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FIGURE 1. From a phylogenetic network to multi-locus sequences via latent gene genealogies. The multispecies network coalescent
(Yu et al. 2014) is a stochastic process that defines a probability distribution on gene genealogies along with their coalescent times. The
parameters of the process consist of a phylogenetic network topology, inheritance probabilities, divergence times, and population sizes.
Each gene genealogy, when coupled with model of sequence evolution, defines a probability distribution on sequence alignments.

level. An important question is: How do phylogenetic1

network methods perform on data generated under such2

scenarios? To answer this question, it is important to3

highlight the difference in abstraction employed in the4

MSNC model as opposed to a gene flow model. It turns5

out that this difference was well articulated in (Long6

1991), where two models of admixture were presented:7

the intermixture model and the gene flow model (Figure8

2). The MSNC employs the intermixture model, whereas
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FIGURE 2. Two admixture models for a hybrid population
(Long 1991). (a) The hybrid population is formed by a single
intermixture event between two parental populations, where
γ is the inheritance probability measuring the proportion of
the parental populations. (b) The hybrid population (recipient)
receives gene flow from a donor population, where α is the
migration rate.

9

the population genetics community mostly uses the10

gene flow model (Gronau et al. 2011; Hey and Nielsen11

2004, 2007; Leaché et al. 2013; Slatkin and Maddison12

1989; Strasburg and Rieseberg 2010; Whitlock and13

Mccauley 1999). Note that the intermixture model also14

underlies the admixture graph model of (Pickrell and15

Pritchard 2012; Reich et al. 2009) where γ is the16

admixture proportion. In the admixture graph model,17

the branch lengths correspond to genetic drift values that18

measure variation in allele frequency corresponding to 19

random sampling of alleles from generation to generation 20

in a finite-size population. 21

Hudson’s ms program (Hudson 2002) allows for 22

generating data under each of the two admixture 23

models—intermixture and gene flow. In this paper, 24

we generate data under both models and study the 25

performance of inference under the MSNC in both cases. 26

For an empirical data set, we analyzed the yeast data 27

set of (Rokas et al., 2003), which consists of 106 loci from 28

seven Saccharomyces species, and contrasted our results 29

to those obtained from the method of (Wen et al., 2016a) 30

on gene tree estimates. 31

Finally, as the model underlying our method extends 32

the multispecies coalescent to cases that include 33

admixture, our method is applicable to data from 34

different sub-populations, not only different species, and 35

to data where more than one individual per species or 36

sub-population is sampled. The method is implemented 37

and publicly available in the PhyloNet software package 38

(Than et al. 2008). 39

METHODS 40

0.1 Phylogenetic networks and their parameters 41

A phylogenetic X -network, or X -network for short, 42

Ψ, is a directed, acyclic graph (DAG) with V (Ψ)= 43

{s,r}∪VL∪VT ∪VN , where 44

• indeg(s)=0 and outdeg(s)=1 (s is a special node, 45

that is the parent of the root node, r); 46

• indeg(r)=1 and outdeg(r)=2 (r is the root of Ψ); 47

• ∀v∈VL, indeg(v)=1 and outdeg(v)=0 (VL are the1

external tree nodes, or leaves, of Ψ);2
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• ∀v∈VT , indeg(v)=1 and outdeg(v)≥2 (VT are the3

internal tree nodes of Ψ); and,4

• ∀v∈VN , indeg(v)=2 and outdeg(v)=1 (VN are5

the reticulation nodes of Ψ).6

The network’s edges, E(Ψ)⊆V ×V , consist of7

reticulation edges, whose heads are reticulation nodes,8

tree edges, whose heads are tree nodes, and special edge9

(s,r)∈E. Furthermore, ` :VL→X is the leaf-labeling10

function, which is a bijection from VL to X . Each node11

in V (Ψ) has a species divergence time parameter and12

each edge in E(Ψ) has an associated population size13

parameter. The edge er(Ψ)=(s,r) is infinite in length so14

that all lineages that enter it coalesce on it eventually.15

Finally, for every pair of reticulation edges e1 and e216

that share the same reticulation node, we associate an17

inheritance probability, γ, such that γe1 ,γe2 ∈ [0,1] with18

γe1 +γe2 =1. We denote by Γ the vector of inheritance19

probabilities corresponding to all the reticulation nodes20

in the phylogenetic network (for each reticulation node,21

Γ has the value for one of the two incoming edges only).22

Given a phylogenetic network Ψ, we use the following23

notation:24

• Ψtop: The leaf-labeled topology of Ψ; that is, the25

pair (V,E) along with the leaf-labeling `.26

• Ψret: The number of reticulation nodes in Ψ.27

Ψret=0 when Ψ is a phylogenetic tree.28

• Ψτ : The species divergence time parameters of Ψ.29

Ψτ ∈(R+)|V (Ψ)|.30

• Ψθ: The population size parameters of Ψ. Ψθ∈31

(R+)|E(Ψ)|
32

We use Ψ to refer to the topology, species divergence33

times and population size parameters of the phylogenetic34

network.35

It is often the case that divergence times associated36

with nodes in the phylogenetic network are measured in37

units of years, generations, or coalescent units. On the38

other hand, branch lengths in gene trees are often in units39

of expected number of mutations per site. We convert40

estimates back and forth between units as follows:41

• Given divergence time in units of expected number42

of mutations per site τ , mutation rate per site per43

generation µ and the number of generations per44

year g, τ/µg represents divergence times in units45

of years.46

• Given population size parameter in units of47

population mutation rate per site θ, 2τ/θ48

represents divergence times in coalescent units.49

Bayesian Formulation and Inference50

The data in our case is a set S ={S1,...,Sm} where Si 51

is a DNA sequence alignment from locus i (the bottom 52

part in Fig. 1). A major assumption is that there is 53

no recombination within any of the m loci, yet there is 54

free recombination between loci. The model M consists 55

of a phylogenetic network Ψ (the topology, divergence 56

times, and population sizes) and a vector of inheritance 57

probabilities Γ (the top part in Fig. 1). 58

The posterior distribution of the model is given by 59

p(M |S ) ∝ p(S |M )p(M )
= p(M )

∏m
i=1

∫
Gp(Si|g)p(g|M )dg,

(0.1)

where the integration is taken over all possible gene 60

trees (the middle part in Fig. 1). The term p(Si|g) 61

gives the gene tree likelihood, which is computed using 62

Felsenstein’s algorithm (Felsenstein 1981) assuming 63

a model of sequence evolution, and p(g|M ) is the 64

probability density function for the gene trees, which 65

was derived for the cases of species tree and species 66

network in (Rannala and Yang 2003) and (Yu et al. 67

2014), respectively. 68

The integration in Eq. (0.1) is computationally 69

infeasible except for very small data sets. Furthermore, in 70

many analyses, the gene trees for the individual loci are 71

themselves a quantity of interest. Therefore, to obtain 72

gene trees, we sample from the posterior distribution as 73

given by 74

p(Ψ,Γ,G|S) ∝ p(M )
∏m
i=1p(Si|gi)p(gi|M )

= p(Ψ)p(Γ)
∏m
i=1p(Si|gi)p(gi|Ψ,Γ),

(0.2)

where G=(g1,...,gm) is a vector of gene trees, one 75

for each of the m loci. This co-estimation approach is 76

adopted by the two popular Bayesian methods ∗BEAST 77

(Heled and Drummond 2010) and BEST (Liu 2008), both 78

of which co-estimate species trees (hybridization is not 79

accounted for) and gene trees. 80

The Likelihood Function 81

Felsenstein (Felsenstein 1981) introduced a pruning
algorithm that efficiently calculates the likelihood of gene
tree g and DNA evolution model parameters Φ as

p(S|g,Φ)=

l∏
i=1

p(si|g,Φ),

where si is i-th site in S, l is the sequence length, and

p(si|g,Φ)=p(si|gtop,gτ ,π,q,µ).

