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Abstract. Learning the joint distributions of measurements, and in particular iden-
tification of an appropriate low-dimensional manifold, has been found to be a powerful
ingredient of deep leaning approaches. Yet, such approaches have hardly been applied
to single nucleotide polymorphism (SNP) data, probably due to the high number of
features typically exceeding the number of studied individuals. After a brief overview
of how deep Boltzmann machines (DBMs), a deep learning approach, can be adapted
to SNP data in principle, we specifically present a way to alleviate the dimension-
ality problem by partitioned learning. We propose a sparse regression approach to
coarsely screen the joint distribution of SNPs, followed by training several DBMs on
SNP partitions that were identified by the screening. Aggregate features representing
SNP patterns and the corresponding SNPs are extracted from the DBMs by a com-
bination of statistical tests and sparse regression. In simulated case-control data, we
show how this can uncover complex SNP patterns and augment results from univari-
ate approaches, while maintaining type 1 error control. Time-to-event endpoints are
considered in an application with acute myeloid lymphoma patients, where SNP pat-
terns are modeled after a pre-screening based on gene expression data. The proposed
approach identified three SNPs that seem to jointly influence survival in a validation
data set. This indicates the added value of jointly investigating SNPs compared to
standard univariate analyses and makes partitioned learning of DBMs an interesting
complementary approach when analyzing SNP data.

1. Introduction

Identification of complex patterns comprising several single nucleotide polymorphisms
(SNPs) is considered to be the key for better explaining phenotypic variability (Wei et al.,
2014). Applications with SNP data, such as genome-wide association studies (GWAS) or
clinical cohorts, might thus benefit from identifying a low dimensional manifold providing
a compact description of observed individuals (Bengio et al., 2013).

Inherent to identifying a compact representation is learning of the joint distribution
of the mostly high dimensional SNP data. The majority of all SNPs is bi-allelic which
implies that a haploid SNP can be modeled as a Bernoulli variable. Consequently, the
joint distribution of many SNPs could be expressed as a high-dimensional cross-table.
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2 HESS ET AL.

While the joint distribution of a small number of Bernoulli variables could be estimated
with a specific form of log-linear models, this approach is only feasible for up to about
20 variables.

In contrast, deep learning techniques allow to generate compact and accurate rep-
resentations of high-dimensional binary data for a larger number of variables (Bengio
et al., 2013; Hinton and Salakhutdinov, 2006). They have been applied in a multitude
of settings, with a limited number of applications also in bio-medical research (Quang
et al., 2014; Leung et al., 2014; Angermueller et al., 2016; Chen et al., 2016). The
general idea of deep learning is to employ a network structure for mapping observed
variables into hidden variables by several network layers, each representing a non-linear
transformation.

Deep Boltzmann machines (DBMs) (Salakhutdinov and Hinton, 2009) are a special
type of Boltzmann machines, where observed variables and hidden variables in subse-
quent hidden layers are conditionally independent given the variables in the respective
adjacent layers. Since deep Boltzmann machines impose restrictions on higher order
interactions (Salakhutdinov and Hinton, 2009), they might provide an adequate sto-
chastic model for a high-dimensional SNP cross-table. Still this leads to a large number
of parameters even for a small number of variables, requiring sophisticated estimation
techniques (Salakhutdinov and Hinton, 2012). As a consequence and similar to other
deep learning techniques, the application of DBMs has so far been restricted to settings
where the number of individuals is larger, and often much larger, than the number of
observed variables (Chen et al., 2014). General rules of thumb correspond to about
n = 10 · p individuals required for p variables, naturally also depending on the specific
network structure (Hinton, 2010).

In the following, we will investigate how DBMs could nevertheless be adapted for
a large number of SNPs equal to or larger than the number of observed individuals.
Specifically, we will consider settings with up to n · 5 variables. Such applications with
a moderately large but not huge number of SNPs might e.g. be relevant when gene
expression data has been used to already identify some potentially relevant genes, and
the SNPs corresponding to these genes are to be investigated subsequently. One such
application will be presented with data from clinical cohorts of acute myeloid leukemia
(AML) patients (Hieke et al., 2016a,b; The Cancer Genome Atlas Research Network,
2013).

To enable estimation of DBMs even for a rather large number of SNPs, we will propose
an approach for identifying a partition into clusters of SNPs whose joint distribution
should be learned in order to derive the overall joint distribution. Thereby we avoid
the costly parameter estimation for practically independent SNPs. Specifically, we will
use a regularized regression approach, stagewise regression (Tutz and Binder, 2007),
for performing variable selection for each SNP as a response variable with respect to
all other SNPs. The resulting variable selection forms the basis for clustering SNPs
and for subsequently partitioning the parameter estimation of an overall DBM into one
sub-DBM per cluster.

The resulting model for the joint distribution of SNPs could be useful for different
tasks. While deep learning research has put a strong emphasis on prediction performance
(Krizhevsky et al., 2012; Ciregan et al., 2012; Graves et al., 2013), which in the present
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context would correspond to predicting disease states or risk of death based on high-
dimensional SNP data, extraction of identified patterns from deep networks has received
less attention. Yet, this is important for understanding the interplay of SNPs. Therefore,
we will propose an approach for extracting SNP patterns from a DBM. Specifically, we
will combine statistical testing on the hidden nodes with variable selection, provided by
stagewise regression, to identify significant SNPs linked to a phenotype under type 1
error control.

