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Abstract9

Motivation:10

Short-read sequencing enables assessment of genetic and biochemical traits of individual genomic11

regions, such as the location of genetic variation, protein binding, and chemical modifications. Ev-12

ery region in a genome assembly has a property called mappability which measures the extent to13

which it can be uniquely mapped by sequence reads. In regions of lower mappability, estimates of14

genomic and epigenomic characteristics from sequencing assays are less reliable. At best, sequenc-15

ing assays will produce misleadingly low numbers of reads in these regions. At worst, these regions16

have increased susceptibility to spurious mapping from reads from other regions of the genome17

with sequencing errors or unexpected genetic variation. Bisulfite sequencing approaches used to18

identify DNA methylation exacerbate these problems by introducing large numbers of reads that19

map to multiple regions. While many tools consider mappability during the read mapping process,20

subsequent analysis often loses this information. Both to correct assumptions of uniformity in down-21

stream analysis, and to identify regions where the analysis is less reliable, it is necessary to know22

the mappability of both ordinary and bisulfite-converted genomes.23
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Results:24

We introduce the Umap software for efficiently identifying uniquely mappable regions of any genome.25

Its Bismap extension identifies mappability of the bisulfite-converted genome. With a read length of26

24 bp, 15.5% of the unmodified genome and 30% of the bisulfite-converted genome is not uniquely27

mappable. This complicates interpretation of functional genomics experiments using short-read se-28

quencing, especially in regulatory regions. For example, 42% of human CpG islands overlap with29

regions that are not uniquely mappable. Similarly, in some ENCODE ChIP-seq datasets, up to30

30% of peaks overlap with regions that are not uniquely mappable. We also explored differentially31

methylated regions from a case-control study and identified regions that were not uniquely map-32

pable. In the widely used 450K methylation array, 962 probes are not uniquely mappable. Genome33

mappability is higher with longer sequencing reads, but most publicly available ChIP-seq and re-34

duced representation bisulfite sequencing datasets have shorter reads. Therefore, uneven and low35

mappability remains a concern in a majority of existing data.36

Availability:37

A Umap and Bismap track hub for human genome assemblies GRCh37/hg19 and GRCh38/hg38,38

and mouse assemblies GRCm37/mm9 and GRCm38/mm10 is available at39

http://bismap.hoffmanlab.org for use with the UCSC and Ensembl genome browsers. We have de-40

posited in Zenodo the current version of our software (http://doi.org/10.5281/zenodo.60940)41

and the mappability data used in this project (http://doi.org/10.5281/zenodo.60943). In addi-42

tion, the software (https://bitbucket.org/hoffmanlab/umap) is freely available under the GNU43

General Public License, version 3 (GPLv3).44

Contact:45

michael.hoffman@utoronto.ca46

1 Introduction47

High-throughput sequencing enables low-cost collection of high numbers of sequencing reads but48

these reads are often short. Short-read sequencing limits the fraction of the genome that we can49

2

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2016. ; https://doi.org/10.1101/095463doi: bioRxiv preprint 

http://bismap.hoffmanlab.org
https://zenodo.org
http://doi.org/10.5281/zenodo.60940
http://doi.org/10.5281/zenodo.60943
https://bitbucket.org/hoffmanlab/umap
mailto:michael.hoffman@utoronto.ca
https://doi.org/10.1101/095463


a b

c

Multi-read mappability

Single-read mappability

Bismap Umap

0

250

500

750

1000

N
um

be
r o

f E
N

C
O

D
E

C
hI

P
-s

eq
 d

at
as

et
s

0

25

50

75

100

40 60 80 100
Read length

P
er

ce
nt

 o
f g

en
om

ic
 m

ap
pa

bi
lit

y

>chr1
AACCGGTT...

AACCGG... ACCGGT... CCGGTT...

1 match 3 matches 1 match

101...

chr1 1 24 k24 1000 +
chr1 3 26 k24 1000 +

1. Generate all k-mers
of the genome

2. Align each k-mer to
the genome

3. Represent whether
k-mer at each position
is unique

4.a List all uniquely mappable
reads in BED file.

4.b Save multi-read
mappability in Wiggle file

fixedStep chrom=chr1 start=1 step=1
0.04167
0.04167
0.0833
...

