

where a correct TE prediction is counted when any part of a predicted insertion

falls within the given threshold distance if the correct TE family is predicted. The

orientation of a predicted insertion was not taken into account for determining a

correct prediction because some methods do not predict orientation.

To visualize the accuracy of non-reference TE predictions, the results files for

the 299 positive strand and 299 negative strand single insertion samples were con-

verted into two BigWig files (one for each strand) using BEDtools and wigToBigWig

[61]. This was performed for each TE family and each component method of Mc-

Clintock. SeqPlots [62] was then used to produce plots of the genome coverage of

predictions for each TE family, centered around the simulated insertion locations for

that family. Visualization of predicted insertions negative strand simulations were

reverse complemented and depicted on the same plot as positive strand simulations
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in different colors. Plots were centered on the five bp TSD and extended ±10bp

for split-read methods, and ±500bp for read-pair methods, respectively. Results

for TEMP were partitioned based on whether or not split-read support was avail-

able for a prediction. Prior to visualization, we attempted to filter out any obvious

false positive predictions using the fact that each synthetic insertion location should

only be predicted in one simulated sample. Thus, any locations where a predicted

non-reference insertion was observed across multiple simulated samples indicated a

potential false positive. This filtering was necessary to prevent a non-reference in-

sertion that was predicted by RelocaTE in the same location in 149 single synthetic

insertion samples from dominating the visualization for this component method.

False positive filtering prior to visualization only affected five other potential inser-

tions for PoPoolationTE, and thus this filtering procedure does not substantially

alter positional accuracy results. To further investigate the accuracy of TSDs pre-

dicted by split-read methods, the length of the predicted TSD was plotted for each

active yeast TE family. To be consistent with analysis of real yeast genomes (see

below) and to mitigate effects of false positive predictions found at the same site

in multiple samples, TSD lengths predicted in simulated data were only plotted for

unique insertion sites rather than all insertions.

To investigate the concordance of non-reference TE predictions made by different

McClintock component methods, we first determined whether or not each method

had made a “correct” prediction in each of the simulated samples with a synthetic

TE insertion. Predictions for ngs te mapper, RelocaTE, TEMP (both split-read and

read-pair), and PoPoolationTE were classified as correct if they overlapped with the

true location of the TSD. Predictions for RetroSeq and TE-locate were classified

as correct if they occurred within a 100 or 500bp window of the correct location of

the TSD, respectively. The orientation of a prediction was not taken into account

when classifying a prediction as “correct” or not, because not all methods predict

strand. The overlap of these correct predictions was then plotted as venn diagrams

using jvenn [63], comparing split-read methods, read-pair methods and finally the

total set of correct predictions from all split-read versus all read-pair methods.

Analysis of real WGS datasets

To assess the relative performance characteristics of the component methods on real

data, McClintock was run on a large sample of S. cerevisiae datasets from Strope

et al. [42] that includes 93 S. cerevisiae strains from different geographical loca-

tions and clinical origins. Strope et al. [42] samples were sequenced on an Illumina

HiSeq 2000 with paired-end reads of 101 bases each, an average insert size of 300

bases, and a median coverage of greater than 117X. We used these general library

characteristics in our single synthetic insertion simulations (above), to allow more

direct comparison with analysis of these real yeast genomes. The raw fastq files

for the 93 sequenced strains were obtained from the EBI Sequence Read Archive

(SRA072302).

McClintock (version 354acec977e37c354f6f05046940b0dabf09b331) was run on

each of these samples using reference TE annotations and canonical TE sequences

from Carr et al. [45], and a manually produced hierarchy file based on the anno-

tation in [45]. The McClintock version used for analysis of real yeast data differs
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slightly from that used for simulated data in terms of three small improvements

that were required to handle variation in sample names (for ngs te mapper) and

differences in read lengths of paired end fragments (for PoPoolationTE) that were

encountered when analyzing real yeast genome data. We used the standard, un-

modified reference genome sequence option of McClintock for these analyses. The

average number of non-reference and reference TEs predicted per strain was plotted

as box plots for each method. In addition, the total numbers of non-reference and

reference TE insertions per TE family were summarized across all strains for each

McClintock component method, both genome-wide and in tRNA gene regions.