Here, gtop is the tree topology, gτ is the divergence 82

times of the gene tree, π={πA,πT ,πC ,πG} is a vector 83

of equilibrium frequencies of the four nucleotides, q= 84

{qAT ,qAC ,qAG,qTC ,qTG,qCG} is a vector of substitution 85

rates between pairs of nucleotides, and µ is the mutation 86

rate. Over a branch j whose length (in expected number 87

of mutations per site) is tj , the transition probability is 88

calculated as eµqtj . In the implementation, we use the 89

BEAGLE library (Ayres et al. 2011) for more efficient 90

implementation of Felsenstein’s algorithm. 91

Yu et al. (Yu et al. 2012, 2013a, 2014) fully derived 92

the mass and density functions of gene trees under the 93

multispecies network coalescence, where the lengths of a 94
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phylogenetic network’s branches are given in coalescent1

units. Here, we derive the probability density function2

(pdf) of gene trees for a phylogenetic network given by3

its topology, divergence/migration times and population4

size parameters following (Rannala and Yang 2003; Yu5

et al. 2014). Coalescence times in the (sampled) gene6

trees posit temporal constraints on the divergence and7

migration times of the phylogenetic network.8

We use τΨ(v) to denote the divergence time of node9

v in phylogeny Ψ (tree or network). Given a gene10

tree g whose coalescence times are given by τ ′ and a11

phylogenetic network Ψ whose divergence times are given12

by τ , we define a coalescent history with respect to times13

to be a function h :V (g)→E(Ψ), such that the following14

condition holds:15

• if (x,y)∈E(Ψ) and τΨ(x)>τ ′g(v)≥τΨ(y), then16

h(v)=(x,y).17

• if r is the root of Ψ and τ ′g(v)≥τΨ(r), then h(v)=18

er(Ψ).19

The quantity τ ′g(v) indicates at which point of branch20

(x,y) coalescent event v happens. We denote the set of21

coalescent histories with respect to coalescence times for22

gene tree g and phylogenetic network Ψ by HΨ(g).23

Given a phylogenetic network Ψ, the pdf of the gene24

tree random variable is given by25

p(g|Ψ,Γ)=
∑

h∈HΨ(g)

p(h|Ψ,Γ), (0.3)

where p(h|Ψ,Γ) gives the pdf of the coalescent history26

(with respect to divergence times) random variable.27

Consider gene tree g for locus j and an arbitrary28

h∈HΨ(g). For an edge b=(x,y)∈E(Ψ), we define Tb(h)29

to be a vector of the elements in the set {τg(w) :w∈30

h−1(b)}∪{τΨ(y)} in increasing order. We denote by31

Tb(h)[i] the i-th element of the vector. Furthermore, we32

denote by ub(h) the number of gene lineages entering33

edge b and vb(h) the number of gene lineages leaving34

edge b under h. Then we have35

p(h|Ψ,Γ)=∏
b∈E(Ψ)

[∏|Tb(h)|−1
i=1

2
θb
e
−( 2

θb
)(ub(h)−i+1

2 )(Tb(h)i+1−Tb(h)i)
]

×e−( 2
θb

)(vb(h)
2 )(τΨ(xb)−Tb(h)|Tb(h)|)×Γ

ub(h)
b ,

(0.4)
where xb is the source node of edge b, θb=4Nbµ and Nb36

is the population size corresponding to branch b, µ is37

the mutation rate per-site per-generation, and Γb is the38

inheritance probability associated with branch b.39

Prior Distributions40

We extended the prior of phylogenetic network41

composed of topology and branch lengths in (Wen et al. 42

2016a) to phylogenetic networks composed of topology, 43

divergence times and population sizes, as given by Eq. 44

(0.5), 45

p(Ψ|ν,δ,η,ψ)=p(Ψret|ν)×p(Ψd|Ψtop,Ψτ ,η)

×p(Ψτ |δ)×p(Ψθ|ψ)
(0.5)

where p(Ψret|ν), the prior on the number of reticulation 46

nodes, and p(Ψd|Ψtop,Ψτ ,η), the prior on the diameters 47

of reticulation nodes, were defined in (Wen et al. 2016a). 48

It is important to note here that if Ψtop does not follow 49

the phylogenetic network definition, then p(Ψ|ν,δ,η,ψ)= 50

0. This is crucial since, in the MCMC kernels we describe 51

below, we allow the moves to produce directed graphs 52

that slightly deviate from the definition; in this case, 53

having the prior be 0 guarantees that the proposal is 54

rejected. Using the strategy, rather than defining only 55

“legal” moves simplifies the calculation of the Hastings 56

ratios. See more details below. 57

Rannala and Yang used independent Gamma 58

distributions for time intervals (branch lengths) instead 59

of divergence times. However, in the absence of 60

any information on the number of edges of the 61

species network as well as the time intervals, it is 62

computationally intensive to infer the hyperparameters 63

of independent Gamma distributions. Currently, we use 64

a uniform distribution (as in BEST (Liu 2008)). 65

We assume one population size per edge, including 66

the edge above the root. Population size parameters are 67

Gamma distributed, θb∼Γ(2,ψ), with a mean 2ψ and a 68

shape parameter of 2. In the absence of any information 69

on the population size, we use the noninformative 70

prior Pψ(x)=1/x for hyperparameter ψ (Heled and 71

Drummond 2010). The number of elements in θ is 72

|E(Ψ)|+1. To simplify inference, our implementation 73

also supports a constant population size across all 74

branches, in which case θ contains only one element. 75

For the prior on the inheritance probabilities, we use 76

Γb∼Beta(α,β). Unless there is some specific knowledge 77

on the inheritance probabilities, a uniform prior on 78

[0,1] is adopted by setting α=β=1. If the amount 79

of introgressed genomic data is suspected to be small 80

in the genome, the hyper-parameters α and β can be 81

appropriately set to bias the inheritance probabilities to 82

values close to 0 and 1 (a U-shaped distribution). 83

The RJMCMC Sampler 84

As computing the posterior distribution given by Eq. 85

(0.2) is computationally intractable, we implement a 86

Markov chain Monte Carlo (MCMC) sampling procedure 87

based on the Metropolis-Hastings algorithm. In each 88

iteration of the sampling, a new state (Ψ′,Γ′,G′) is 89

proposed and either accepted or rejected based on the 90

Metropolis-Hastings ratio r that is composed of the 91

likelihood, prior, and Hastings ratios. When the proposal 92

changes the dimensionality of the sample by adding a 93

new reticulation to or removing an existing reticulation 94

from the phylogenetic network, the absolute value of the 95

determinant of the Jacobian matrix is also taken into 96
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account, which results in a reversible-jump MCMC, or 97