Scale
chr1:

100 bases mm10

2,000,050 2,000,100 2,000,150 2,000,200 2,000,250

Uniquely mappable region with high multi-read mappability

Uniquely mappable region with low multi-read mappability

Multi-read mappability with 100-mers

Case1

Case2

0.1 _

0.0  _
Single-read mappability with 100-mers

Umap S100

Umap M100

Figure 1: Mappability of the genome by Umap. (a) The Umap workflow identifies all unique
k-mers of a genome given a read length of k. (b) Mappability of the human genome and methylome
for read lengths between 24 and 100. (c) All of the uniquely mappable reads in two regions with high
and low multi-read mappability is shown. In Case 1 (blue), all possible reads covering the region
are uniquely mappable. In Case 2 (magenta), only two reads out of 10 are uniquely mappable.

unambiguously sequence by aligning the reads to the reference genome (Figure 1b). Still, we can50

identify much of the regulatory regions of the genome such as transcription factor binding sites,51

histone modifications and other important regulatory regions. However, reads that are ambiguously52

mapped produce a false positive signal that misleads analysis. Some regions of the genome with53

low complexity including repeat elements are not uniquely mappable at a given read length. Other54

regions overlap few uniquely mappable reads, and consequently the mappability is low. To map the55

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2016. ; https://doi.org/10.1101/095463doi: bioRxiv preprint 

https://doi.org/10.1101/095463


>chr1
AACCGGTT...

AACCGG... ACCGGT... CCGGTT...

...CCGGTT ...ACCGGT ...AACCGG

...TTGGTT ...ATTGGT ...AATTGG

...CCAATT ...ACCAAT ...AACCAA

AATTGG... ATTGGT... TTGGTT...

AACCAA... ACCAAT... CCAATT...

111...

chr1 1 24 k24 1000 +
chr1 1 24 k24 1000 −
chr1 2 25 k24 1000 +
chr1 3 26 k24 1000 +
chr1 3 26 k24 1000 −

1. Generate all k-mers of the genome

2. Reverse complement k-mers

3. Convert C T→

4. Convert G A→

5. Align each
k-mer to the
relevant modified
genome

6. Represent whether k-mer
at each position is unique

7. List all uniquely mappable 
reads in BED file

Reverse complement

C T→

G A→

1 match

1 match

1 match

2 matches

1 match

1 match

101...

fixedStep chrom=chr1 start=1 ...
0.04167
0.04167
0.0833
...

8. Save multi-read mappability
in Wiggle file

Figure 2: Mappability of the methylome by Bismap. Bismap identifies uniquely mappable
k-mers of a bisulfite-converted genome. It simulates the same changes that may occur in bisulfite
treatment on the + strand (C→T) and − strand (G→A). To account for sequence of the − strand, we
generate an extra set of reverse-complemented chromosomes and then simulate bisulfite conversion
on these chromosomes. We don’t simulate reverse complementation after bisulfite conversion, be-
cause the experimental protocol does not involve post-conversion DNA amplification. We then align
k-mers by disabling complement search and combine the resulting data to quantify the mappability
of a bisulfite-converted genome.

regions with low mappability, a high sequencing depth is required to assure that sequencing reads56

completely overlap with few uniquely mappable reads in that region. If sequencing depth is low and57

genomic variation or sequencing error is high, the signal from a low mappability region is biased by58

reads falsely mapped to that region.59

Most short-read alignment algorithms determine if any read maps to one or more regions in60

the genome. However, one must consider this in context of the surrounding regions, even if a read61

uniquely maps. A single nucleotide change might change a read from uniquely mappable to not. A62
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uniquely mappable read that aligns to a region with low mappability, has a high chance of mapping63

incorrectly due to genetic variation or sequencing error.64

In bisulfite sequencing, this problem increases. Bisulfite treatment reduces unmethylated cyto-65

sine to uracil (sequenced as T) while 5-methylcytosine remains intact (sequenced as C). Bisulfite66

treatment significantly increases the number of repeated short sequences in the genome. Many67

regions uniquely mappable in an unmodified genome no longer uniquely map after bisulfite conver-68

sion. Incorrect mapping of bisulfite sequencing reads creates a false methylation signal that can bias69

downstream analysis and interpretation. When confounding factors such as read length, sequencing70

depth or mutation rate differ among cases, this bias becomes even more evident.71