To biologically validate results of different component methods of McClintock, we

took advantage of the fact that Ty elements are known to insert in close proximity to

tRNA genes in S. cerevisiae [44, 47–50, 53–55]. A prediction was counted as within

a tRNA gene region if any part of the annotation was with 1000bp upstream or

500bp downstream of the transcription start site of one of the 299 annotated tRNA

genes, taking tRNA gene orientation into account. To visualize the patterns of non-

reference TE predictions around tRNA genes, all results for all 93 samples were

converted to a single genome coverage bigWig file for each TE and each component

method. SeqPlots [62] was used to produce plots of the genome coverage averaged

across the 299 tRNA genes. Plots were centered on the start of the tRNA gene

and extended 1000bp upstream and 500bp downstream, taking into account the

orientation of each tRNA gene. Results for TEMP were subset into two groups

based on whether split-read support for a prediction was available or not.

The lengths of TSDs for non-reference TE insertions predicted by the split-read

methods were plotted by TE family. To prevent any non-reference TE insertions

present at the same location in multiple samples from biasing the results, only

unique insertion sites were plotted. If a method called an insertion at nearly the

same location but with a longer or shorter TSD in different samples, these were

classed as unique sites.
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Figures

Figure 1 Overview of the McClintock pipeline. The flowchart shows important processes are
shown as boxes, decision points as diamonds, and data at important steps as parallelograms. Note
that the last three steps of the pipeline are applied independently to each method. Final results
from each component method are output independently by McClintock, allowing the user to easily
merge output or assess for overlap among methods.

Figure 2 Positional accuracy of non-reference TE insertions made by methods using split-read
evidence on single insertion synthetic genomes. Data for TEMP are for predictions that do have
split-read evidence and may or may not have read-pair evidence. The location of the synthetic
TSD is from position zero to five bp on each plot. The darker line for each method indicates
predictions averaged across the 299 simulated genomes with insertions on the positive strand; the
lighter line indicates predictions averaged across the 299 simulated genomes with insertions on the
negative strand. A value of one would indicate a perfect prediction in all samples since there is
one synthetic insertion per genome.

Figure 3 Positional accuracy of non-reference TE insertions made by methods using read-pair
evidence on single insertion synthetic genomes. Data for TEMP are for predictions that do not
have split-read evidence but do have read-pair evidence. Note that the Y-axes of plots are scaled
differently for each method. The location of the synthetic TSD is from position zero to five bp on
each plot. The darker line for each method indicates predictions averaged across the 299 simulated
genomes with insertions on the positive strand; the lighter line indicates predictions averaged
across the 299 simulated genomes with insertions on the negative strand. A value of one would
indicate a perfect prediction in all samples since there is one synthetic insertion per genome.

Figure 4 Concordance of correctly predicted non-reference insertions among McClintock
component methods. (A) shows the concordance of non-reference predictions by methods that
use split-read evidence that overlap with the true location of a synthetic insertion. (B) shows the
concordance of non-reference predictions made by methods that use read-pair evidence that either
overlap (TEMP, PoPoolationTE), or are within 100bp (RetroSeq), or 500bp (TE-locate), of the
the true location of a synthetic insertion. (C) shows the concordance of correctly predicted
synthetic non-reference TEs with split-read or read-pair evidence. Predictions for TEMP were
partitioned based on whether they had split-read evidence (split-read) or not (read-pair). Counts
in all diagrams total 598, the number of simulated samples with single synthetic insertions.
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Figure 5 Numbers of non-reference TE insertions per strain predicted by McClintock
component methods in real yeast genomes. Predictions for TEMP were partitioned based on
whether they had split-read evidence (split-read) or not (read-pair). Data are from 93 yeast strains
taken from Strope et al. [42]. Methods are classified based on whether they use split-read or
read-pair evidence to make a non-reference TE prediction. The box plot is shown on a log10 scale.
The thick line indicates the median, the colored box is the interquartile range, the whiskers mark
the most extreme data point which is no more than 1.5 times the interquartile range from the
box, and the circles are outliers. Note that for TE-locate, several outlier samples generated
hundreds of predicted non-reference TE insertions.