RJMCMC (Green 1995, 2003). 98

Our sampling algorithm employs three categories1

of moves: One for sampling the phylogenetic network2

and its parameters (divergence times and population3

mutation rates), one for sampling the inheritance4

probabilities, and one for sampling the gene trees5

(topologies and coalescence times). To propose a6

new state of the Markov chain, one element from7

(Ψ,γ1,...,γΨret ,g1,...,gm) is selected at random, then a8

move from the corresponding category is applied. The9

workflow, design and full derivation of the Hastings ratios10

of the moves are given in Supplementary Materials.11

We implemented our method in PhyloNet (Than et al.12

2008), a publicly available, open-source software package13

for phylogenetic network inference and analysis.14

RESULTS15

Our Method and *BEAST Perform Similarly in Cases16

of No Reticulation17

∗BEAST (Heled and Drummond 2010) is the most18

commonly used software tool for Bayesian inference19

of species trees from multi-locus data. In our first20

experiment, we set out to study how our method21

performs compared to this well-established software tool22

on simulated data whose evolutionary history is treelike.23

To accomplish this task, we used the phylogenetic tree24

shown in Fig. 3 as the model species phylogeny. Using

BA C D E

1.6E-2

1.2E-2

0.8E-2

0.4E-2

1.6E-2

FIGURE 3. A model species tree used to generate multi-locus
data sets. The divergence times in units of expected number of
mutations per site and the population size parameter in units of
population mutation rate per site are marked in red and green,
respectively. The population mutation rate was assumed to be
constant across all branches of the tree.

25

the program ms (Hudson 2002), we simulated 20 data26

sets each consisting of 10 conditionally independent gene27

trees with the command28

ms 5 10 -T -I 5 1 1 1 1 1 -ej 0.25 3 2 -ej 0.5 4 2 -ej 0.75 529

2 -ej 1.0 2 130

We then used the program Seq-gen (Rambaut and31

Grassly 1997) to simulate the evolution of 1000-site32

sequences under the Jukes-Cantor model of evolution33

(Jukes and Cantor 1969) with the command34

seq-gen -m HKY -l 1000 -s 0.00835

For each of the 20 10-locus data sets, we ran two36

MCMC chains, each with 5×105 iterations and 5×37

104 burn-in, using our method as well as ∗BEAST.38

One sample was collected from every 500 iterations,39

resulting in a 900 collected samples per data set and40

a total of 18,000 collected samples from all 20 data41

sets. In comparing the two tools, we used all 18,00042

collected samples to evaluate the estimates obtained 43

for the various parameters of interest: population size 44

parameter, divergence times, and the topology of the 45

inferred species phylogeny. 46

Both our method and ∗BEAST inferred exactly 47

the same 95% credible set, which consists of the six 48

topologies shown in Fig. 4. Our method sampled the true

BA C D E CB A D E CA B D E BA C E D BA C D E BA C ED

FIGURE 4. The trees that constitute the 95% credible set
of each of our method and ∗BEAST. The proportions of these
trees from left to right as sampled by our method were 77.7%,
5.7%, 5.0%, 3.0%, 3.0%, and 2.8%, respectively, and as sampled
by ∗BEAST were 70.7%, 6.0%, 6.7%, 4.7%, 4.5%, and 3.6%,
respectively.

49

phylogeny with higher frequency than ∗BEAST. 50

Fig. 5 shows histograms of the estimates obtained for 51

the divergence times at each node of the maximum a 52

posteriori (MAP) species tree estimate of our method 53

and ∗BEAST, which was identical in both cases to the 54

true species tree. The histograms of both methods are
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FIGURE 5. Histograms of divergence times of each node of
the true species phylogeny as estimated by our method (blue) and
∗BEAST (green). The red vertical line indicates the true divergence
time.

55

very similar. In fact, the histograms obtained by our1

method have peaks that are closer to the true divergence2

time values than those obtained by ∗BEAST.3

Fig. 6 shows the histograms of the population4

mutation rate (one value across all branches of the5

species tree was assumed) estimated by the two methods.6

As in the case of divergence time estimates, the two7

methods obtain similar results in the case of population8

mutation rate estimates. However, we observe here a9

histogram of our method with a single peak around10

the true value, whereas we observe a bimodal histogram11

obtained by ∗BEAST.12
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FIGURE 6. Population mutation rate estimated by our method
(blue) and ∗BEAST (green). The red vertical line indicates the true
population mutation rate.

All the results reported above were obtained by13

running the code on NOTS (Night Owls Time-Sharing14

Service), which is a batch scheduled High-Throughput15

Computing (HTC) cluster. We used 2 cores, with two16

threads per core running at 2.6GHz, and 1G RAM17

per thread. The runtime for ∗BEAST is around 28±18

1 seconds for each data set, while our method takes19

longer time: 185±7 seconds per data set. This can be20

explained by the fact that ∗BEAST has been under21

continued development for several years now, while our22

implementation hardly has any optimization components23

yet.24

When we ran ∗BEAST on multi-locus sequence data25

simulated under species phylogenies with reticulations,26

we found that ∗BEAST overestimated the coalescence27

times in individual loci and underestimated the28

divergence times of the species phylogeny. We report29

these results in Supplementary Materials as ∗BEAST is30

not intended for evolutionary analyses with gene flow.31

Furthermore, there are existing, extensive studies on the32

impact of gene flow on the inference of species trees33

(Leaché et al. 2013; Soĺıs-Lemus et al. 2016).34

Our Method Provides Accurate Estimates of the35

Network and Its Associated Parameters36

We used the phylogenetic network shown in Fig. 737

as the model species phylogeny. The scale parameter of38

the divergence times s was varied to take on values in39

the set {0.1,0.25,0.5,1.0}. Setting s=0.1 results in very40

short branches and, consequently, the hardest data sets 41

on which to estimate parameters. Setting s=1.0 results 42

in longer branches and higher signal for a more accurate 43

estimate of the parameter values. It is important to 44

note that the topology, reticulation event, divergence 45

times (with s=1.0) and population size are inspired 46

by the species phylogeny recovered from the Anopheles 47

mosquitoes data set (Fontaine et al. 2015; Wen et al. 48

2016b). 49

For the four settings of s values, 0.1, 0.25, 0.5, and 50

1.0, we used the program ms (Hudson 2002) to simulate 51

20 data sets each with 128 gene trees of conditionally 52

0.6sE-2

0.25

BA C D E

1.6sE-2

1.2sE-2

0.8sE-2

0.4sE-2

0.8sE-2

1.6E-2

FIGURE 7. A model phylogenetic network used to generate
simulated data. The divergence times in units of expected number
of mutations per site, the population size parameter in units of
population mutation rate per site, and the inheritance probability
are marked in red, green, and purple, respectively. Parameter s is
used to scale the divergence times.

