
Umap and Bismap: quantifying genome and methylome mappability

Mehran Karimzadeh1,4, Carl Ernst2, Anshul Kundaje3, and Michael M. Hoffman1,4,5

1Princess Margaret Cancer Centre, Toronto, ON, Canada
2Department of Human Genetics, McGill University, Montreal, QC, Canada
3Department of Computer Science, Stanford University, Stanford, CA, USA

4Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
5Department of Computer Science, University of Toronto, Toronto, ON, Canada

May 30, 2017

Abstract

Motivation:

Short-read sequencing enables assessment of genetic and biochemical traits of individual genomic regions,
such as the location of genetic variation, protein binding, and chemical modifications. Every region in a
genome assembly has a property called mappability which measures the extent to which it can be uniquely
mapped by sequence reads. In regions of lower mappability, estimates of genomic and epigenomic char-
acteristics from sequencing assays are less reliable. At best, sequencing assays will produce misleadingly
low numbers of reads in these regions. At worst, these regions have increased susceptibility to spurious
mapping from reads from other regions of the genome with sequencing errors or unexpected genetic vari-
ation. Bisulfite sequencing approaches used to identify DNA methylation exacerbate these problems by
introducing large numbers of reads that map to multiple regions. While many tools consider mappability
during the read mapping process, subsequent analysis often loses this information. Both to correct as-
sumptions of uniformity in downstream analysis, and to identify regions where the analysis is less reliable,
it is necessary to know the mappability of both ordinary and bisulfite-converted genomes.

Results:

We introduce the Umap software for identifying uniquely mappable regions of any genome. Its Bismap
extension identifies mappability of the bisulfite-converted genome. With a read length of 24 bp, 18.7%
of the unmodified genome and 33.5% of the bisulfite-converted genome is not uniquely mappable. This
complicates interpretation of functional genomics experiments using short-read sequencing, especially in
regulatory regions. For example, 81% of human CpG islands overlap with regions that are not uniquely
mappable. Similarly, in some ENCODE ChIP-seq datasets, up to 50% of peaks overlap with regions that
are not uniquely mappable. We also explored differentially methylated regions from a case-control study
and identified regions that were not uniquely mappable. In the widely used 450K methylation array, 4,230
probes are not uniquely mappable. Genome mappability is higher with longer sequencing reads, but most
publicly available ChIP-seq and reduced representation bisulfite sequencing datasets have shorter reads.
Therefore, uneven and low mappability remains a concern in a majority of existing data.
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Availability:

A Umap and Bismap track hub for human genome assemblies GRCh37/hg19 and GRCh38/hg38, and
mouse assemblies GRCm37/mm9 and GRCm38/mm10 is available at
http://bismap.hoffmanlab.org for use with the UCSC and Ensembl genome browsers. We have deposited in
Zenodo the current version of our software (https://doi.org/10.5281/zenodo.800648) and the map-
pability data used in this project (https://doi.org/10.5281/zenodo.800645). In addition, the soft-
ware (https://bitbucket.org/hoffmanlab/umap) is freely available under the GNU General Public
License, version 3 (GPLv3).

Contact:

michael.hoffman@utoronto.ca

1 Introduction

High-throughput sequencing enables low-cost collection of high numbers of sequencing reads but these
reads are often short. Short-read sequencing limits the fraction of the genome that we can unambiguously
sequence by aligning the reads to the reference genome (Figure 1b). Still, we can identify much of the
regulatory regions of the genome such as transcription factor binding sites, histone modifications and other
important regulatory regions. However, reads that are ambiguously mapped produce a false positive signal
that misleads analysis. Some regions of the genome with low complexity including repeat elements are
not uniquely mappable at a given read length. Other regions overlap few uniquely mappable reads, and
consequently the mappability is low. To map the regions with low mappability, a high sequencing depth
is required to assure that sequencing reads completely overlap with few uniquely mappable reads in that
region. If sequencing depth is low and genomic variation or sequencing error is high, the signal from a low
mappability region is biased by reads falsely mapped to that region.