In the Methods section, we will briefly review parameter estimation for DBMs, indicat-
ing some of our experience in tuning the approach for our application, before introducing
the partitioning approach. Subsequently, we show how to extract significant SNPs from
the resulting DBMs. A case-control simulation design is described in the subsequent sec-
tion, and used to evaluate the performance of our proposals, in particular compared to
standard univariate testing. In the application to SNP data from acute myeloid leukemia
patients, the approach is illustrated for time-to-event endpoints. Finally, we will provide
concluding remarks and indicate potential future extensions and generalizations.

2. Methods

In the following we consider settings where a phenotype is to be linked to a potentially
large number of SNPs. For example, the case-control status takes the role of a binary
phenotype in genome-wide association studies (GWAS), or survival might be the end-
point of interest in a clinical cohort. We assume dominant SNP effects, which simplifies
the diploid SNP encoding to a binary variable, where 0 corresponds to no minor or risk
allele while 1 corresponds to at least one minor or risk allele. The results can easily be
generalized to other SNP codings, as will be discussed later.

2.1. Deep Boltzmann machines. The joint distribution of p single nucleotide poly-
morphisms (SNPs) could in principle be described by a log-linear model. Yet, such
models are only suitable for estimating the joint distribution of a small number of vari-
ables. In contrast, deep Boltzmann machines (DBMs) (Salakhutdinov and Hinton, 2009)
provide a model for the joint distribution of a large number of Bernoulli variables, also
employing hidden nodes in a multi-layer network. In the following, we will restrict our-
selves to networks with two hidden layers (with vectors h(1) and h(2) indicating the
activation of these layers). Using this DBM we aim to model the probability of the visi-
ble nodes v corresponding to the p SNP variables, i.e. the underlying joint distribution.
The DBM specifies the log-probability as

(1) log(P (v; θ)) = log(
∑

h(1),h(2)

e−E(v,h(1),h(2)))− log(Z(θ))

where θ corresponds to the parameters of the DBM. E is the energy function

E(v,h(1),h(2)) =

− aTv − b(1)Th(1) − b(2)Th(2)−

vTW(1)h(1) − h(1)TW(2)h(2)

(2)
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where W(1) and W(2) correspond to the weight matrices connecting v with h(1) and
h(1) with h(2) respectively. a, b(1) and b(2) are the so-called bias vectors, corresponding
to intercept terms. The log-partition function

(3) log(Z(θ)) = log(
∑
v

∑
h(1),h(2)

e−E(v,h(1),h(2)))

normalizes the probability.
With their layered architecture, DBMs are able to employ high-level information to

constrain parameters that capture lower-level information in order to derive a better
representation of the data (Salakhutdinov and Hinton, 2012).

For parameter estimation, we do as recommended in Salakhutdinov and Hinton (2009,
2012). Layer-wise pre-training is employed to get closer to a solution that optimizes the
likelihood. For pre-training the deep Boltzmann machine is treated as two stacked re-
stricted Boltzmann machines, RBM1 and RBM2, whose weight matrices W(1),W(2)

are estimated consequently using contrastive divergence (Hinton, 2002). After the pa-

rameters of RBM1 are estimated, RBM2 is trained on the activations of h(1) which are
derived by passing the training data through RBM1. By adding more layers, the vari-
ational lower bound of the likelihood of the data is increased while the likelihood itself
may not necessarily be increased.

Joint refinement is performed by a combination of mean field approximation of the
data dependent distribution by variational learning (Neal and Hinton, 1998) and Gibbs
sampling with parallel Gibbs chains for the approximation of the distribution defined by
the DBM. The joint refinement finally improves the lower bound of the likelihood of the
data (Salakhutdinov and Hinton, 2012).

The performance in modeling the joint distribution of the SNPs and feasibility of
parameter estimation critically depends on the network architecture, and in particular
the number of hidden nodes in each layer. As frequently seen in applications (Hinton,
2010; Hinton and Salakhutdinov, 2006), we use p nodes in the first layer, and p/10 nodes
in the second layer to achieve a lower-dimensional representation, while still allowing for
partitions to be implemented by the approach introduced in the next section.

The number of epochs, i.e. the number of iterations the data is presented to the net-
work, is a tuning parameter which has to be carefully selected in order to avoid overfitting
during pre-training and the subsequent refinement. We found that a fixed small number
of epochs, such as 20 epochs, worked well in our applications, providing more reliable
results, compared to tuning parameter selection based on likelihoods calculated using
formula (1), where the analytically intractable partition function Z(θ) was estimated
by annealed importance sampling (Salakhutdinov and Hinton, 2012; Salakhutdinov and
Murray, 2008). While such a fixed number of epochs might promote overfitting, we will
introduce an approach for strict type 1 error control in subsequent sections, which limits
detrimental effects.

Still, we found that useful results were difficult to obtain in situations where the num-
ber p of visible nodes was larger than a fifth of the number n of independent observations.
This motivated us to develop the partitioning approach described in the following, which
allows to train sub-DBMs on clusters obtained from a partitioning of the SNPs and then
reassembling these DBMs into a large DBM.
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2.2. Partitioning by stagewise regression. Partitioning of restricted Boltzmann ma-
chines (RBM) has been suggested for improving training in deep learning (Tosun and
Sheppard, 2014). This means that not all parameters of a network are determined at
once, but sub-networks are trained for pre-specified partitions of the visible units. To
estimate DBMs for a large number of SNPs, we will build on this idea in the following.