In an unmodified human genome, 15.5% of the 24-mers do not map uniquely (Figure 1b). This72

quantity increases to 30% for a bisulfite-converted genome (Figure 1b). In certain cases, the differ-73

ence between a uniquely mappable and a non-uniquely mappable read can be only one nucleotide.74

Sequencer base-calling errors and genetic variation often affect alignment, but we cannot comprehen-75

sively account for them. These biases further exacerbate alignment when the read length is shorter,76

emphasizing the importance of considering genomic mappability in any analysis involving short-read77

sequencing. While previous tools such as the GEM mappability software1 identify mappability of78

the genome, no existing software solves the methylome mappability problem. To solve this problem,79

we developed the Umap software, with a bisulfite mappability extension called Bismap.80

2 Methods81

2.1 Single and multi-read mappability82

Umap efficiently identifies the uniquely mappable reads of any genome for a range of sequencing read83

lengths. The Bismap extension of Umap produces uniquely mappable reads of a bisulfite-converted84

genome. Both Umap and Bismap produce an integer vector for each chromosome that efficiently85

defines the mappability for any region and can be converted to a browser extensible data (BED)86

file. One way to assess mappability of a genomic region is by the single-read mappability — the87

fraction of that region which overlaps with at least one uniquely mappable k-mer.88

Analysis of sequencing data involves inferences about a base’s genetic or regulatory state from89

observations of all reads overlapping that base. Therefore, we must consider the mappability of all90
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reads overlapping a position or region, when estimating how many mapped reads we might expect.91

Single-read mappability assumes that uniquely mappable reads are uniformly distributed in the92

genome, while in reality we observe frequent localized enrichment of uniquely mappable reads.93

A region can have 100% single-read mappability, but a below-average number of uniquely map-94

pable reads that can overlap that region (Figure 1c). For example, a 1 kbp region with 100% single-95

read mappability can be mappable due to a minimum of 10 unique non-overlapping 100-mers or a96

maximum of 1100 unique highly overlapping 100-mers. Therefore, we define the multi-read map-97

pability — the probability that a randomly selected read of length k in a given region is uniquely98

mappable. For the genomic region Gi:j starting at i and ending at j, there are j− i+k+1 different99

k-mers that overlap with Gi:j . The multi-read mappability of Gi:j is the fraction of those k-mers100

that are uniquely mappable (Figure 1c).101

2.1.1 Mappability of the unmodified genome102

Umap uses three steps to identify the mappability of a genome for a given read length k (Figure 1a).103

First, it generates all possible k-mers of the genome. Second, it maps these unique k-mers to the104

genome with Bowtie2 version 1.1.0. Third, Umap marks the start position of each k-mer that aligns105

to only one region in the genome. Umap repeats these steps for a range of different k-mers and106

stores the data of each chromosome in a binary vector X with the same length as the chromosome’s107

sequence. For read length k, Xi = 1 means that the sequence starting at Xi and ending at Xi+k108

is uniquely mappable on the + strand. Since we align to both strands of the genome, the reverse109

complement of this same sequence starting at Xi+k in the − strand is also uniquely mappable.110

Xi = 0 means that the sequence starting at Xi and ending at Xi+k can be mapped to at least two111

different regions in the genome.112

Eventually, Umap merges data of several read lengths to make a compact integer vector for each113

chromosome (Figure 1a, step 3). In this vector, non-zero values at position Xi indicate the smallest114

k-mer that position Xi to Xi+K is uniquely mappable with, where K is the largest k-mer in the115

range. For example Xi = 24 means that the region Xi to Xi+24 is uniquely mappable. This also116

means that any read longer than 24 nucleotides that starts at Xi is also uniquely mappable.117

Umap translates these integer vectors into six-column BED files for the whole genome (Figure 1a,118

step 4). Additionally, Umap can calculate single-read mappability and multi-read mappability for119
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specified regions in any input BED file.120