Most short-read alignment algorithms determine if any read maps to one or more regions in the
genome. However, one must consider this in context of the surrounding regions, even if a read maps
uniquely. A single nucleotide change might change a read from uniquely mappable to not. A uniquely
mappable read that aligns to a region with low mappability, has a high chance of mapping incorrectly
due to genetic variation or sequencing error.

In bisulfite sequencing, this problem increases. Bisulfite treatment reduces unmethylated cytosine
to uracil (sequenced as T) while 5-methylcytosine remains intact (sequenced as C). Bisulfite treatment
significantly increases the number of repeated short sequences in the genome. Many regions uniquely
mappable in an unmodified genome no longer uniquely map after bisulfite conversion. Incorrect mapping
of bisulfite sequencing reads creates a false methylation signal that can bias downstream analysis and
interpretation. When confounding factors such as read length, sequencing depth or mutation rate differ
among cases, this bias becomes even more evident.

In an unmodified human genome, 18.7% of the 24-mers do not map uniquely (Figure 1b). This quantity
increases to 33.5% for a bisulfite-converted genome (Figure 1b). In certain cases, the difference between a
uniquely mappable and a non-uniquely mappable read can be only one nucleotide. Sequencer base-calling
errors and genetic variation often affect alignment, but we cannot comprehensively account for them.
These biases further exacerbate alignment when the read length is shorter, emphasizing the importance
of considering genomic mappability in any analysis involving short-read sequencing. While previous tools
such as the GEM mappability software1 identify mappability of the genome, no existing software solves the
methylome mappability problem. In addition, existing tools prove difficult to use or lack available source
code. To solve this problem, we developed the Umap software, with a bisulfite mappability extension
called Bismap.
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Figure 1: Mappability of the genome by Umap. (a) The Umap workflow identifies all unique k-mers
of a genome given a read length of k. (b) Mappability of the human genome and methylome for read
lengths between 24 and 100. (c) All of the uniquely mappable reads in two regions with high and low
multi-read mappability is shown. In Case 1 (blue), all possible reads covering the region are uniquely
mappable. In Case 2 (magenta), only two reads out of 10 are uniquely mappable.

2 Methods

2.1 Single and multi-read mappability

Umap identifies the uniquely mappable reads of any genome for a range of sequencing read lengths.
The Bismap extension of Umap produces uniquely mappable reads of a bisulfite-converted genome. Both
Umap and Bismap produce an integer vector for each chromosome that defines the mappability for any
region and can be converted to a browser extensible data (BED) file. One way to assess mappability of a
genomic region is by the single-read mappability — the fraction of that region which overlaps with at
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Figure 2: Mappability of the methylome by Bismap. Bismap identifies uniquely mappable k-mers of
a bisulfite-converted genome. It simulates the same changes that may occur in bisulfite treatment on the
+ strand (C→T) and − strand (G→A). To account for sequence of the − strand, we generate an extra set
of reverse-complemented chromosomes and then simulate bisulfite conversion on these chromosomes. We
don’t simulate reverse complementation after bisulfite conversion, because the experimental protocol does
not involve post-conversion DNA amplification. We then align k-mers by disabling complement search
and combine the resulting data to quantify the mappability of a bisulfite-converted genome.

least one uniquely mappable k-mer.
Analysis of sequencing data involves inferences about a base’s genetic or regulatory state from ob-

servations of all reads overlapping that base. Therefore, we must consider the mappability of all reads
overlapping a position or region, when estimating how many mapped reads we might expect. Single-read
mappability assumes that uniquely mappable reads are uniformly distributed in the genome, while in
reality we observe frequent localized enrichment of uniquely mappable reads.

A region can have 100% single-read mappability, but a below-average number of uniquely mappable
reads that can overlap that region (Figure 1c). For example, a 1 kbp region with 100% single-read mappa-
bility can be mappable due to a minimum of 10 unique non-overlapping 100-mers or a maximum of 1100
unique highly overlapping 100-mers. Therefore, we define the multi-read mappability — the probabil-
ity that a randomly selected k-mer in a given region is uniquely mappable. For the genomic region Gi:j
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starting at i and ending at j, there are j− i+k+1 different k-mers that overlap with Gi:j . The multi-read
mappability of Gi:j is the fraction of those k-mers that are uniquely mappable (Figure 1c).