The partitioning approach of Tosun and Sheppard (2014) was applied to image input,
where partitions could be naturally defined by spatial proximity. For SNP data, spatial
proximity could also be considered, but this might focus training on linkage disequi-
librium (LD) blocks, i.e. local correlations, which are already rather well known, and
lead to overlooking joint patterns of SNPs that are not in close proximity. To prevent
this, our partitioning approach is based on a coarse estimate of the joint SNP distri-
bution. The general idea is to coarsely determine multivariable patterns of dependence
using a multivariable regression model in a first step, then determine a partition, and
subsequently estimate a more accurate DBM model of the joint distribution.

In detail we consider each SNP as a response variable vi in a multivariable regression
model and want to predict its value by the other SNPs v 6=i that enter the model as
covariates, while ignoring interactions and non-linear effects:

(4) E(Vi|V 6=i = v 6=i) = β0,i + vT
6=iβ6=i ∀ i ∈ {1, ..., p}

with v 6=i defined as (v1,...,vi−1,vi+1,...,vp) and β6=i being the vector of coefficients in the
regression model.

Although the models above are deliberately misspecified, having a continuous response
form and using artificially standardized binary covariates, one can reasonably expect that
strong non-zero relationships can still be identified. Furthermore the advantage of the
above mentioned models is that variable selection can be performed in a computationally
very efficient way by stagewise regression (Tutz and Binder, 2007) based on covariance
statistics. Using stagewise regression we are thus able to select SNPs that are strongly
correlated with a given SNP. If k steps are performed in this approach, corresponding
to the selection of a maximum of k covariates with non-zero effects, at most k · (p − 1)
bivariate covariance statistics have to be calculated. This makes computation feasible
even for a large number of SNPs, in particular as the covariance statistics can be re-used
between the different models.

Stagewise regression, similar to the closely related lasso approach for regularized re-
gression, has the property that it typically assigns only one non-zero estimate to a
member of a highly correlated group of covariates that all have an effect (Binder and
Schumacher, 2009). In particular for a SNP application, this would mean that only one
SNP from an LD block would be selected, and this selection might depend on random
variations in the data. For the lasso, the elastic net was introduced to address this (Zou
and Hastie, 2005). Specifically, the latter approach exhibits a grouping property, as-
signing non-zero estimates to each of a correlated group of SNPs that all have an effect.
For stagewise regression, an approach for obtaining such a grouping property has been
described in Binder and Schumacher (2009). This introduces a second tuning param-
eter besides the number of steps, which determines the extent to which the grouping
property is enforced. Based on the results in Binder and Schumacher (2009), we set this
parameter to 0.9 in the following.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 20, 2016. ; https://doi.org/10.1101/095638doi: bioRxiv preprint 

https://doi.org/10.1101/095638


6 HESS ET AL.

Subsequently, we cluster SNPs based on their pairwise relation given by the p × p
matrix B of regression coefficients inferred by stagewise regression. Specifically, we
construct a distance matrix based on B. The matrix B is not symmetric and therefore
not suitable as a distance matrix, but we can use it to define the symmetric matrix B∗,
with B∗ij = −max(Bij , Bji). Using B∗ we hierarchically cluster the SNPs using average
linkage.

A pre-specified number of clusters is obtained by cutting the resulting tree at an
appropriate level, where each cluster represents a SNP group. We suggest to choose
the number of clusters such that at least 40 SNPs are clustered together and use this
threshold in the following. We train sub-DBMs on each of the SNP groups, resulting in
a partitioned DBM, and set the number of the terminal hidden nodes proportional to
the number of SNPs in a SNP group. Using a number of p/10 second layer hidden units
in the joint DBM, this typically allows for partitions with up to p/50 groups.

2.3. Reassembling an overall DBM. After having obtained parameter estimates for
each sub-DBM trained for a group of SNPs in a partition, these DBMs need to be
combined into an overall DBM for a joint model of the SNP distribution. In preliminary
experiments, we initialized the parameters cross-linking the sub-DBMs by small random
values and performed further training iterations. Yet, this did not change performance
much, as the parameters from the group-DBMs typically are already larger and dominate
subsequent iterations of mean field and Gibbs sampling. Therefore, we suggest to set
the cross-linking parameters to zero, i.e. maintaining the partition even in the overall
DBM.