Although Bowtie can align with mismatches, here we do not use this capability. By defining121

mappability with exact matches only, we provide baseline identification of regions that are not122

uniquely mappable no matter how high the sequencing coverage. Nonetheless, the Umap software123

allows users to change alignment options, including mismatch parameters.124

2.2 Mappability of the bisulfite-converted genome125

To identify the single-read mappability of a bisulfite-converted genome, we create two altered genome126

sequences (Figure 2). In the first sequence, we convert all cytosines to thymine (C→T). In the127

other sequence we convert all guanines to adenine (G→A). Our approach follows those of Bismark3
128

and BWA-meth4. We convert the genome sequence this way because bisulfite treatment converts129

un-methylated cytosine to uracil which is read as thymine. Similarly the guanine that is base-130

pairing with the un-methylated cytosine in the − strand converts to adenine. These two conversions,131

however, never occur at the same time on the same read. We identify the uniquely mappable regions132

of these two genomes separately, and then combine the data to represent the single-read mappability133

of the + and − strands in the bisulfite-converted genome. For an unmodified genome, however, the134

mappability of the + and − strand is identical by definition.135

Bismap requires special handling of reverse complementation of C→T or G→A converted genomes.136

Conversion of C→T on the sequence 5′− AATTCCGG−3′ produces 5′− AATTTTGG−3′. In the Bowtie137

index, the reverse complement of the latter would be 5′− CCAAAATT−3′. For the purpose of identify-138

ing the mappability of the bisulfite-converted genome, however, we expect the reverse complement139

to be derived from the original converted sequence, yielding 5′− CCGGAATT−3′, and then after C→T140

conversion, 5′− TTGGAATT−3′. Both + and − strands undergo bisulfite treatment simultaneously,141

and there is no DNA replication to create new reverse complements after bisulfite treatment. To han-142

dle this issue, Bismap creates its own reverse complemented chromosomes and suppresses Bowtie’s143

usual reverse complement mapping.144

Umap and Bismap each take ∼ 200 core-hours on a 2.6 GHz Intel(R) Xeon CPU E5-2650 v2145

processor to run for some read length. This is a massively parallelizable task, so on a computing146

cluster with 400 cores, the task takes only 30 min of wall-clock time.147
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Figure 3: Mappability of ChIP-seq peaks in 1193 ENCODE datasets.(a) Single-read map-
pability and (b) multi-read mappability for narrow peaks identified in ENCODE ChIP-seq datasets.
(c) A BRF2 narrow peak identified by MACS (purple) that is not uniquely mappable. Signal tracks
(gray) show two different replicates of this ChIP-seq experiment in K562 chronic myeloid leukemia
cells (ENCODE accessions ENCFF000YHB and ENCFF000YHD, read length 26 bp). Umap tracks
show single-read and multi-read mappability for two different read lengths of 24 bp and 50 bp.

2.3 ENCODE ChIP-seq experiments148

We downloaded ENCODE5 chromatin immunoprecipitation-sequencing (ChIP-seq) FASTQ files149

from the ENCODE Data Coordination Center6 and aligned them to GRCh38 using Bowtie7 2. We150

switched to Bowtie 2 for this analysis because it supports gapped alignment, which we didn’t need151
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for mappability calculations.152

We used Samtools8 to remove duplicated sequences and those with a mapping quality of < 10.153

This assures that the probability of correct mapping to the genome for any read is > 0.9. Pooling154

replicates from the same experiment, we used MACS9 version 2 with --nomodel and --qvalue155

0.001 options to identify ChIP-seq peaks. Finally, Umap measured single-read mappability and156

multi-read mappability within the peaks.157

2.4 CpG islands158

We downloaded CpG islands10 for GRCh38 from the UCSC Genome Browser11 (http://epigraph.159

mpi-inf.mpg.de/download/CpG_islands_revisited). These CpG islands come from a hidden160

Markov model (HMM) fitted to genomic G+C content. We then annotated CpG features around161

the CpG islands following published definitions10,12 (Table 1). Then we used Umap and Bismap to162

measure mappability across these annotations.163

Annotation Definition

CpG island HMM fitted to G+C content
CpG shore 2 kbp area surrounding CpG islands
CpG shelf 2 kbp area surrounding CpG shores

CpG resort Collection of islands, shores and shelves

Table 1: CpG annotations.