2.2 Mappability of the unmodified genome

Umap uses three steps to identify the mappability of a genome for a given read length k (Figure 1a).
First, it generates all possible k-mers of the genome. Second, it maps these unique k-mers to the genome
with Bowtie2 version 1.1.0. Third, Umap marks the start position of each k-mer that aligns to only one
region in the genome. Umap repeats these steps for a range of different k-mers and stores the data of
each chromosome in a binary vector X with the same length as the chromosome’s sequence. For read
length k, Xi = 1 means that the sequence starting at Xi and ending at Xi+k is uniquely mappable on the
+ strand. Since we align to both strands of the genome, the reverse complement of this same sequence
starting at Xi+k in the − strand is also uniquely mappable. Xi = 0 means that the sequence starting at
Xi and ending at Xi+k can be mapped to at least two different regions in the genome.

Eventually, Umap merges data of several read lengths to make a compact integer vector for each
chromosome (Figure 1a, step 3). In this vector, non-zero values at position Xi indicate the smallest k-mer
that position Xi to Xi+K is uniquely mappable with, where K is the largest k-mer in the range. For
example Xi = 24 means that the region Xi to Xi+24 is uniquely mappable. This also means that any read
longer than 24 nucleotides that starts at Xi is also uniquely mappable.

Umap translates these integer vectors into six-column BED files for the whole genome (Figure 1a, step
4). Additionally, Umap can calculate single-read mappability and multi-read mappability for specified
regions in any input BED file.

Although Bowtie can align with mismatches, here we do not use this capability. By defining mappabil-
ity with exact matches only, we provide baseline identification of regions that are not uniquely mappable
no matter how high the sequencing coverage. Nonetheless, the Umap software allows users to change
alignment options, including mismatch parameters.

2.3 Mappability of the bisulfite-converted genome

To identify the single-read mappability of a bisulfite-converted genome, we create two altered genome
sequences (Figure 2). In the first sequence, we convert all cytosines to thymine (C→T). In the other
sequence we convert all guanines to adenine (G→A). Our approach follows those of Bismark3 and BWA-
meth4. We convert the genome sequence this way because bisulfite treatment converts un-methylated
cytosine to uracil which is read as thymine. Similarly the guanine that is base-pairing with the un-
methylated cytosine in the − strand converts to adenine. These two conversions, however, never occur
at the same time on the same read. We identify the uniquely mappable regions of these two genomes
separately, and then combine the data to represent the single-read mappability of the + and − strands
in the bisulfite-converted genome. For an unmodified genome, however, the mappability of the + and −
strand is identical by definition.

Bismap requires special handling of reverse complementation of C→T or G→A converted genomes. Con-
version of C→T on the sequence 5′− AATTCCGG−3′ produces 5′− AATTTTGG−3′. In the Bowtie index, the
reverse complement of the latter would be 5′− CCAAAATT−3′. For the purpose of identifying the mappabil-
ity of the bisulfite-converted genome, however, we expect the reverse complement to be derived from the
original converted sequence, yielding 5′− CCGGAATT−3′, and then after C→T conversion, 5′− TTGGAATT−3′.
Both + and − strands undergo bisulfite treatment simultaneously, and there is no DNA replication to
create new reverse complements after bisulfite treatment. To handle this issue, Bismap creates its own
reverse complemented chromosomes and suppresses Bowtie’s usual reverse complement mapping.

Umap and Bismap each take ∼ 200 core-hours on a 2.6 GHz Intel(R) Xeon CPU E5-2650 v2 processor
and less than 500 MB of memory to run for some read length. This is a massively parallelizable task, so
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Figure 3: Mappability of ChIP-seq peaks in 1193 ENCODE datasets.(a) Single-read mappability
and (b) multi-read mappability for narrow peaks identified in ENCODE ChIP-seq datasets. (c) An NRF1
narrow peak identified by MACS (purple) that is not uniquely mappable in the experiment with read
length of 36 bp. The red bar in peaks indicates the summit. Signal tracks (gray) show two different
replicates of this ChIP-seq experiment in K562 chronic myeloid leukemia cells (ENCODE accessions
ENCSR000EHH and ENCSR494TDU, with read lengths of 36 bp and 100 bp respectively). Umap tracks
show single-read and multi-read mappability for two different read lengths of 36 bp and 100 bp.
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on a computing cluster with 400 cores, the task takes only 30 min of wall-clock time.