2.4. Extracting SNP patterns. To extract SNP patterns from a DBM, we consider
the association between hidden units and the phenotype of interest in a first step, subse-
quently identifying visible units, i.e. SNPs, that are potentially associated with hidden
units found to be connected to the phenotype. The SNPs found to be potentially as-
sociated are themselves tested for association with the phenotype. Both steps looking
at the phenotype employ a Bonferroni-Holm (Holm, 1979) correction to maintain type
1 error. Furthermore, to maintain an overall type 1 error of α, both steps operate at a
level of α/2. To test for association between hidden units and a phenotype, we could
stochastically determine hidden binary values for each individual from the DBM. Yet,
to minimize noise, we deterministically propagate activations in the network to obtain
continuous values for each second layer hidden unit. Association with the phenotype is
then assessed, by t-tests for binary phenotypes or Cox proportional hazards models for
time-to-event phenotypes. To determine SNPs associated with a hidden unit h2i in the
terminal hidden layer h2 of length t that is found to be significantly associated with the
phenotype, we again consider multivariable regression, specifically a model

(5) E(H2i = 1|V = v) = γ0,i + vTγ ∀ i ∈ {1, ..., t}

where v represents the p SNPs. This corresponds to the idea that the hidden unit
reflects a multivariable pattern. As in the previous section, the model will certainly
be mis-specified, but may nevertheless be useful for variable selection. Accordingly, we
perform stagewise regression for estimation as above, using 10 steps to provide a coarse
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screening. The selected SNPs subsequently are tested for association with the phenotype
using the same type of test as for the hidden units.

3. Simulation Study

The proposed approach has the potential to identify groups of SNPs that belong to
a relevant SNP pattern, and to identify SNPs that might have been missed by standard
univariate testing. We anticipate that the performance will depend on the number of
SNPs relative to the number of individuals and the complexity of the SNP patterns.
Therefore, we designed a simulation study varying these parameters and evaluating per-
formance in terms of SNP identification, with standard univariate testing as a reference.

3.1. Design. Binary SNP covariates are generated with a frequency of 0.1 for a value of
1, where the total number of SNPs is 100, 500, 1000, 2000 or 5000. A binary case-control
phenotype is generated for a large number of individuals, based on patterns described
below, and 500 cases and 500 controls are drawn. We consider two settings with different
SNP patterns each involving 50 SNPs, divided into 10 groups containing 5 SNPs each.

In the first pattern (LEVEL1), a case phenotype is generated when in any of the
groups at least k SNPs have a value equal to 1. Such a pattern might e.g. be seen
when there is a large number of biologically relevant genes, where disruption in any of
the genes results in a case phenotype, but disruption requires a relatively large number
of SNPs. In the second pattern (LEVEL2), the 10 groups are further sub-divided into
pairs of groups, each comprising two groups with 10 SNPs in total. A case phenotype is
generated when in any of the resulting 5 pairs at least k SNPs have a value of 1 in both
pair members. Compared to the first pattern, this corresponds to a two level structure
with a layered condition on the sum of SNPs. This might e.g. be encountered when
disruption of a biological pathway requires disruption of at least two linked genes.

For both the LEVEL1 and LEVEL2 pattern we varied k, the number of SNPs per
group that were required to be 1 in order to generate a case phenotype, from 3 to 4 and
2 to 3 respectively (called LEVEL1 K3/4, LEVEL2 K2/3 in the following). This results
in different average odds ratios across informative SNPs, specifically 1.695 for scenario
LEVEL1 K3, 1.896 for LEVEL1 K4, 1.846 for LEVEL2 K2, and 2.336 for LEVEL2 K3.
100 simulation runs were conducted for each simulation setting and each number of
simultaneously investigated SNPs .

We performed standard univariate testing using χ2 tests and Bonferroni correction for
an overall level of α = 0.05. Using these univariate results as a reference, we investigated
the effect of the proposed approach for learning the joint distribution of SNP clusters
on the power to detect SNPs that are associated with the phenotype under type 1 error
control.

In addition, we considered a combination of the proposed approach and univariate
testing, where both are performed at level α = 0.025, and results are combined into a
joint list, which then satisfies an overall level of α = 0.05. This approach reflects the
idea that the proposed approach, as a multivariable technique, might be able to extract
information that is complementary to the standard univariate approach.

3.2. Partitioning performance. The simulated SNP data were partitioned based on
stagewise regression and subsequent hierarchical clustering conducted with the estimated
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regression coefficients β̂. In combination with a number of 100 steps, stagewise regression
resulted in selection of about 35 (in settings with 100 SNPs) to 80 (in settings with 5000
SNPs) non-zero-effect SNPs. The SNPs were partitioned into on average 1.4 (in settings
with 100 SNPs) to 57 (in settings with 5000 SNPs) clusters containing at least 40 SNPs
each.

We aimed to learn the joint distribution of binary SNP covariates that were partitioned
into different DBMs based on their initially coarsely learned correlation structure. Since
in the final DBM all weights between visible and hidden nodes from different clusters
are constrained to 0, nothing can be learned about the joint distribution of SNPs whose
relation was not detected by the stagewise regression approach. Thus we investigated
how well related SNPs are clustered based on the distinctness of the simulated patterns.

To quantify partitioning performance, we determined across how what number of
clusters SNPs of a group of related SNPs are distributed. In a perfect clustering scenario
all related SNPs would be partitioned into the same DBM cluster. Patterns requiring
a larger number of SNPs to be equal to 1, k = 4 for LEVEL1 settings and k = 3 for
LEVEL2 settings, resulted in good partitioning performance (Figure 1). For patterns
with a smaller number of SNPs equal to 1, partitioning performed worse, while still at
least parts of patterns were recovered in clusters.

3.3. SNP identification performance. Using univariate testing as described above,
the average number of SNPs that were correctly identified as being associated with the
binary phenotype ranged from 1.42 (LEVEL1 K3; 5000 SNPs) to 44.60 (LEVEL2 K3;
100 SNPs) (Figure 2 - “Uni”). As expected these numbers decrease rapidly with the
number of SNPs that were investigated and increase with the number of SNPs that were
required to generate a case phenotype (lowest for LEVEL1 K3 = 3 SNPs, highest for
LEVEL2 K3 = 6 SNPs).