2.5 Whole-genome bisulfite sequencing analysis164

First, we obtained datasets of whole-genome bisulfite sequencing of murine mammary tissues13165

from the Sequence Read Archive (accession numbers SRR1946823, SRR1946824, SRR1946819, and166

SRR1946820). Second, we trimmed Illumina TruSeq adapters from FASTQ files with Trim Galore14.167

Third, for each experiment, we break down sequencing reads to produce two different FASTQ files168

with read lengths of 50 bp and 100 bp. For example, if the read length of an experiment is 182 bp169

and we want to generate a FASTQ file with read length of 50 bp, each sequencing read would170

produce three different 50-bp sequencing reads (we would not use the remaining 32 bp). We aligned171

these modified FASTQ files with BWA-meth4 to the GRCm38 genome. We extracted CpG-context172

methylation using PileOmeth15. We use BSmooth16 (version 0.4.2) for identifying differentially173
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methylated regions. Finally, we used Bismap to measure mappability of differentially methylated174

regions with at least four CpG dinucleotides.175

2.6 Other methylation assays176

DiseaseMeth17, a human methylation database, provides access to 17,024 methylation datasets from177

88 different human diseases. These data are a collection of experiments using various platforms, in-178

cluding 2728 assays using the Illumina Infinium HumanMethylation27 (27K) BeadChip, and 9795179

assays using the Illumina Infinium HumanMethylation450 (450K) BeadChip. DiseaseMeth anno-180

tates the genomic position of CpG dinucleotides covered by a 122 bp probe in the GRCh37 (hg19)181

genome. To identify the mappability of these probes, we extended the genomic position of the CpG182

dinucleotide to 61 bp on each direction (each probe is a 122 bp fragment centered on the annotated183

CpG island18). We then measured single-read and multi-read mappability of these probes with184

Bismap and a read length of 122 bp. In addition, we examined whether the exact 122-mer probe185

sequence mapped uniquely.186

DiseaseMeth also contains 71 experimental datasets using reduced representation bisulfite se-187

quencing (RRBS)19. For CpG dinucleotides captured in RRBS experiments and annotated by Dis-188

easeMeth, we examined the multi-read mappability for read lengths of 24 bp, 36 bp, 50 bp, and189

100 bp.190

2.7 Umap and Bismap track hub191

We used read lengths of 24 bp, 36 bp, 50 bp, and 100 bp to generate mappability tracks for unmod-192

ified and bisulfite-converted genomes of human (GRCh37 and GRCh38) and mouse (GRCm37 and193

GRCm38). We store uniquely mappable regions of these genomes in bigBed format as a track hub194

that can be loaded to UCSC or Ensembl genome browsers. The track hub contains one supertrack for195

Umap and one supertrack for Bismap. The track hub is available at http://bismap.hoffmanlab.org.196
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Figure 4: Mappability of the CpG island annotations. (a) Single-read mappability and (b)
multi-read mappability of CpG islands, CpG shores, CpG shelfs, and CpG resorts for a variety of
read lengths. For comparison, asterisks indicate the average mappability of the whole genome at
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strand.
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3 Results197

3.1 Mappability of ENCODE ChIP-seq peaks198

ChIP-seq identifies proteins present in chromatin at particular loci and often involves short-read199

sequencing. The ENCODE Project5 has performed around 1200 ChIP-seq assays on approximately200

200 chromatin binding factors in more than 60 different human cell types. To show how mappability201

affects downstream analysis of experiments such as ChIP-seq, we quantified the mappability of nar-202

row peaks identified in ENCODE ChIP-seq experiments. Among 1193 experiments, most peaks map203

uniquely. For some experiments, however, a high number of peaks overlap with non-uniquely map-204

pable regions. Most of these experiments correspond to ChIP-seq of histone modifications with read205

lengths from 24 bp to 36 bp. BRF2 (ENCODE accessions ENCFF000YHB and ENCFF000YHD) is206

one of the few transcription factors with a high number of peaks that do not map uniquely (Fig-207

ure 3c). This experiment used a read length of only 26 base pairs. The peak identified by MACS2208

(Figure 3c) extends into a region that is not uniquely mappable. Although the ChIP-seq signal209

is completely within a uniquely mappable region, MAC2 identifies a much broader peak than is210

warranted.211

3.2 Mappability of CpG islands212

CpG islands substantially overlap transcription start sites and differentially methylated regions10.213

Because CpG islands have a high number of CpGs, they are highly affected by bisulfite conversion.214

Thus we investigated CpG islands and the neighboring CpG shores and CpG shelves.215