2.4 ENCODE ChIP-seq experiments

We downloaded ENCODE5 chromatin immunoprecipitation-sequencing (ChIP-seq) FASTQ files from the
ENCODE Data Coordination Center6 and aligned them to GRCh38 using Bowtie7 2. We switched to
Bowtie 2 for this analysis because it supports gapped alignment, which we didn’t need for mappability
calculations.

We used Samtools8 to remove duplicated sequences and those with a mapping quality of < 10. This
assures that the probability of correct mapping to the genome for any read is > 0.9. Pooling replicates
from the same experiment, we used MACS9 version 2 with --nomodel and --qvalue 0.001 options to
identify ChIP-seq peaks. Finally, Umap measured single-read mappability and multi-read mappability
within the peaks.

2.5 CpG islands

We downloaded CpG islands10 for GRCh38 from the UCSC Genome Browser11 (http://epigraph.
mpi-inf.mpg.de/download/CpG_islands_revisited). These CpG islands come from a hidden Markov
model (HMM) fitted to genomic G+C content. We then annotated CpG features around the CpG islands
following published definitions10,12 (Table 1). Then we used Umap and Bismap to measure mappability
across these annotations.

Annotation Definition

CpG island HMM fitted to G+C content
CpG shore 2 kbp area surrounding CpG islands
CpG shelf 2 kbp area surrounding CpG shores

CpG resort Collection of islands, shores and shelves

Table 1: CpG annotations.

2.6 Whole-genome bisulfite sequencing analysis

First, we obtained datasets of whole-genome bisulfite sequencing of murine mammary tissues13 from the
Sequence Read Archive (accession numbers SRR1946823, SRR1946824, SRR1946819, and SRR1946820).
Second, we trimmed Illumina TruSeq adapters from FASTQ files with Trim Galore14. Third, for each
experiment, we break down sequencing reads to produce two different FASTQ files with read lengths of
50 bp and 100 bp. For example, if the read length of an experiment is 182 bp and we want to generate a
FASTQ file with read length of 50 bp, each sequencing read would produce three different 50-bp sequencing
reads (we would not use the remaining 32 bp). We aligned these modified FASTQ files with BWA-meth
4 to the GRCm38 genome. We extracted CpG-context methylation using PileOmeth15. We use BSmooth
16 (version 0.4.2) for identifying differentially methylated regions. Finally, we used Bismap to measure
mappability of differentially methylated regions with at least four CpG dinucleotides.
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Figure 4: Mappability of the CpG island annotations. (a) Single-read mappability and (b) multi-
read mappability of CpG islands, CpG shores, CpG shelfs, and CpG resorts for a variety of read lengths.
For comparison, asterisks indicate the average mappability of the whole genome at each read length. (c) A
CpG island that is not uniquely mappable with a read length of 100 bp by Umap and Bismap. In Bismap
single-read mappability tracks, chevrons pointing right indicate mappability of the + strand and chevrons
pointing left indicate mappability of − strand. Multi-read mappability is calculated bases on reads that
are uniquely mappable on both + strand and − strand.
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2.7 Other methylation assays

DiseaseMeth17, a human methylation database, provides access to 17,024 methylation datasets from 88
different human diseases. These data are a collection of experiments using various platforms, including
2,728 assays using the Illumina Infinium HumanMethylation27 (27K) BeadChip, and 9,795 assays using
the Illumina Infinium HumanMethylation450 (450K) BeadChip. To identify which 50 bp probe sequences
18,19 do not map uniquely to the GRCh37 genome, we measured single-read mappability with Umap.
To identify which probes do not map uniquely after bisulfite conversion, we measured single-read and
multi-read mappability with Bismap.