Compared to the univariate analysis, the best performance of the proposed approach
is seen for scenarios LEVEL1 K4 and LEVEL2 K3, i.e. when a larger number of SNPs
equal to 1 is required for a case pattern (Figure 2 - “partDBM”) . While for a small
total number of SNPs (p = 100) the univariate approach still performs better, the
proposed approach is superior for a larger number of SNPs. For the other two scenarios,
LEVEL1 K3 and LEVEL2 K2, the univariate approach is superior, albeit at a much
smaller number of significant SNPs. This might indicate difficulties of the proposed
approach when there is only a weak signal in the data. A further notable property of the
proposed approach is that the number of significant SNPs is rather stable irrespective
of the total number of SNPs that were investigated, in contrast to univariate testing.

The difficulties of the proposed approach in settings with weak signal (LEVEL1 K3
and LEVEL2 K2) are ameliorated when combining the significant SNPs with those from
univariate testing, both obtained at level α = 0.025, guaranteeing an overall level of
α = 0.05. The performance of such a combined approach is equal or superior to univari-
ate testing in almost all scenarios, indicating that the proposed approach can extract
complementary information (Figure 2 - “Uni + partDBM”).
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maintain an overall type 1 error of ↵, both steps operate at a level of ↵/2.
To test for association between hidden units and a (binary) phenotype, we
could stochastically determine hidden binary values for each individual
from the DBM. Yet, to minimize noise, we deterministically propagate
activations in the network to obtain continuous values for each second
layer hidden unit. Association with the phenotype is then assessed, by
t-tests for binary phenotypes or Cox proportional hazards models for time-
to-event phenotypes. To determine SNPs associated with a hidden unit hi

in the terminal hidden layer h of length t that is found to be significantly
associated with the phenotype, we again consider multivariable regression,
specifically a model

E(hi = 1|X = x) = xT � 8 i 2 {1, ..., t} (5)

where x represents the p SNPs in one individual. This corresponds
to the idea that the hidden unit reflects a multivariable pattern. As
in the previous section, the model will certainly be mis-specified, but
may nevertheless be useful for variable selection. Corresponding, we
perform stagewise regression for estimation as above, using 10 steps to
provide a coarse screening. The selected SNPs subsequently are tested for
association with the phenotype using standard �2 statistics.

3 Simulation Study
The proposed approach has the potential to identify groups of SNPs
that belong to a relevant SNP pattern, and to identify SNPs that might
have been missed by standard univariate testing. We anticipate that the
performance will depend on the number of SNPs relative to the number of
individuals and the complexity of the SNP pattern. Therefore, we designed
a simulation study varying these parameters and evaluating performance in
terms of SNP identification, with standard univariate testing as a reference.

3.1 Design

Binary SNP covariates are generated with a frequency of 0.1 for a value of
1, where the total number of SNPs is 100, 500, 1000, 2000 or 5000.
A binary case-control phenotype is generated for a large number of
individuals, based on patterns described below, and 500 cases and 500
controls are drawn. We consider two settings with different SNP patterns
each involving 50 SNPs, divided into 10 groups containing 5 SNPs each.

In the first pattern (LEVEL1), a case phenotype is generated when
in any of the groups at least k SNPs have a value equal to 1. Such a
pattern might e.g. be seen when there is a large number of biologically
relevant genes, where disruption in any of the genes results in a case
phenotype, but disruption requires a relatively large number of SNPs. In
the second pattern (LEVEL2), the 10 groups are further sub-divided into
pairs of groups, each comprising two groups with 10 SNPs in total. A case
phenotype is generated when in any of the resulting 5 pairs at least k SNPs
have a value of 1 in both pair members. Compared to the first pattern, this
corresponds to a two level structure with a layered condition on the sum
of SNPs. This might e.g. be encountered when disruption of a biological
pathway requires disruption of at least two linked genes.

For both the LEVEL1 and LEVEL2 pattern we varied k, the number
of SNPs per group that were required to be 1 in order to generate a case
phenotype, from 3 to 4 and 2 to 3 respectively (called LEVEL1_K3/4,
LEVEL2_K2/3 in the following). This results in different average
odds ratios across informative SNPs, specifically 1.695 for scenario
LEVEL1_K3, 1.896 for LEVEL1_K4, 1.846 for LEVEL2_K2, and 2.336
for LEVEL2_K3. 100 simulation runs were conducted for each simulation
setting and each number of simultaneously investigated SNPs .

We performed standard univariate testing using�2 tests and Bonferroni
correction for an overall level of ↵ = 0.05. Using these univariate results
as a reference, we investigated the effect of the proposed approach for

learning the joint distribution of SNP cluster on the power to detect SNPs
that are associated with the phenotype under type 1 error control.

In addition, we considered a combination of the proposed approach
and univariate testing, where both are performed at level ↵ = 0.025, and
results are combined into a joint list, which then satisfies an overall level
of ↵ = 0.05. This approach reflects the idea that the proposed approach,
as a multivariable technique, might be able to extract information that is
complementary to the standard univariate approach.