independent loci with the four following commands 53

respectively: 54

• ms 5 128 -T -I 5 1 1 1 1 1 -ej 0.025 4 3 -es 0.0375 1 55

0.3 -ej 0.05 6 3 -ej 0.05 2 1 -ej 0.075 5 3 -ej 0.1 3 1 56

• ms 5 128 -T -I 5 1 1 1 1 1 -ej 0.0625 4 3 -es 0.09375 57

1 0.3 -ej 0.125 6 3 -ej 0.125 2 1 -ej 0.1875 5 3 -ej 58

0.25 3 1 59

• ms 5 128 -T -I 5 1 1 1 1 1 -ej 0.125 4 3 -es 0.1875 1 60

0.3 -ej 0.25 6 3 -ej 0.25 2 1 -ej 0.375 5 3 -ej 0.5 3 1 61

• ms 5 128 -T -I 5 1 1 1 1 1 -ej 0.25 4 3 -es 0.375 1 62

0.3 -ej 0.5 6 3 -ej 0.5 2 1 -ej 0.75 5 3 -ej 1.0 3 1 63

The program Seq-gen (Rambaut and Grassly 1997) was 64

used to generate sequence alignments down the gene 65

trees under the Jukes Cantor model (Jukes and Cantor 66

1969) with lengths seqLen in {250,500,1000} using the 67

command 68

seq-gen -m HKY -l seqLen -s 0.008 69

To vary the number of loci used in the inference, we 70

produced data sets with 32, 64, and 128 loci by sampling 71

loci without replacement from the full data set of 128 72

loci. Each of these sequence data sets was then used as 73

input to the inference method. 74
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To assess the signal in the sequence data sets we 75

obtained, we quantified the percentage of variable sites 76

for each setting, averaged over all 20 replicates for that 77

setting. The percentages of variable sites in the generated 78

alignments for s=0.1,0.25,0.5,1.0 (varying the sequence 79

length had negligible effect for the same scaling factor 80

s) are ∼0.039±0.02, ∼0.048±0.02, ∼0.061±0.02, and 81

∼0.088±0.02, respectively. 82

For each data set, we ran an MCMC chain of 8×106
83

iterations with 1×106 burn-in. One sample was collected 84

from every 5,000 iterations, resulting in a total of 1,400 85

collected samples. We summarized the results based on 86

28,000 samples from 20 replicates for each of the 36 87

simulation settings (four values of s, three sequence 88

lengths, and three numbers of loci). In the boxplots 89

below, the five bars from bottom to top correspond 90

to the minimum, first-, second-, third-quantile, and the 91

maximum, respectively, from the 20 replicates for each 92

setting. In the other figures, the error bars correspond to 93

standard deviations calculated from the 20 replicates for 94

each setting. 95

In assessing the performance of our method, we 96

evaluated the estimates obtained for the various 97

parameters of interest: divergence times, population1

mutation rates, the number of reticulations, and the2

topology of the inferred species phylogeny. Fig. 8 shows3

the estimates obtained for the divergence time at the4

root of the network. Three observations are in order.
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FIGURE 8. Divergence time estimates at the root under
different values of the scaling parameter s (different rows), sequence
lengths (different columns), and numbers of loci (three values
within each panel). The dashed line indicates the true value in
the model network.

5

First, for any combination of sequence length and scaling6

parameter value, the divergence time estimate converges7

to the true value as the number of loci increases. Second,8

for any combination of number of loci and scaling9

parameter value, the divergence time estimate converges10

to the true value as the sequence length increases. Third,11

the estimates are relatively poor only under the extreme12

settings of scaling parameter value 0.1 and sequence13

length 250. In this case, the signal in the sequence data14

is too weak to obtain good estimates. However, it is15

worth noting that even under this setting, using 128 loci16

produces a very accurate estimate of the divergence time. 17

Fig. 9 shows the estimates obtained for the population 18

mutation rate parameter (one value across all branches 19

of the species network was assumed). The results show
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FIGURE 9. Population mutation rate estimates under different
values of the scaling parameter s (different rows), sequence lengths
(different columns), and numbers of loci (three values within each
panel). The dashed line indicates the true value in the model
network.

20

very similar trends to those obtained for the divergence 21

time estimates, with the main difference being that the 22

estimates now are very accurate even for the hardest of 23

cases: s=0.1 and sequence length 250, regardless of the 24

number of loci used. 25

The results are quite different when it comes to 26

estimating the number of reticulations and the topology 27

of the phylogenetic network itself. Fig. 10 shows the 28

estimates of the number of reticulations under different 29

settings. As the figure clearly shows, under the case of

FIGURE 10. Proportions of trees (red), 1-reticulation networks
(green) and 2-reticulations networks (blue) inferred under different
simulation conditions. The model network has a single reticulation.

30

extremely short branches (s=0.1), the method recovers 31

a tree; that is, it estimates the number of reticulations 32

to be 0, regardless of the number of loci or sequence 33
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length used. Here, the signal is too weak to recover1

any reticulation. In the case of slightly longer branches2

(s=0.25), the estimate of the number of reticulations3

becomes slightly more accurate when the sequences are4

long and 128 loci are used. Given the observed trend, the5

method could recover the true number of reticulations if6

a thousand or so loci are used. In the case of s=0.5, a7

fast convergence towards the true number is observed8

as the number of loci increases. It is worth pointing9

out that, in the case of s=0.5, increasing the number10

of loci, even when the sequences are very short, is11

much more advantageous than increasing the sequence12

lengths of the individual loci. It is also important to13

note here that in analyzing biological data sets, one14

cannot use longer sequences without risking violating the15

recombination-free loci assumption. In the case of s=1.0,16

the method does very well at estimating the number of17

reticulations. Finally, observe that the method almost 18

never overestimates the number of reticulations on these 19

data sets. 20

In assessing the quality of the estimated network 21

topology itself, we analyzed the recovered networks in 22

two ways. First, we compared the inferred network to the 23

true network using a topological dissimilarity measure 24

(Nakhleh 2010b). Second, when the method infers a 25

tree, rather than a network, we compared the tree 26

to the “backbone tree” of the true network (the tree 27

resulting from removing the arrow in Fig. 7) using the 28

Robinson-Foulds metric (Robinson and Foulds 1981). 29

The latter comparison allows us to answer the question: 30

When the method estimates the species phylogeny to 31

be a tree, how does this tree compare to the backbone 32

tree of the true network? It is important to note, 33

though, that the relationship of a phylogenetic network 34

and its constituent trees can become too complex to 35

be captured by a backbone tree in the presence of 36

incomplete lineage sorting (Zhu et al. 2016). Fig. 11 37

shows the results. The results in terms of the topological
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FIGURE 11. The topological difference between the true
and inferred networks in blue and the Robinson-Foulds distance
between the inferred tree (if a network is inferred, this case is not
included) and the backbone tree of the true network in green.