Even with a relatively long read length of 100 bp, 3163/167, 694 CpG annotations have zero216

uniquely mappable bases, as calculated by Bismap. For shorter read lengths, even more of the217

bisulfite-converted genome lacks unique mapping. For a read length of 100 bp, 16,396 CpG annota-218

tions are not uniquely mappable with Bismap. This represents 9.8% of all CpG annotations. The219

average single-read mappability of CpG annotations that are not uniquely mappable is 52%.220

CpG islands and regions around them are often not uniquely mappable, to a lesser extent, in221

an unmodified genome. For example, the average single-read mappability of CpG annotations that222

are not uniquely mappable in the unmodified genome is 55% with a read length of 100 bp. This is223

substantially lower than the average single-read mappability of the genome (92%). Also, there are224
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216 CpG islands that have some overlap with uniquely mappable regions of the unmodified genome,225

but are not uniquely mappable in the bisulfite-converted genome.226

The difference in genomic mappability and CpG island annotation mappability is even more227

extensive for shorter read lengths. For example, for a read length of 24 bp, more than 80% of CpG228

island annotations are not uniquely mappable, but the percent of the genome that is not uniquely229

mappable is only 30% (Figure 4).230

3.3 Mappability of differentially methylated regions231

Many studies measure differences in methylation associated with a disease phenotype. These studies232

test whether each CpG’s methylation status correlates with the phenotype. Collective difference of233

CpG dinucleotides in a given region, however, may provide higher statistical power in assessing the234

association of methylation profile with disease states20. Cluster of CpG dinucleotides are also a235

more predictive feature of disease states than differences in individual CpGs20. BSmooth16 is one236

of the tools that identifies differentially methylated regions by estimating a smoothed methylation237

profile.238

We compared differences in CpG methylation of basal and luminal alveolar murine mammary239

tissues13 using BSmooth16. Out of a total of 965,181 CpG dinucleotides identified with a read length240

of 50 bp (see Methods), 4,091 of them are not uniquely mappable. For a read length of 100 bp, out of241

a total of 1,136,993 CpG dinucleotides, 1,980 are not uniquely mappable. For the same experimental242

setup, BSmooth identified 3082 differentially methylated regions for a read length of 50 bp and 3990243

regions for a read length of 100 bp. For a read length of 100 bp, only 2 differentially methylated244

regions were not uniquely mappable, while for a read length of 50 bp, 21 differentially methylated245

regions were not uniquely mappable. This is a proof of principle that differential methylation analysis246

can identify false signals that are not even uniquely mappable.247

DiseaseMeth17 catalogs publicly available methylome datasets, including 12,073 using array248

technologies. The cost-efficiency of these approaches has driven wide adoption. Many of these249

datasets, however, include probes with low mappability in the bisulfite-converted genome. The250

widely used Illumina Infinium methylation arrays use 122 bp probes centered on certain CpG251

dinucleotides18. Out of the 27,574 probes in the Illumina Infinium HumanMethylation27 (27K)252

BeadChip, 181 are not uniquely mappable. Additionally, 83 uniquely mappable probes have low253
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Figure 5: Mappability of differentially methylated regions of mice mammary basal and
luminal alveolar tissues. (a) Single-read and (b) multi-read mappability of differentially methy-
lated regions. (c) Example of a differentially methylated region identified with 50-nucleotide se-
quencing reads that is not uniquely mappable.

multi-read mappability, meaning that single nucleotide polymorphisms or mutations can result in254

probe multi-mapping (Figure 6a). Similarly, 962 probes in the Illumina Infinium HumanMethyla-255

tion450 (450K) BeadChip are not uniquely mappable, and another 1,097 probes with single-read256

mappability, have low multi-read mappability (Figure 6b).257

In addition, many publicly available RRBS datasets exist. In RRBS, only DNA fragments be-258

tween 40 bp and 220 bp are selected. The majority of selected fragments, however, are approximately259

50 bp21. Even with a read length of 100 bp, 329,799 (0.96%) of CpG dinucleotides annotated in RRBS260

experiments found in DiseaseMeth did not map uniquely (Figure 6c).261
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Figure 6: Mappability of targeted methylation assays. Multi-read mappability of probes in
(a) the Illumina Infinium HumanMethylation27 (27K) BeadChip and (b) the Illumina Infinium
HumanMethylation450 (450K) BeadChip. (c) Multi-read mappability of CpG dinucleotides found
in DiseaseMeth RRBS datasets.