Figure 6 Locations of non-reference TE predictions relative to tRNA genes made by methods
using split-read evidence on real yeast genomes. Data for TEMP are for predictions that do have
split-read evidence and may or may not have read-pair evidence. The transcription start site of
each tRNA gene is aligned at position zero, taking into tRNA gene account orientation, for a
window extending 1kb upstream and 500bp downstream. The frequency of a prediction at each
base is counted across all 93 strains in the Strope et al. [42] dataset, then averaged across the 299
tRNA genes and plotted as a line for each method and TE family. These plots show all predictions
and therefore include allelic predictions present in more than one strain. Also, any given strain
may have more than one insertion at the same relative location in a tRNA gene, and thus the
scale for these plots can go above one.

Figure 7 Locations of non-reference TE predictions relative to tRNA genes made by methods
using read-pair evidence on real yeast genomes. Data for TEMP are for predictions that do not
have split-read evidence but do have read-pair evidence. The transcription start site of each tRNA
gene is aligned at zero on the plots, taking into account orientation, for a window extending 1kb
upstream and 500bp downstream. The frequency of a prediction at each base is counted across all
93 strains in the Strope et al. [42] dataset, then averaged across the 299 tRNA genes and plotted
as a line for each method and TE family. These plots show all predictions and therefore include
allelic predictions present in more than one strain. Also, any given strain may have more than one
insertion at the same relative location in a tRNA gene, and thus the scale for these plots can go
above one.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2017. ; https://doi.org/10.1101/095372doi: bioRxiv preprint 

https://doi.org/10.1101/095372
http://creativecommons.org/licenses/by/4.0/


N
elso

n
et

a
l.

P
a

g
e

2
6

o
f

3
0

Tables

Table 1: An overview of the features of the component TE detection methods in the McClintock pipeline. Split-read and read-pair refer to what type of

evidence is used to make TE insertion predictions (see Implementation in Main Text for details).

Method ngs te mapper RelocaTE TEMP RetroSeq PoPoolationTE TE-locate
Split-read 4 4 4
Read-pair 4 4 4 4
Non-reference TEs 4 4 4 4 4 4

Reference TEs 4 4 4i 4 4

Orientation 4 4ii 4 4iii

TSD 4 4 4iv

Detects TE families not in ref-
erence genome

4 4 4 4v 4

i TEMP reports whether a reference TE is absent from the resequenced sample rather than providing direct evidence for the presence of a reference TE. ii RelocaTE output
provides information about the orientation of non-reference TEs, but not for reference TEs. McClintock annotates the orientation of reference TEs in RelocaTE output using
the original reference TE annotation. iii TE-locate provides information about the orientation of non-reference TEs where possible, but not for reference TEs. McClintock

annotates the orientation of reference TEs in TE-locate output using the original reference TE annotation. iv TEMP only makes TSD predictions for insertions with split-read
support v RetroSeq can detect TE families not present in the reference genome when using Exonerate to generate a reference TE annotation, but not when using a

user-supplied reference TE annotation that is the default option in McClintock.
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Table 2: Software dependencies required to install and run each component TE detection method in the McClintock pipeline.

Software ngs te mapper RelocaTE TEMP RetroSeq PoPoolationTE TE-locate Version used in
this study

Linux 4 4 4 4 4 4 CentOS 6
Perl 4 4 4 4 4 5.18.1
R [64] 4 3.0.2
BioPerl [65] 4 4 1.006001
RepeatMasker [66] 4 4.0.2
BEDTools [60] 4 4 2.17.0
SAMTools [58] 4 4i 4 4 0.1.19-44428cd
BCFTools [58] 4 0.1.19-44428cd
twoBitToFa [67] 4 294
BLAT [68] 4 35x1
Exonerate [69] 4 2.2.0
Bowtie [70] 4 1.0.0
BWA [71] 4 4 4 4 4 0.7.4-r385ii

i Only compatible with SAMTools 0.1.19 or earlier [35]. ii This specific version of BWA is needed to ensure compatibility between PoPoolationTE, which uses BWA-ALN, and
other component methods that use BWA-MEM.
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Table 3: Data dependencies required to successfully run each component of the McClintock pipeline.

ngs te mapper RelocaTE TEMP RetroSeq PoPoolationTE TE-locate
Reference genome (fasta) 4 4 4 4 4 4

Canonical TE sequences (fasta) 4 4i 4 4ii 4
Annotation of reference TEs (GFF) 4 4