38

difference between the inferred and true networks parallel 39

those that we discussed above in terms of the estimates 40

of the number of reticulations: Poor accuracy and no 41

sign of convergence to the true network in cases of very 42

small values of the scaling parameter, and very good 43

accuracy and fast convergence to accurate estimates in 44

cases of larger values of the scaling parameter. However, 45

the topological difference between the inferred trees (in 46

the cases where trees were inferred) and the backbone 47

tree reveal an important insight: When the method fails 48

to recover the true network, it does a very good job at 49

recovering the backbone tree of the true network. 50

Our Method Provides Accurate Estimates of the Gene 51

Trees 52

Thus far, we have analyzed the accuracy of the inferred 53

networks and their associated parameters. While MCMC1

methods in this context are deployed to approximate the2

integration over gene trees in a simulated manner, the3

methods do provide the sampled gene trees (topologies4

and coalescence times). The accuracy of those sampled5

gene trees is important for at least two reasons. First,6

their accuracy directly impacts and explains the accuracy7

of the networks. Second, the gene trees themselves are a8

quantity of interest in many applications.9

It is important to note here two relevant studies10

that have addressed the issue of gene tree accuracy in11

the context of species tree estimation. First, (Bayzid12

and Warnow 2013) showed that ∗BEAST yields more13

accurate gene trees than would be estimated by RAxML,14

attributing the higher accuracy to the co-estimation15

nature of the former method. Second, (DeGiorgio and16

Degnan 2014) found that methods for estimating gene17

trees do a better job at estimating the topologies than the18

coalescence times and that this leads to more accurate19

species tree estimates when using gene tree topologies20

alone as opposed to using coalescence times as well.21

While both studies were conducted in the context of22

species trees, our goal here is not to reproduce these23

extensive studies in the context of phylogenetic networks,24

but rather to demonstrate that the main conclusions still25

hold even when the species phylogeny is reticulate.26

In Fig. 12 we report the Robinson-Foulds distances27

between the true gene tree topologies and those sampled28

by our method, as well as the distance between the true29

gene tree topologies and those estimated by RAxML.30

The results demonstrate that the co-estimated gene tree31

topologies are, on average, slightly closer to the true32

gene tree topologies than those estimated in a standalone33

manner using RAxML. Nonetheless, it is worth point34

out that the error bars of our method are smaller35

than those pertaining to the RAxML gene trees. Both36

methods obtained improved accuracy as the sequence37

length increased.38

As the results in the next section show, the networks 39

inferred from sequences directly are more accurate than 40

those inferred from gene tree estimates. The question is: 41

What is causing this difference if the gene tree topologies 42
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FIGURE 12. The Robinson-Foulds distances between the
true gene tree topologies and those estimated by our method in
blue, between the true gene tree topologies and those estimated by
RAxML in green, and between the gene tree topologies estimated
by our method and those estimated by RAxML in red.

estimated by both our method and RAxML are not 43

that different? One interesting observation we make is 44

that while both our method and RAxML infer gene 45

tree topologies that, on average, are of equal distance 46

from the true gene tree topologies, the two methods 47

return different trees, as shown in Fig. 12. That is, 48

under the Robinson-Foulds distance, both methods infer 49

gene trees whose topologies could be considered to be, 50

roughly, equally good. However, the topologies are not 51

the same. This difference could explain, at least in 52

part, the increased accuracy of the networks and their 53

associated parameters when inferred from sequences as 54

opposed to gene tree estimates. 55

To further investigae this question, we turned our 56

attention to the accuracy of the coalescence times 57

estimated by our method. Fig. 13 shows the Normalized 58

Rooted Branch Score (NRBS) (Heled and Drummond, 59

2010) between the gene trees estimated by our method 60

and the true gene trees. This measure takes into account 61

the branch lengths of the gene trees and not only the 62

topologies. These results clearly show that, except for the 63

hardest case of 0.1 scaling factor, the method performs 64

very well in terms of estimating the coalescence times, 65

not only in terms of the mean value but also in terms of 66

the very small standard deviations. 67

It is important to comment on a seeming discrepancy 68

between Fig. 12 and Fig. 13. For example, in the case 69

of scaling factor 1.0, Fig 12 shows a Robinson-Foulds 70

distance of 0.3, yet Fig. 13 shows an NRBS value close 71

to 0. Given that the number of taxa is 5, a Robinson- 72

Foulds value of 0.3 amounts, roughly, to a single incorrect 73

branch in the gene tree. However, while the true and1

estimated gene tree differ by one branch, the difference2

in coalescence times between the two trees could be3

negligible, which explains the small NRBS values.4

0

2

4

0
.1

SeqLen=250 500 1000

0

2

4

0
.2

5

0

2

4

0
.5

32 64 128

0

2

4

S
ca

le
=

1
.0

32 64 128 32 64 128

FIGURE 13. The Normalized Rooted Branch Score (NRBS)
(Heled and Drummond, 2010) between the true gene trees and
those estimated by our method. The branch lengths are scaled
in coalescent units and divided by their corresponding scale
parameter 0.1, 0.25, 0.5, 1.0 for better comparison.

Next we show the effect of errors in gene tree estimates5

on the accuracy of and data requirement for accuracy6

phylogenetic network estimates.7

Inference from Gene Tree Estimates Requires More8

Data Than Inference from Sequences9

We also set out to compare the performance of our10

method to that of the method we developed earlier11

for Bayesian inference of phylogenetic networks from12

gene tree data (Wen et al. 2016a). This method is13

also implemented in PhyloNet (Than et al. 2008) and14

executed via the command MCMC GT. The goal here is to15

assess the gains one obtains by using the sequence data16



“WenNakhleh-biorxiv” — 2017/8/15 — 9:07 — page 10 — #10i
i

i
i

i
i

i
i

10

directly rather than first estimating gene trees and then17

using those as the data for species phylogeny inference.18

For the purpose of this experiment we used the subset19

of the data sets described above and simulated on the20

phylogenetic network of Fig. 7 under the settings of21

s=1.0, sequence length 250, and 32, 64, and 128 loci.22

When using the method of (Wen et al. 2016a) we ran it23

once on the true gene trees and again using the gene tree24

estimates obtained by RAxML (Stamatakis 2014).25

We ran the method of (Wen et al. 2016a) for 1,100,00026

iterations with 100,000 burn-in and sampled every 1,00027

iterations. The top five topologies sampled are shown in28

Fig. 14 (they were the same top topologies when either29

the true gene trees or gene tree estimates were used).

BA C D E BA C D E BA C D E AC B D E BC A D E

FIGURE 14. The top five topologies sampled using the method
(Wen et al., 2016a) on the true gene trees, as well as the gene
tree estimates. The leftmost topology is the true network topology
and the second from left is the backbone tree of the true network
topology. See the main text for details on the 95% credible sets in
terms of these five topologies for the different data sets used.

30

When using the true gene tree topologies as input data,31

the results were as follows:32

• For the 32-locus data set, the 95% credible33

set contains 16.4% the true network, 59.6%34

the backbone tree, 12.5% other 1-reticulation35

networks, and 11.5% other trees.36

• For the 64-locus data set, the 95% credible37

set contains 66.0% the true network, 27.1% the38

backbone tree, and 3.8% the 1-reticulation network39

resulting for the backbone tree with reticulation40

edge C→E (the network in the middle of Fig. 14).41

• For the 128-locus data set, the 95% credible set42

contains 91.7% the true network, and 4.4% the43

backbone tree.44

When using the gene tree topology estimates as input 45

data, the results were as follows: 46

• For the 32-locus data set, the 95% credible 47

set contains 6.1% the true network, 47.3% 48

the backbone tree, 14.1% other 1-reticulation 49

networks, and 32.5% other trees. 50

• For the 64-locus data set, the 95% credible 51

set contains 24.7% the true network, 40.5% the 52

backbone tree, and 8.6% the 1-reticulation network 53

resulting for the backbone tree with reticulation 54

edge C→E, 18.4% other 1-reticulation networks, 55

and 7.8% other trees. 56

• For the 128-locus data set, the 95% credible set 57

contains 49.9% the true network, 19.1 the 1- 58

reticulation network resulting for the backbone tree 59

with reticulation edge C→E, 5.7% the backbone 60

tree, and 35.2% other 1-reticulation networks. 61

More comprehensively, Fig. 15 shows the proportions 62

of 0- (tree), 1-, and 2-reticulation networks in the 95% 63

credible sets on each of the data sets when different 64

numbers of loci are used and when the method of (Wen 65

et al. 2016a) is run on true and estimated gene tree 66

topologies.
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FIGURE 15. Proportions of trees (red), 1-reticulation networks
(green) and 2-reticulations networks (blue) in the 95% credible sets
sampled by the method of (Wen et al. 2016a) on data sets with
32, 64, and 128 loci. Left: the true gene tree topologies are used as
the input data. Right: the gene tree estimates (using RAxML) are
used as the input data.