4 Discussion262

4.1 The importance of considering mappability in analysis263

In several examples we showed how mappability must be considered in analysis of sequencing data.264

One needs to examine, however, the extent of genomic variation which affects mappability calcula-265

tions. Genetic variants specific to each sample make it impossible to know the exact mappability.266

We introduced a measure called multi-read mappability for addressing this issue. Genomic regions267

with higher multi-read mappability are less prone to be biased by genetic variants and sequencing268

errors.269

In ENCODE ChIP-seq experiments using short read lengths, we found many examples where270

signal was within a uniquely mappable region but peaks identified by peak caller had substantial271

overlap with non-uniquely mappable regions. This shows how important it is to use the mappability272

information in analysis pipeline of various experiments especially when the read length is small. In273

fact, we initially developed Umap as part of the ENCODE uniform analysis pipeline5 to avoid such274

problems.275

We simulate bisulfite conversion assuming complete conversion of all cytosines, just as alignment276

algorithms such as Bismark3 or BWA-meth4 do. In practice, chemical resistance or sample-specific277

genetic variation may retard complete bisulfite conversion. This makes it impossible to estimate278

the exact mappability for a bisulfite converted sample. When performing bisulfite sequencing on279
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different mouse strains, using the same reference genome for each introduces massive bias in bisulfite280

sequencing data anlaysis22. Ideally, one would align data from each strain to a reference genome281

specific to that strain. When one lacks a strain-specific reference genome, Bismap at least allows us282

to quantify how and where genetic variation affects reliability of bisulfite sequencing results.283

While paired-end sequencing with lengths greater than 100 bp has become more common, most284

publicly available datasets such as ENCODE have used shorter reads. Out of 3,483 ENCODE ChIP-285

seq experiments, 3,033 use single-ended sequencing, and 2,228 have read lengths of 36 bp or shorter.286

Out of the 142 ENCODE RRBS datasets, 140 (98.6%) have a read length of 36 bp or shorter. In287

addition, commonly used array technologies such as the 450K array uses 122 bp probes and multi-288

read mappability of some of the probes is low. This allows multi-mappaing due to genetic variation289

and decreases data quality in these regions. Although non-uniquely mappable methylation array290

probes constitute only a small fraction of all probes (0.66% in the 27K array and 0.2% in the 450K291

array), one must still use caution when interpreting methylation signal—or the lack thereof—in292

these regions.293

In our analysis of whole genome bisulfite sequencing data of mouse mammary tissue, among the294

CpG dinucleotides that had a minimum coverage of 3 reads in all of the 5 different whole genome295

bisulfite sequencing datasets, ∼0.15% were not uniquely mappable with 50 bp and 100 bp reads.296

Such CpG dinucleotides must be excluded from analysis. RRBS usually involves filtering fragments297

to only include those that are 40 bp–220 bp, and most RRBS reads are 50 bp or less21. This causes298

a major issue for mapping of these reads.299

4.2 Other methods for mappability300

Bias Elimination Algorithm for Deep Sequencing (BEADS23) also defines a mappability measure301

that is obtained by identifying uniquely mappable 35-mers of the genome. Based on the assumption302

that each read identifies a longer 200-mer, BEADS extends uniquely mappable 35-mers to 200 bp,303

and calculates the fraction of reads that span a given genomic position. BEADS uses a cutoff of 25%304

mappability to filter signals that might bias a study. Extending the 35-mer mappability to 200 bp,305

however, defines the exact mappability for neither 35-mers nor 200-mers.306

PeakSeq24, uses an algorithm similar to Umap and identifies the single-read mappability in 1 kbp307

windows of the genome. PeakSeq filters out ChIP-seq signals with low mappability in each window308

16

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2016. ; https://doi.org/10.1101/095463doi: bioRxiv preprint 

https://doi.org/10.1101/095463


by comparing it to a simulated background of reads with Poisson distribution.309

Model-based one and two Sample Analysis and inference for ChIP-Seq Data (MOSAiCS)25310

uses a mappability measure similar to multi-read mappability for preprocessing of data. While311

Umap’s multi-read mappability calculates the percent of uniquely mappable k-mers that span each312

nucleotide, MOSAiCS calculates the percent of extended uniquely mappable k-mers for calculating313

its mappability score. In comparison to other mappability measures, Umap’s multi-read mappability314

has the advantages of specificity to an exact read length and efficient calculation for any read length.315
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