3.2 Partitioning performance

The simulated SNP data were partitioned based on stagewise regression
and subsequent hierarchical clustering conducted with the estimated
regression coefficients (�s). In combination with a number of 100 steps,
stagewise regression resulted in selection of about 35 (in settings with 100
SNPs) to 80 (in settings with 5000 SNPs) non-zero-effect SNPs. The SNPs
were distributed into on average 1.4 (in settings with 100 SNPs) to 57 (in
settings with 5000 SNPs) partitions containing at least 40 SNPs each.

We aimed to learn the joint distribution of binary SNP covariates that
were partitioned into different DBMs based on their initially coarsely
learned correlation structure. Since in the final DBM all weights between
visible and hidden nodes from different clusters are constrained to 0,
nothing can be learned about the joint distribution of SNPs whose
correlation was not detected by the stagewise regression approach. Thus
we investigated how well correlated SNPs are clustered based on the
distinctness of the simulated patterns.

To quantify partitioning performance, we determined in how many
partitions SNPs from a group of related SNPs are distributed. In a perfect
clustering scenario all related SNPs would be clustered into the same DBM
partition. Patterns requiring a larger number of SNPs to be equal to 1, k = 4

for LEVEL1 settings and k = 3 for LEVEL2 settings, resulted in good
partitioning performance (Figure 1). For patterns with a smaller number
of SNPs equal to 1, clustering performed worse, while still at least parts
of patterns were recovered in clusters.
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Fig. 1. Partitioning performance conditional on the different simulation settings and the
number of investigated SNPs. Performance was quantified as the number of partitions in
which SNPs of a SNP group were found, divided by the number of SNPs in the simulated
SNP group (LEVEL1 = 5, LEVEL2 = 10). The lower the values are, the better is the
clustering.

Figure 1. Partitioning performance conditional on the different simu-
lation settings and the number of investigated SNPs. Performance was
quantified as the number of partitions in which SNPs of a SNP group
were found, divided by the number of SNPs in the simulated SNP group
(LEVEL1 = 5, LEVEL2 = 10). The lower the values are, the better is
the partitioning.

4. Application

We tested the approach in an application with data from acute myeloid leukemia
(AML) patients, where potentially relevant genes were already identified based on gene
expression data. The aim was to identify prognostic SNPs, which might provide deeper
insight into the underlying biology.

Survival information was available from 308 patients, with 154 deaths and a median
survival of 529 days. For each of these patients, 390443 SNPs are available after pre-
processing measurements from an Affymetrix SNP 6.0 platform. For more details see
Hieke et al. (2016a).
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3.3 SNP identification performance

Using univariate testing as described above, the average number of SNPs
that were correctly identified as being associated with the binary phenotype
ranged from 1.42 (LEVEL1_K3; 5000 SNPs) to 44.60 (LEVEL2_K3; 100
SNPs) (Figure 2 - “Uni”). As expected these numbers decrease rapidly
with the number of SNPs that were investigated and increase with the
number of SNPs that were required to generate a case phenotype (lowest
for LEVEL1_K3 = 3 SNPs, highest for LEVEL2_K3 = 6 SNPs).

Compared to the univariate analysis, the best performance of the
proposed approach is seen for scenarios LEVEL1_K4 and LEVEL2_K3,
i.e. when a larger number of SNPs equal to 1 is required for a case
pattern (Figure 2 - “partDBM”) . While for a small total number of SNPs
(p = 100) the univariate approach still performs better, the proposed
approach is superior for a larger number of SNPs. For the other two
scenarios, LEVEL1_K3 and LEVEL2_K2, the univariate approach is seen
to be superior, albeit at a much smaller number of significant SNPs. This
might indicate difficulties of the proposed approach when there only is
a weak signal in the data. A further notable property of the proposed
approach is that the number of significant SNPs is rather stable irrespective
of the total number of SNPs that were investigated, in contrast to univariate
testing.

The difficulties of the proposed approach in settings with weak signal
(LEVEL1_K3 and LEVEL2_K2) are ameliorated when combining the
significant SNPs with those from univariate testing, both obtained at level
↵ = 0.025, guaranteeing an overall level of ↵  0.05. The performance
of such a combined approach is seen to be equal or superior to univariate
testing in almost all scenarios, indicating that the proposed approach can
extract complementary information (Figure 2 - “Uni + partDBM”).

4 Application
We tested the approach in an application with data from acute myeloid
leukemia (AML) patients, where potentially relevant genes were already
identified based on gene expression data. The aim was to identify
prognostic SNPs, which might provide deeper insight into the underlying
biology.

Survival information was available from 308 patients, with 154 deaths
and a median survival of 529 days. For each of these patients, 390443 SNPs
are available after pre-processing measurements from an Affymetrix SNP
6.0 platform. For more details see Hieke et al. (2016a).

As also described in Hieke et al. (2016b) gene expression
measurements are available from a partially overlapping cohort. While in
Hieke et al. (2016b) the focus had been on identifying gene expression
features containing information not already conveyed by the SNP, the
present idea is to use the gene expression information to reduce the number
of SNPs that are considered for modeling. Specifically, we considered the
SNPs mapped to the top seven genes, MAP7, TRIM37, SCAMP4, EXT2,
AKT1S1 and MT3, identified by a stagewise regression approach from the
gene expression data in Hieke et al. (2016b), resulting in a list of 70 SNPs
for subsequent modeling by partitioned deep Boltzmann machines.