67

We also assessed the quality of the inferred 68

network/tree topologies by comparing them to the 69

true network using the topological dissimilarity measure1

(Nakhleh 2010b). When the method infers a tree, rather2

than a network, we compared the tree to the backbone3

tree of the true network using the Robinson-Foulds4

metric (Robinson and Foulds 1981). The results are in5

Fig. 16.
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FIGURE 16. The topological difference between the true
and inferred networks in blue and the Robinson-Foulds distance
between the inferred tree (if a network is inferred, this case is not
included) and the backbone tree of the true network. Left: the true
gene tree topologies are used as the input data. Right: the gene
tree estimates (using RAxML) are used as the input data.

6

Clearly, the results indicate the method’s performance7

in terms of phylogenetic inference improves as the8

number of loci increases, and, unsurprisingly, the method9

has a much better performance when the true gene trees10

are used as input. However, for empirical data sets, the11

“true” gene trees are never known, and their estimates12

must be used for methods that utilize gene trees as data.13

Contrast these results to those obtained by our method14

when it is run on the sequence data as input (bottom15

left panel in Fig. 11). Estimation from sequence data16

outperforms inference from gene trees, even when using17

the true gene tree topologies. This is mainly due to the18

fact that the gene tree topology does not capture all the19

information that the sequence data do. In particular,20
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we observe that inference from sequence data requires21

a much smaller number of loci than that required to22

achieve a similar accuracy when making inferences from23

gene tree topology estimates.24

Intermixture vs Gene Flow: Comparing the Method’s25

Performance on Data under Both Models26

As we discussed above and illustrated in Fig. 2,27

intermixture and gene flow provide two different abstract28

models of reticulation. Furthermore, the program ms29

(Hudson 2002) allows for generating data under both30

models. While the MSNC is based on an intermixture31

model, we study here how it performs on data simulated32

under a gene flow model. We set up the experiment so33

that data are generated under the same phylogenetic34

networks and their parameters, yet under the scenarios35

of intermixture and gene flow separately. Furthermore, 36

in this part, we assess the performance when multiple 37

reticulation events occur between the same pair of 38

species—a very realistic scenario in practice. Fig. 17 39

shows the six phylogenetic networks we used to generate 40

data.
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FIGURE 17. True phylogenetic histories with intermixture
and gene flow models. Recurrent reticulations between non-
sister taxa (a,b), a single reticulation between non-sister taxa
(c,d), and a single reticulation between sister taxa (e,f) are
captured under both the intermixture model (top) and gene flow
model (bottom). Parameters h1 and h2 denote divergence times
(in coalescent units), ti parameters denote intermixture times,
mti parameters denote start/end of migration epochs, γ is the
inheritance probability, and mr is the population migration rate
(see main text).

41

For each simulation setting, we simulated 20 data 42

sets with 200 1-kb loci (in this part, we did not vary 43

the sequence lengths and numbers of loci). We set the 44

population mutation rate at 0.02 across all the branches. 45

Furthermore we set the inheritance probability γ and the 46

migration rate mr each to 0.20 (here, mr=2Nm, where 47

N is the effective population size, and m is the fraction of 48

the recipient population that is made up of migrants from 49

the donor population in each generation). We set h1 =9, 50

h2 =6. For the intermixture model (Fig. 17(a)), we set 51

t2 =3, and varied (t1,t3) to take on the values (4,2), 52

(5,1), and (6,0) so that the elapsed time, denoted by ∆t, 53

between subsequent reticulation events is 1, 2, or 3. For 54

the gene flow model (Fig. 17(b)), we set (mt1,...,mt6) 55

to (6,5,3.5,2.5,1,0), so that the duration of each gene 56

flow epoch is 1 and the time elapsed between between 57

two consecutive epochs, denoted by ∆mt, is 1.5. The 58

commands for the ms and Seq-gen programs are given in 59

Supplementary Materials. 60

For each data set, we ran an MCMC chain of 8×106
61

iterations with 1×106 burn-in. One sample was collected 62

from every 5,000 iterations, resulting in a total of 1,400 63

collected samples. We summarized the results based on 64

28,000 samples from 20 replicates for each parameter 65

setting.1

Table 1 shows the population mutation rates,2

divergence times, and numbers of reticulations estimated3

by our method on data generated under the models4

of Fig. 17(a) and Fig. 17(b). As the results show,

TABLE 1. Estimated population mutation rates (θ),
divergence times (h1 and h2), and numbers of reticulations (#reti)
as a function of varying ∆t in the model of Fig. 17(a) and ∆mt in
the model of Fig. 17(b). The divergence times were estimated in
units of expected number of mutations per site and are reported
in coalescent units by dividing by θ/2=0.01.

Case θ h1 h2 #reti
∆t=1 2.2±0.2e−2 8.9±0.1 5.9±0.1 1.2±0.4
∆t=2 2.2±0.2e−2 8.9±0.1 5.9±0.1 2.0±0.0
∆t=3 2.1±0.3e−2 9.0±0.1 6.0±0.1 2.6±0.5
∆mt=1.5 2.3±0.3e−2 8.9±0.1 6.0±0.1 2.1±0.3

5

the method performs very well in terms of estimating6

the divergence times and population mutation rates,7

regardless of whether the data were generated under an8

intermixture model or a gene flow model. Furthermore,9

for these two parameters, the estimates are stable10

while varying the elapsed times between consecutive11

reticulation events.12

As for the estimated number of reticulations, it13

becomes more accurate as the elapsed times between14

consecutive reticulations is larger. To better understand15

the factors that affect the detectability of reticulations,16

we plotted histograms of the true and estimated17

coalescence times of the most recent common ancestor18

(MRCA) of alleles from B and C in Fig. 18. Here,19

the true coalescence times are obtained from the true20

gene tree simulated generated by the program ms. The21

estimated coalescence times are sampled by our method22

along with the gene tree topologies. For the estimated23

coalescence times, we plot them based on all the collected24

samples, which is why the histograms of estimated25

coalescence times are smoother than those of the true26

ones.27

As Fig. 17(a) and Fig. 17(b) show, the coalescence28

times of alleles from B and C would form a mixture29

of four distributions: three due to the three reticulation30

events, and one above the root of the phylogenetic31

network. As the left three columns of panels in Fig 1832

show, under an intermixture model, as ∆t increases,33

the signal for a mixture of four distributions of (A,B)34

coalescence times becomes much stronger, thus pointing35

to three reticulations in addition to the coalescence36



“WenNakhleh-biorxiv” — 2017/8/15 — 9:07 — page 12 — #12i
i

i
i

i
i

i
i

12

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
e
n
si

ty

∆t=1

True coalescent times

∆t=2 ∆t=3 ∆mt=1.5

0 2 4 6 8
1
0

1
2

1
4

1
6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
e
n
si

ty

0 2 4 6 8
1
0

1
2

1
4

1
6

Estimated coalescent times

0 2 4 6 8
1
0

1
2

1
4

1
6 0 2 4 6 8

1
0

1
2

1
4

1
6

FIGURE 18. Histograms of the true (top) and estimated
(bottom) coalescence times (in coalescent units) of the MRCA of
alleles from B and C on data generated under the models of Fig.
17(a) and Fig. 17(b).

events above the root of the phylogeny. This is why,37

under the intermixture model, the method’s performance38

in terms of the estimated number of reticulations39

improves as ∆t increases. However, on data simulated40

the under the gene flow model (the rightmost column41

of panels in Fig. 18), the signal of the mixture of four 42

distributions of (A,B) coalescence times is surprisingly 43

stronger than that under the intermixture model with 44

the comparable ∆t=1 and ∆t=2. 45

Fig. 19 shows results similar to those reported in Fig. 46

18, with the only difference being that these are the 47

coalescence times from all 4,000 loci generated from the 48

20 data sets of 200 loci each. Effectively, this is the
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FIGURE 19. Histograms of the true (top) and estimated
(bottom) coalescence times (in coalescent units) of the MRCA of
alleles from B and C on 4,000 loci generated under the models of
Fig. 17(a) and Fig. 17(b).