Annotation of reference TEs (BED) 4 4iii

Annotation of reference TEs (custom format) 4
Unaligned reads (single-end fastq) 4 4
Unaligned reads (paired-end fastq) 4
Aligned reads (BAM) 4 4
Aligned reads (lexically sorted SAM) 4
TE hierarchy (custom format) 4 4

i Must include an entry in the format “TSD=...” for each TE in the file on the same line as the header, where “...” is the TSD sequence if known, or a string of periods with
equal to the TSD length if the TSD sequence is unknown. If neither length nor the sequence of the TSD is known, “TSD=UNK” can be supplied. ii Must be formatted as one
fasta file per TE family and a file-of-files listing their locations. iii Must be one BED file for each entry in the reference TE annotation and a file-of-files listing their locations.
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Table 4: Average numbers of predictions and correct predictions, by method, for simulated yeast WGS samples with a single synthetic TE insertion upstream

of tRNA genes. Simulated WGS samples had 100X coverage, and McClintock was run using the reference TE annotation from Carr et al. [45] and the

unmodified reference genome option. The first two rows show the mean number of reference and non-reference predictions per sample, averaged across all

simulated samples for that strand. Rows three to six show the average number of non-reference predictions of the correct TE family across sample that fell

within the given distance of the known synthetic TE insertion site. For each method, the first column corresponds to insertions on the positive strand and

the second column corresponds to insertions on the negative strand. For a prediction to be considered “exact” the location of the TSD had to be predicted

correctly. Numbers for TEMP combine predictions with split-read and read-pair support.

ngs te mapper RelocaTE TEMP RetroSeq PoPoolationTE TE-locate

Insertion strand + - + - + - + - + - + -
Reference TEs mean 41.26 41.26 130.42 130.42 482.98 482.98 N.A. N.A. 163.50 163.50 271.32 271.32
Non-reference TEs mean 0.42 0.32 1.12 1.11 0.90 0.90 0.87 0.86 1.18 1.14 0.98 0.92
Exact 0.40 0.29 0.30 0.24 0.36 0.36 0.00 0.00 0.00 0.00 0.00 0.00
Within 100bp 0.40 0.29 0.63 0.61 0.90 0.90 0.68 0.66 0.16 0.16 0.07 0.06
Within 300bp 0.40 0.29 0.63 0.61 0.90 0.90 0.69 0.67 0.16 0.16 0.70 0.54
Within 500bp 0.40 0.29 0.63 0.61 0.90 0.90 0.69 0.67 0.16 0.16 0.82 0.78
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Table 5: Number and location of non-reference TEs predicted by McClintock component methods in 93 yeast genomes from Strope et al. [42]. Each cell

shows the number of non-reference TEs predicted in tRNA regions followed by the total number of non-reference TEs predicted genome wide. Data are for

numbers of insertions, not numbers of non-redundant insertion sites, so TE insertion alleles present in more than one sample are counted independently. A

prediction is counted in a tRNA region if any portion of the annotation is within 1000bp upstream and 500bp downstream of the tRNA start site, taking into

account the orientation of the tRNA gene. The first column applies the same analysis to the reference TE annotations from Carr et al. [45]. N.A. indicates

that no non-reference TE insertions were predicted by a method for that TE family.

Carr ngs te mapper RelocaTE TEMP RetroSeq PoPoolationTE TE-locate
Ty1 218/313 (70%) 93/101 (92%) 15/18 (83%) 827/1093 (76%) 1854/2835 (65%) 139/194 (72%) 2082/16388 (13%)
Ty2 30/46 (65%) 58/77 (75%) 303/425 (71%) 1343/1853 (72%) 839/1169 (72%) 27/36 (75%) 1110/8132 (14%)
Ty3 43/45 (96%) 378/387 (98%) 670/678 (99%) 991/1008 (98%) 1299/1445 (90%) 1006/1013 (99%) 1748/3813 (46%)

Ty3 1p 12/15 (80%) 0/0 (N.A.) 23/23 (100%) 0/0 (N.A.) 12/16 (75%) 0/0 (N.A.) 83/86 (97%)
Ty4 29/49 (59%) 95/118 (81%) 143/190 (75%) 259/310 (84%) 238/292 (82%) 15/20 (75%) 324/1083 (30%)
Ty5 0/15 (0%) 0/0 (N.A.) 0/0 (N.A.) 0/0 (N.A.) 3/74 (4%) 0/12 (0%) 0/887 (0%) .
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