In addition, we examined whether the exact 50-mer probe sequence mapped uniquely.
DiseaseMeth also contains 71 experimental datasets using reduced representation bisulfite sequencing

(RRBS)20. For CpG dinucleotides captured in RRBS experiments and annotated by DiseaseMeth, we
examined the multi-read mappability for read lengths of 24 bp, 36 bp, 50 bp, and 100 bp.

2.8 Umap and Bismap track hub

We used read lengths of 24 bp, 36 bp, 50 bp, and 100 bp to generate mappability tracks for unmodified and
bisulfite-converted genomes of human (GRCh37 and GRCh38) and mouse (GRCm37 and GRCm38). We
store uniquely mappable regions of these genomes in bigBed format as a track hub that can be loaded to
UCSC or Ensembl genome browsers. The track hub contains one supertrack for Umap and one supertrack
for Bismap. The track hub is available at http://bismap.hoffmanlab.org.

3 Results

3.1 Mappability of ENCODE ChIP-seq peaks

ChIP-seq identifies proteins present in chromatin at particular loci and often involves short-read sequenc-
ing. The ENCODE Project5 has performed around 1200 ChIP-seq assays on approximately 200 chromatin
binding factors in more than 60 different human cell types. To show how mappability affects downstream
analysis of experiments such as ChIP-seq, we quantified the mappability of narrow peaks identified in EN-
CODE ChIP-seq experiments. Among 1193 experiments, most peaks map uniquely. For some experiments,
however, a high number of peaks overlap with non-uniquely mappable regions. Most of these experiments
correspond to ChIP-seq of histone modifications with read lengths from 24 bp to 36 bp. There are two EN-
CODE NRF1 ChIP-seq experiments in K562 with 36 bp (ENCSR000EHH) and 100 bp (ENCSR494TDU
and ENCSR998AJK) read lengths. For ENCSR000EHH among the 3,994 peaks called by MACS2, 219
extend into a region that is not uniquely mappable. Although the ChIP-seq signal is completely within a
uniquely mappable region, MACS2 identifies a much broader peak than is warranted (Figure 3c).

3.2 Mappability of CpG islands

CpG islands substantially overlap transcription start sites and differentially methylated regions10. Because
CpG islands have a high number of CpGs, they are highly affected by bisulfite conversion. Thus we
investigated CpG islands and the neighboring CpG shores and CpG shelves.

Even with a relatively long read length of 100 bp, 3, 059/167, 694 CpG annotations have zero uniquely
mappable bases, as calculated by Bismap. For shorter read lengths, even more of the bisulfite-converted
genome lacks unique mapping. For a read length of 100 bp, 26,510 CpG annotations are not uniquely map-
pable with Bismap. This represents 15.8% of all CpG annotations. The average single-read mappability
of CpG annotations that are not uniquely mappable is 68.8%.

CpG islands and regions around them are often not uniquely mappable, to a lesser extent, in an
unmodified genome. For example, the average single-read mappability of 15,776 CpG annotations that are
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not uniquely mappable in the unmodified genome is 60% with a read length of 100 bp. This is substantially
lower than the average single-read mappability of the genome (92%). Also, there are 631 CpG islands
that have some overlap with uniquely mappable regions of the unmodified genome, but are not uniquely
mappable in the bisulfite-converted genome.

The difference in genomic mappability and CpG island annotation mappability is even more extensive
for shorter read lengths. For example, for a read length of 24 bp, more than 96.84% of CpG island
annotations are not uniquely mappable, but the percent of the genome that is not uniquely mappable is
only 30% (Figure 4).
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Figure 5: Mappability of differentially methylated regions of mice mammary basal and luminal
alveolar tissues. (a) Single-read and (b) multi-read mappability of differentially methylated regions. (c)
Example of a differentially methylated region identified with 50-nucleotide sequencing reads that is not
uniquely mappable.
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3.3 Mappability of differentially methylated regions

Many studies measure differences in methylation associated with a disease phenotype. These studies
test whether each CpG’s methylation status correlates with the phenotype. Collective difference of CpG
dinucleotides in a given region, however, may provide higher statistical power in assessing the association of
methylation profile with disease states21. Cluster of CpG dinucleotides are also a more predictive feature
of disease states than differences in individual CpGs21. BSmooth16 is one of the tools that identifies
differentially methylated regions by estimating a smoothed methylation profile.