49

signal in a data set of 4,000 independent loci. Clearly, 50

the signal is much stronger than in data sets of 200 51

loci, and all reticulations would be recoverable under the 52

intermixture model for ∆t=2,3 and for the gene flow 53

model. 54

We also ran simulations where we varied the number 55

of individuals sampled from species B (we sampled 1, 3, 56

and 5 individuals). The results improve as the number 57

of individuals increases from 1 to 3, but no discernible 58

improvement is achieved under our simulation settings 59

when the number of individual is increased to 5. Results 60

are given in the Supplementary Materials. 61

To assess the performance of our method on the 62

simpler case of a single reticulation event, we considered 63

the networks in Fig. 17(c) and Fig. 17(d), set h1 =2.5, 64

h2 =1.5, and mt1 =h2, and varied t,mt2∈{1,0}. As the 65

results in Table 2 demonstrate, our method estimated 66

the population mutation rate θ, the divergence times h1 67

and h2, and the inheritance probability/migration rate 68

very accurately under all cases. The method did very

TABLE 2. Estimated population mutation rates (θ),
divergence times (h1 and h2), inheritance/migration rates, and
numbers of reticulations (#reti) as a function of varying t in the
model of Fig. 17(c) and mt2 in the model of Fig. 17(d). The
divergence times were estimated in units of expected number of
mutations per site and are reported in coalescent units by dividing
by θ/2=0.01.

Case θ h1 h2 γ (mr) #reti
t=1 2.0±0.2e−2 2.5±0.1 1.5±0.1 0.20±0.05 1.0±0.0
t=0 2.0±0.2e−2 2.5±0.1 1.5±0.1 0.21±0.04 1.0±0.0

mt2 =1 2.0±0.2e−2 2.5±0.1 1.5±0.1 0.18±0.05 1.0±0.0
mt2 =0 2.2±0.2e−2 2.5±0.1 1.5±0.1 0.17±0.04 1.0±0.0

69

well also in terms of estimating t and mt2; results in 70

Supplementary Materials.1

A single reticulation was detected for all cases of2

intermixture and gene flow. We plotted the histograms of3

the true and estimated coalescence times of the MRCA4

of alleles from B and C in Fig. 20. As the figure shows,5

the distributions of estimated coalescence times match6

the distributions of true coalescence times very well.7

Furthermore, when using 4,000 loci, the signal becomes8

even stronger; results in Supplementary Materials.9

Finally, we assessed the performance of our method on10

cases where the reticulation event involves sister taxa.11

Fig. 17(e) and Fig. 17(f) show the cases we considered,12

with setting h1 =2.5 and h2 =1.5, and varying t,mt∈13

{1,0}.14

As the results in Table 3 demonstrate, our method15

obtained very accurate estimates of the various16

parameters under t=0 and mt=0. Under the cases of17
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FIGURE 20. Histograms of the true (top) and estimated
(bottom) coalescence times (in coalescent units) of the MRCA of
alleles from B and C on data generated under the models of Fig.
17(c) and Fig. 17(d).

TABLE 3. Estimated population mutation rates (θ),
divergence times (h1 and h2), inheritance/migration rates, and
numbers of reticulations (#reti) as a function of varying t in
the model of Fig. 17(e) and mt in the model of Fig. 17(f). The
divergence times were estimated in units of expected number of
mutations per site and are reported in coalescent units by dividing
by θ/2=0.01.

Case θ h1 h2 γ #reti
t=1 2.0±0.2e−2 2.5±0.1 1.3±0.1 NA 0.0±0.0
t=0 2.0±0.2e−2 2.5±0.1 1.5±0.0 0.21±0.06 1.0±0.0
mt=1 2.0±0.2e−2 2.5±0.1 1.4±0.1 NA 0.0±0.0
mt=0 2.2±0.2e−2 2.5±0.1 1.5±0.1 0.11±0.06 1.0±0.0

intermixture with t=1 and gene flow with mt=1, our18

method did not detect the reticulation, which resulted19

in an underestimation of h2. In the case of mt=0, the20

migration rate was severely underestimated, most likely21

due to the short time interval between the migration and22

divergence events between A and B. The method did23

very well also in terms of estimating t and mt; results in24

Supplementary Materials.25

We plotted the histograms of the true and estimated26

coalescence times of the MRCA of alleles from A and27

B in Fig. 21. When t=1 and mt=1, the signal of
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FIGURE 21. Histograms of the true (top) and estimated
(bottom) coalescence times (in coalescent units) of the MRCA of
alleles from A and B on data generated under the models of Fig.
17(e) and Fig. 17(f).

28

reticulation is very low, which explains the failure of our 29

method to detect it. In the cases of t=0 and mt=0, 30

the distributions of estimated coalescence times match 31

those of true coalescence times very well. When using 32

4,000 loci, the signal becomes even stronger; results in 33

Supplementary Materials. 34

Analysis of a 106-locus Yeast Data Set 35

The yeast data set of (Rokas et al., 2003) consists of 36

106 loci from seven Saccharomyces species, S. cerevisiae 37

(Scer), S. paradoxus (Spar), S. mikatae (Smik), S. 38

kudriavzevii (Skud), S. bayanus (Sbay), S. castellii 39

(Scas), S. kluyveri (Sklu). Rokas et al. (Rokas et al., 40

2003) reported on extensive incongruence of single- 41

gene phylogenies and revealed the species tree from 42

concatenation method (Fig. 22(a)). Edwards et al. 43

(Edwards et al., 2007) reported as the two main 44

species trees and gene tree topologies sampled from 45

BEST (Liu, 2008) the two trees shown in Fig. 22(a-b). 46

The other gene tree topologies (Fig. 22(c)) exhibited 47

weak phylogenetic signals among Sklu, Scas and the 48

other species. Bloomquist and Suchard (Bloomquist and 49

Suchard, 2010) reanalyzed the data set without Sklu 50

since it added too much noise to their analysis. Their 51

analysis resulted in many horizontal events between Scas 52

and the rest of the species because the Scas lineage- 53

specific rate variation is much stronger than that of the 54

other species. Yu et al. (Yu et al., 2013b) analyzed the 55

106-locus data set restricted to the five species Scer, 56
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FIGURE 22. Results on the yeast data set of (Rokas et al., 2003). (a) The species tree inferred using the concatenation method
(Rokas et al., 2003) and the main species tree and gene tree topology sampled using BEST (Edwards et al., 2007). (b) The second most
frequently sampled species and gene tree topology by BEST (Edwards et al., 2007). (c) Many other gene tree topologies were sampled
by BEST (Edwards et al., 2007), indicating weak phylogenetic signals among Sklu, Scas, and the rest of the species. (d) The MAP
phylogenetic network inferred by our method on all 106 loci. (e) The single phylogenetic network inferred using all 106 loci from the five
species Scer, Spar, Smik, Skud, Sbay.