Partitioning and fitting of deep Boltzmann machines was performed
as described above, using four clusters of SNPs, i.e. a partitioning
into four deep Boltzmann machines. SNPs were coded into 0/1 values
for representing dominant effects. For subsequently identifying relevant
hidden units and extracting SNPs, univariate Cox regression models werde
used, with additive (0/1/2) coding to avoid convergence issues. Signficance
was assessed with a likelihood ratio test.

When fitting Cox models for each of the original 70 SNPs, no SNP was
found to be significant after Bonferroni-Holm correction (FWER<0.05).
When considering the top hidden layer of the deep Boltzmann machines,
one of the seven hidden units was found to be significantly associated with
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Fig. 2. Number of significantly associated SNPs dependent on the number of investigated
SNPs and the simulation scenario. Uni = each SNP is tested for association with the
case/control phenotype using a �2 test, partDBM = visible nodes (SNPs) and the
corresponding p-values from the �2 test are selected using our partitioned DBM approach,
partDBM + Univariate = combination of Uni and parDBM while maintaining the global
↵ level. P-values were adjusted by the Bonferroni-Holm procedure (FWER < 0.05). 100
simulation runs were conducted for each setting and each number of SNPs.

survival at a level of 0.025 after Bonferroni correction. Sparse regression
indicated four SNPs to be associated wth this significant top level hidden
unit. After Bonferroni correction at level 0.025, i.e. at an overall level
of 0.05, three of these SNPs (rs8082544, rs3826353, rs11656413) were
found to be associated with survival. All three SNPs mapped to the gene
TRIM37, one upstream and two in the gene body, spanning a total distance
of 110508 nucleotides (GRCh38). This spread of location indicates that
the proposed approach did not simply identify an LD block, but might
have uncovered a more complex pattern.

We validated the identified SNPs using SNP data from AML patients
in the Cancer Genome Atlas (TCGA; Weinstein et al. (2013); n = 200).
Each of the SNPs was weakly associated with overall survival (rs8082544:
p=0.0235, rs3826353: p=0.0429, rs11656413: p=0.0233; log-rank test).
Interestingly, we observed a relation between the cumulative number of
at least on risk allele per SNP found in a patient and the patients survival
based on Kaplan-Meier estimators (Figure 3) and the results from a Cox
regression model (p=0.0289; likelihood ratio test). People carrying at least
one risk allele of all three SNPs had the best survival.

5 Discussion
Although genome-wide association studies (GWAS) have been conducted
for more than a decade, joint analysis of multiple SNPs is still not
routinely being applied. This indicates the need for approaches to extract
low-dimensional features of high-dimensional SNP data based on the
underlying distribution that defines SNP co-occurrence. Investigation of
haplotype associations (e.g performed in Lambert et al. (2013)) might

Figure 2. Number of significantly associated SNPs dependending on
the number of investigated SNPs and the simulation scenario. Uni = each
SNP is tested for association with the case/control phenotype using a χ2

test, partDBM = visible nodes (SNPs) and the corresponding p-values
from the χ2 test are selected using our partitioned DBM approach, part-
DBM + Univariate = combination of Uni and partDBM while maintain-
ing the global α level. P-values were adjusted by the Bonferroni-Holm
procedure (FWER ≤ 0.05). 100 simulation runs were conducted for each
setting and each number of SNPs.
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As described by Hieke et al. (2016b) gene expression measurements are available from
a partially overlapping cohort. While in Hieke et al. (2016b) the focus had been on
identifying gene expression features containing information not already conveyed by the
SNP, the present idea is to use the gene expression information to reduce the number of
SNPs that are considered for modeling. Specifically, we considered the SNPs mapped to
the top seven genes, MAP7, TRIM37, SCAMP4, EXT2, AKT1S1 and MT3, identified
by a stagewise regression approach from the gene expression data by Hieke et al. (2016b),
resulting in a list of 70 SNPs for subsequent modeling by partitioned deep Boltzmann
machines.

Partitioning and fitting of DBMs was performed as described above, using four clusters
of SNPs, i.e. a partitioning into four sub-DBMs. SNPs were coded into 0/1 values for
representing dominant effects. For subsequently identifying relevant hidden units and
extracting SNPs, univariate Cox regression models were used, with additive (0/1/2)
coding to avoid convergence issues. Significance was assessed with a Wald test.

When fitting Cox models for each of the original 70 SNPs, no SNP was found to be
significant after Bonferroni-Holm correction (FWER ≤ 0.05). When considering the top
hidden layer of the DBMs, one of the seven hidden units was found to be significantly
associated with survival at a level of 0.025 after Bonferroni correction. Sparse regression
indicated four SNPs to be associated wth this significant top level hidden unit. After
Bonferroni correction at level 0.025, i.e. at an overall level of 0.05, three of these SNPs
(rs8082544, rs3826353, rs11656413) were found to be associated with survival. All three
SNPs mapped to the gene TRIM37, one upstream and two in the gene body, spanning
a total distance of 110508 nucleotides (GRCh38). This spread of location indicates that
the proposed approach did not simply identify an LD block, but might have uncovered
a more complex pattern.