We compared differences in CpG methylation of basal and luminal alveolar murine mammary tissues
13 using BSmooth16. Out of a total of 965,181 CpG dinucleotides sequenced with a read length of 50 bp
(see Methods), 4,091 of them are not uniquely mappable. For a read length of 100 bp, out of a total
of 1,136,993 CpG dinucleotides, 1,980 are not uniquely mappable. For the same experimental setup,
BSmooth identified 3082 differentially methylated regions for a read length of 50 bp and 3990 regions for
a read length of 100 bp. For a read length of 100 bp, 17 differentially methylated regions were not uniquely
mappable (single-read mappability < 100%), while for a read length of 50 bp, 8 differentially methylated
regions were not uniquely mappable. This is a proof of principle that differential methylation analysis can
identify false signals that are not even uniquely mappable.
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Figure 6: Mappability of targeted methylation assays. Multi-read mappability of probes in (a) the
Illumina Infinium HumanMethylation27 (27K) BeadChip and (b) the Illumina Infinium HumanMethyla-
tion450 (450K) BeadChip. (c) Multi-read mappability of CpG dinucleotides found in DiseaseMeth RRBS
datasets.

DiseaseMeth17 catalogs publicly available methylome datasets, including 12,073 using array technolo-
gies. The cost-efficiency of these approaches has driven wide adoption. Many of these datasets, however,
include probes with low mappability in the bisulfite-converted genome. The widely used Illumina Infinium
methylation arrays use 50 bp probes capturing certain CpG dinucleotides22. Out of the 27,578 probes in
the Illumina Infinium HumanMethylation27 (27K) BeadChip, 377 do not map uniquely to GRCh37, and
115 do not map uniquely after bisulfite conversion. Additionally, 304 uniquely mappable probes have low
multi-read mappability, meaning that single nucleotide polymorphisms or mutations can result in probe
multi-mapping (Figure 6a). Similarly, out of 485,512 probes in the Illumina Infinium HumanMethyla-
tion450 (450K) BeadChip, 84 are not uniquely mappable to GRCh37, 4,146 are not uniquely mappable
after bisulfite conversion, and another 12,744 uniquely mappable probes have low multi-read mappability
(Figure 6b).

In addition, many publicly available RRBS datasets exist. In RRBS, only DNA fragments between
40 bp and 220 bp are selected. The majority of selected fragments, however, are approximately 50 bp
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23. Even with a read length of 100 bp, 408,384 (1.18%) of CpG dinucleotides in RRBS experiments of
DiseaseMeth database did not map uniquely (Figure 6c).

4 Discussion

4.1 The importance of considering mappability in analysis

In several examples we showed how mappability must be considered in analysis of sequencing data.
One needs to examine, however, the extent of genomic variation which affects mappability calculations.
Genetic variants specific to each sample make it impossible to know the exact mappability. We introduced
a measure called multi-read mappability for addressing this issue. Genomic regions with higher multi-read
mappability are less prone to be biased by genetic variants and sequencing errors.

In ENCODE ChIP-seq experiments using short read lengths, we found many examples where signal
was within a uniquely mappable region but peaks identified by peak caller had substantial overlap with
non-uniquely mappable regions. More than 50% of ChIP-seq data in the ENCODE Data Coordination
Center use reads shorter than 36 bp. Consortia such as ENCODE and Roadmap have spent hundreds of
millions of dollars to perform these experiments, which they won’t repeat any time soon. This shows the
importance of using the mappability information to analyze sequencing data, especially when the read
length is short. In fact, we initially developed Umap as part of the ENCODE uniform analysis pipeline5

to avoid such problems.
In Bismap, we convert all cytosines to thymines in the forward strand, and all guanines to adenines on

reverse strand, just as alignment algorithms such as Bismark3 or BWA-meth4 do. In practice, chemical
resistance or sample-specific genetic variation may retard bisulfite conversion. This makes it impossible
to estimate the exact mappability for a bisulfite converted sample. When performing bisulfite sequencing
on different mouse strains, using the same reference genome for each introduces massive bias in bisulfite
sequencing data analysis24. Ideally, one would align data from each strain to a reference genome specific
to that strain. When one lacks a strain-specific reference genome, Bismap at least allows us to quantify
how and where genetic variation affects reliability of bisulfite sequencing results. While Bismap assumes
complete bisulfite-conversion, Umap assumes none. By comparing the results of the two methods, we can
understand the range of bisulfite-conversion effects on mappability.