Spar, Smik, Skud, and Sbay and identified a maximum 57

parsimony network that supports a hybridization from 58

Skud to Sbay with inheritance probability of 0.38. 59

Analyzing the 106-locus data set using our method, the 60

95% credible set contains many topologies with similar 61

hybridization patterns; the representative network is 62

shown in Fig. 22(d). All the previous findings are 63

encompassed by the networks inferred by our method. 64

The two hybridizations between Sklu and Scas (green 65

edges in 22(d)) indicate the weak phylogenetic signals 66

among Sklu, Scas and the rest of the species. The 67

hybridization from Scas to the other species except for 68

Sklu (red edge in 22(d)) captures the stronger lineage- 69

specific rate variation in Scas. Finally, the hybridization 70

from Skud to Sbay (blue edge in 22(d)) resolves 71

the incongruence between the two main species tree 72

topologies in 22(a-b). 73

We then analyzed the 106-locus data set restricted to 74

the five species Scer, Spar, Smik, Skud, and Sbay. The 75

phylogenetic signal in this data set is very strong—the1

consensus trees of 99 out of the 106 loci contain two2

internal branches. The MPP phylogenetic network in3

Fig. 22(f) contains the hybridization from Skud to Sbay,4

which is identical to the sub-network in Fig. 22(d). See5

Supplementary Materials for full details. In summary,6

analysis of the yeast data set demonstrates the effect of7

phylogenetic signal in the individual loci on the inference8

and the care that must be taken when selecting loci of9

analysis of reticulate evolutionary histories.10

We compared these analyses to ones obtained by the11

method of (Wen et al. 2016a) when the input data consist12

of gene tree estimates. When the gene tree estimates13

on all seven Saccharomyces species are used, the 95%14

credible set consisted of a single network that is shown15

in Fig. 22(d), yet with only the single reticulation from16

Skud to Sbay. When the gene tree estimates on the subset17

of five species were used as input, the 95% credible set18

consisted of a single network that is shown in Fig. 22(e),19

in agreement with the results based on co-estimation20

from the sequence data directly.21

Finally, we quantified the Robinson-Foulds distances22

between the locus-specific gene tree estimates obtained23

by our method and by RAxML. The distances were24

0.33±0.19 for the 7-taxon data set, and 0.33±0.16 for25

the 5-taxon data set. It is worth noting that these26

distances are very similar to those observed in Fig. 1227

above. Full details and further results for this data set28

are given in Supplementary Materials.29

DISCUSSION30

To conclude, we have devised a Bayesian framework for31

sampling the parameters of the MSNC model, including32

the species phylogeny, gene trees, divergence times, and33

population sizes, from sequences of multiple independent34

loci. Our work provides the first general framework for35

Bayesian phylogenomic inference from sequence data in36

the presence of hybridization. The method is publicly37

available in the open-source software package PhyloNet38

(Than et al. 2008). We demonstrate the utility of our39

method on simulated data and three biological data sets.40

Our results demonstrate several important aspects.41

First, ignoring hybridization when it had occurred results42

in underestimating the divergence times of species and43

overestimating the coalescence times of individual loci. 44

Second, co-estimation of species phylogeny and gene 45

trees results in more accurate gene tree estimates than 46

the inferences of gene trees from sequences directly. 47

Third, comparing to existing phylogenetic network 48

inference methods (Wen et al. 2016a; Yu et al. 2014) 49

that use gene tree estimates as input, our method not 50

only estimates more parameters, such as divergence 51

times and population sizes, but also estimates more 52

accurate phylogenetic networks from fewer loci. Further, 53

we assessed the performance of our model and method 54

on simulated data generated under a gene flow model. 55

Our method performed very well on such data. However, 56

given the nature of our abstract phylogenetic network 57

model, a gene flow epoch is estimated as a single 58

reticulation event. Finally, we analyzed a 106-locus 59

yeast data set and demonstrated for empirical data the 60

differences in results one obtains when co-estimating 61

the gene and species phylogenies when compared to 62

inferences from gene tree estimates. 63

Finally, we identify several directions for further 64

improvements of our proposed approach. First, while 65

priors on species trees, such as the birth-death model, 66

have been developed and employed by inference methods, 67
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similar prior distributions on phylogenetic networks are 68

currently lacking. Second, while techniques such as 69

the majority-rule consensus exist for summarizing the 70

trees sampled from the posterior distribution, principled 71

methods for summarizing sampled networks are needed. 72

Last but not least, the sequence data used here, and 73

in almost all phylogenomic analyses, consist of haploid 74

sequences of randomly phased diploid genomes. The 75

effect of random phasing on inferences in general needs 76

to be studied in detail. Furthermore, the model could 77

be extended to work directly on unphased data by 78

integrating over possible phasings (Gronau et al. 2011). 79
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online-only appendices, can be found in the Dryad data 82
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Leaché, A. D., Harris, R. B., Rannala, B., and Yang, Z. 2013. The 76

influence of gene flow on species tree estimation: a simulation 77

study. Systematic Biology, 63(1): 17–30. 78

Liu, L. 2008. BEST: Bayesian estimation of species trees under the 79

coalescent model. Bioinformatics, 24(21): 2542–2543. 80

Long, J. C. 1991. The genetic structure of admixed populations. 81

Genetics, 127(2): 417–428. 82

Mallet, J. 2005. Hybridization as an invasion of the genome. Trends 83

in Ecology & Evolution, 20(5): 229–237. 84

Mallet, J. 2007. Hybrid speciation. Nature, 446: 279–283. 85

Nakhleh, L. 2010a. Evolutionary phylogenetic networks: models 86

and issues. In L. Heath and N. Ramakrishnan, editors, The 87

Problem Solving Handbook for Computational Biology and 88

Bioinformatics, pages 125–158. Springer, New York. 89

Nakhleh, L. 2010b. A metric on the space of reduced phylogenetic 90

networks. IEEE/ACM Transactions on Computational Biology 91

and Bioinformatics (TCBB), 7(2): 218–222. 92

Pickrell, J. K. and Pritchard, J. K. 2012. Inference of population 93

splits and mixtures from genome-wide allele frequency data. 94

PLoS Genetics, 8(11): e1002967. 95

Rambaut, A. and Grassly, N. C. 1997. Seq-gen: An application for 96

the Monte Carlo simulation of DNA sequence evolution along 97

phylogenetic trees. Computer Applied Biosciences, 13: 235–238. 98

Rannala, B. and Yang, Z. 2003. Bayes estimation of species 99

divergence times and ancestral population sizes using DNA 100

sequences from multiple loci. Genetics, 164(4): 1645–1656. 101

Reich, D., Thangaraj, K., Patterson, N., Price, A. L., and Singh, 102

L. 2009. Reconstructing Indian population history. Nature, 103

461(7263): 489–494. 104

Rieseberg, L. 1997. Hybrid origins of plant species. Annual Review 105

of Ecology and Systematics, 28: 359–389. 106

Robinson, D. and Foulds, L. 1981. Comparison of phylogenetic 107

trees. Mathematical Biosciences, 53: 131–147. 108

Rokas, A., Williams, B. L., King, N., and Carroll, S. B. 2003. 109

Genome-scale approaches to resolving incongruence in molecular 110

phylogenies. Nature, 425(6960): 798–804. 111

Slatkin, M. and Maddison, W. P. 1989. A cladistic measure of gene 112

flow inferred from the phylogenies of alleles. Genetics, 123(3): 113



“WenNakhleh-biorxiv” — 2017/8/15 — 9:07 — page 16 — #16i
i

i
i

i
i

i
i

16

603–613. 114
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