We validated the identified SNPs using SNP data from AML patients in the Cancer
Genome Atlas (TCGA; The Cancer Genome Atlas Research Network (2013); n = 200).
Each of the SNPs was weakly associated with overall survival (rs8082544: p=0.0235,
rs3826353: p=0.0429, rs11656413: p=0.0233; log-rank test). Interestingly, we observed
a relation between the cumulative number of at least on risk allele per SNP found in a
patient and the patients survival based on Kaplan-Meier estimators (Figure 3) and the
results from a Cox regression model (p=0.0289; Wald test). People carrying at least one
risk allele of each of the three SNPs had the best survival.

5. Discussion

Although genome-wide association studies (GWAS) have been conducted for more
than a decade, joint analysis of multiple SNPs is still not routinely being applied. This
indicates the need for approaches to extract low-dimensional features of high-dimensional
SNP data based on the underlying distribution that defines SNP co-occurrence. Inves-
tigation of haplotype associations (e.g performed in Lambert et al., 2013) might be a
valuable approach to reduce dimensionality. However this approach builds on the local
correlation structure and consequently is incapable of detecting the joint occurrence of
distant risk alleles. Deep learning approaches are a promising technique to progress
from local correlation structures to high-level correlation structures but so far have been
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Figure 3. Overall survival in AML patients from independent TCGA
validation data (The Cancer Genome Atlas Research Network, 2013).
Patients are stratified based on the cumulative number of at least one
risk allele of the SNPs rs8082544, rs3826353 and rs11656413 located in
TRIM37. Kaplan-Meier estimators are shown.

restricted to applications where the number of observations is often considerably larger
than the number of variables. This condition is usually not met in SNP applications.

To apply deep learning techniques in SNP applications, we introduced a partitioning
approach that made fitting of deep Boltzmann machines (DBMs) feasible even for a
large number of SNPs. Specifically, a sparse regression approach was used for an initial
coarse model of the joint SNP distribution, useful enough for obtaining partitions, de-
spite deliberate mis-specification. Extraction of SNPs was subsequently performed by
a combination of univariate testing and again sparse regression, to control the type 1
error. The partitioning based on stagewise regression is an important advantage over
haploblock-based approaches since in our approach SNPs are jointly investigated based
on their co-occurrence and not their physical distance.

In a simulation study we observed that the partitioned DBMs may on average lead
to about 1.5 times the number of significant SNPs compared to univariate testing, while
also controlling for type 1 error, or almost two times the number of significant SNPs
when combining the results from the DBM with the results from univariate testing,
indicating that the proposed approach extracts complementary multivariable informa-
tion. However, we also observed that the performance is strongly dependent on signal
strength.
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The performance of the initial partitioning was generally worse in the low signal
settings. Therefore, in a low signal setting already the initial clustering step might be
problematic, meaning that the subsequent training of DBMs cannot be fully successful.
Nevertheless, combining the univariate results with the results from the partitioned
DBMs did almost never result in worse performance than solely performing univariate
testing, indicating that employing partitioned DBMs in addition to univariate testing
probably has no adverse effects on power.

We introduced and evaluated our approach for binary SNP values for simplicity, but
an extension to 0/1/2 values is rather straightforward. Also we did not consider spurious
correlation, such as e.g. found in LD blocks, in the simulation design for evaluation. Yet,
preliminary experiments indicated that this would not affect the results much.

In an application to data from AML patients, we considered modeling of SNPs mapped
to a set of genes determined to be prognostic based on gene expression data. Such an
initial screening step, e.g. based on data from another molecular level, might by a
promising approach to reduce the number of SNPs to a level where it can reasonably
be modeled by the proposed approach. In our specific application, this allowed for
identification of SNPs that would not have been found by standard univariate analyses.
These SNPs were validated in a second data set, underlining the robustness of the
identified pattern. Interestingly, we observed that the three SNPs showed a cumulative
effect on the overall survival, where people carrying at least one risk allele of each of
the three SNP loci had the best survival. This strongly supports the validity of our
simulation approach which assumed a similar model of multiple SNPs being required to
generate a strong phenotype. In addition it highlights that SNPs distributed across a
long genomic range can have a strong effect, which might have been missed by haplotype-
based approaches.

6. Conclusion

Deep architectures are promising techniques for learning compact representations of
high dimensional data such as SNP data. Nevertheless the size of current GWAS studies
or clinical cohorts, where participant numbers are in the range of thousands or less,
would not be sufficient to train a multi-layer DBM for the number of SNPs to be in-
vestigated, frequently exceeding the number of studied individuals. To circumvent this
issue, we coarsely estimated the relation between SNPs using stagewise regression, and
fitted DBMs on resulting small clusters of correlated SNPs. In doing so we effectively
constrained the parameter space of the finally merged DBM to ranges that led to learn-
ing of meaningful representations. In some settings, these learned representations led to
the identification of almost twice the number of significant SNPs when combining results
from univariate testing with the significant SNPs identified by the partitioned DBMs.
Furthermore in almost no scenario we observed a considerable decrease in the number
of significant SNPs compared to solely performing univariate testing. Consequently we
think partitioned DBMs are a valuable approach to increase power in genome-wide asso-
ciation studies or clinical cohorts with SNP data. Thus, our partitioning proposal opened
the way for adapting a deep learning approach for high-dimensional SNP data. While
this application setting certainly requires further investigation, we already anticipate
that also other omics settings could potentially benefit from a similar approach.
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