While paired-end sequencing with lengths greater than 100 bp has become more common, most pub-
licly available datasets such as ENCODE have used shorter reads. Out of 3,483 ENCODE ChIP-seq
experiments, 3,033 use single-ended sequencing, and 2,228 have read lengths of 36 bp or shorter. Out
of the 142 ENCODE RRBS datasets, 140 (98.6%) have a read length of 36 bp or shorter. In addition,
commonly used array technologies such as the 450K array uses 50 bp probes and multi-read mappability
of some of the probes is low. This allows multi-mapping due to genetic variation and decreases data
quality in these regions as it has been noted before25. Although only a small fraction of all probes do
not map uniquely (1.8% in the 27K array and 0.87% in the 450K array), one must still use caution when
interpreting methylation signal—or the lack thereof—in these regions. In fact, multi-mapping probes have
lead to false discovery of autosomal sex-associated DNA methylation in at least one study26.

In our analysis of whole genome bisulfite sequencing data of mouse mammary tissue, ∼0.1% of CpG
dinucleotides were not uniquely mappable with 50 bp reads. We removed reads with a mapping quality
of less than 10 and only counted CpG dinucleotides that had a minimum coverage of 3 reads in all of
the 5 different whole genome bisulfite sequencing datasets. Given this stringent filtering, the chance of
observing any non-uniquely mappable read is 10−15 which is much less than our observation (0.1%). Such
CpG dinucleotides must be excluded from analysis. RRBS usually involves filtering fragments to only
include those that are 40 bp–220 bp, and most RRBS reads are 50 bp or less23. This causes a major issue
for mapping of these reads.

In paired-end sequencing, short regions from both ends of a longer fragment are sequenced. This
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provides a long read more likely to map uniquely to the genome. The length of these fragments varies
considerably in size. One can still use Umap or Bismap to identify the mappability for a range of k-mers
that represent the variation in fragment length of any given sequencing library.

In RNA-seq, gap alignment algorithms account for splicing. Different software and user defined pa-
rameters handle multi-mapping reads differently which can be a source of error. Robert and Watson27

recommend to assign multi-mapped reads to a group of genes instead of removing them. They show that
this approach accurately recovers a significant portion of the data.

4.2 Other methods for mappability

Bias Elimination Algorithm for Deep Sequencing (BEADS28) also defines a mappability measure that is
obtained by identifying uniquely mappable 35-mers of the genome. Based on the assumption that each
read identifies a longer 200-mer, BEADS extends uniquely mappable 35-mers to 200 bp, and calculates
the fraction of reads that span a given genomic position. BEADS uses a cutoff of 25% mappability to
filter signals that might bias a study. Extending the 35-mer mappability to 200 bp, however, defines the
exact mappability for neither 35-mers nor 200-mers.

PeakSeq29, uses an algorithm similar to Umap and identifies the single-read mappability in 1 kbp
windows of the genome. PeakSeq filters out ChIP-seq signals with low mappability in each window by
comparing it to a simulated background of reads with Poisson distribution.

Model-based one and two Sample Analysis and inference for ChIP-Seq Data (MOSAiCS)30 uses a map-
pability measure similar to multi-read mappability for preprocessing of data. While Umap’s multi-read
mappability calculates the percent of uniquely mappable k-mers that span each nucleotide, MOSAiCS
calculates the percent of extended uniquely mappable k-mers for calculating its mappability score. In com-
parison to other mappability measures, Umap’s multi-read mappability has the advantages of specificity
to an exact read length and efficient calculation for any read length.
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