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Abstract 1 

The coefficient of determination R2 quantifies the proportion of variance explained by a statistical 2 

model and is an important summary statistic of biological interest. However, estimating R2 for 3 

(generalized) linear mixed models (GLMMs) remains challenging. We have previously introduced 4 

a version of R2 that we called R2
GLMM for Poisson and binomial GLMMs using biological examples, 5 

but not for other distributional families. Similarly, we earlier discussed how to estimate intra-class 6 

correlation coefficients ICC using only Poisson and binomial GLMMs. In this article, we expand 7 

our methods to all the other non-Gaussian distributions such as negative binomial and gamma 8 

distributions, which are common in biological data. While expanding our approach, we highlight 9 

two useful concepts for biologists, Jensen’s inequality and the delta method, both of which help us 10 

in understanding the properties of GLMMs. Jensen’s inequality has important implications for 11 

biologically more meaningful interpretation of GLMMs, while the delta method allows a general 12 

derivation of distribution-specific variances. We also discuss some special considerations for 13 

binomial GLMMs with binary or proportion data. We illustrate the implementation of our extension 14 

by worked examples from the field of ecology and evolution in the R environment although our 15 

method can be used regardless of statistical environments.  16 

Key words: repeatability, regression, heritability, goodness of fit, information criteria, 17 

variance explained, model fit, variance decomposition, reliability analysis. 18 

  19 
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1. Introduction 20 

One of the main purposes of linear modellinåg is to understand the sources of variation in biological 21 

data. In this context, it is not surprising that the coefficient of determination R2 is a commonly 22 

reported statistic because it represents the proportion of variance explained by a linear model. The 23 

intra-class correlation coefficient ICC is a related statistic that quantifies the proportion of variance 24 

explained by a grouping (random) factor in multilevel/hierarchical data. In the field of ecology and 25 

evolution, a type of ICC is often referred to as repeatability R, where the grouping factor is often 26 

individuals that have been phenotyped repeatedly [1, 2] . We have reviewed methods for estimating 27 

R2 and ICC in the past, with a particular focus on non-Gaussian response variables in the context of 28 

biological data [2, 3]. These previous articles featured generalized linear mixed-effects models 29 

(GLMMs) as the most versatile engine for estimating R2 and ICC (specifically R2
GLMM and 30 

ICCGLMM). Our descriptions were limited to random-intercept GLMMs, but Johnson [4] has 31 

recently extended the methods to random-slope GLMMs, widening the applicability of these 32 

statistics (see also, [5, 6]).  33 

However, at least one important issue seems to remain. Currently these two statistics are only 34 

described for binomial and Poisson GLMMs. Although these two types of GLMMs are arguably the 35 

most popular [7], there are other common families of distributions in biology, such as negative 36 

binomial and gamma distributions [8, 9]. In this article, we revisit and extend R2
GLMM and ICCGLMM 37 

to more distributional families with a particular focus on negative binomial and gamma 38 

distributions. In this context, we discuss Jensen’s inequality and two variants of the delta method, 39 

which are rarely known among biologists. However, these concepts are useful not only for 40 

generalizing our previous methods, but also for interpreting the results of GLMMs for biologists. 41 

Furthermore, we refer to some special considerations when obtaining R2
GLMM and ICCGLMM from 42 

binomially GLMMs for binary and proportion data, which we did not discuss in the past [2, 3]. We 43 

provide worked examples inspired from the field of ecology and evolution, focusing on 44 
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implementation in the R environment [10] and finish by referring to two alternative approaches for 45 

obtaining R2 and ICC from GLMMs along with a cautionary note.  46 

2. Definitions of R
2

GLMM, ICCGLMM and overdispersion 47 

To start with, we present R2
GLMM and ICCGLMM for a simple case of Gaussian error distributions 48 

based on a linear mixed-effects model (LMM, hence also referred to as R2
LMM and ICCLMM). 49 

Imagine a two-level dataset where the first level corresponds to observations and the second level to 50 

some grouping factor (e.g. individuals) with k fixed effect covariates. The model can be written as 51 

(model 1): 52 

,
  (2.1) 53 

,  (2.2) 54 

, 
 (2.3) 55 

where yij is the jth observation of the ith individual, xhij is the jth value of the ith individual for the 56 

hth of k fixed effects predictors, β0 is the (grand) intercept, βh is the regression coefficient for the 57 

hth predictor, αi is an individual-specific effect, assumed to be normally distributed in the 58 

population with the mean and variance of 0 and , εij is an observation-specific residual, assumed 59 

to be normally distributed in the population with mean and variance of 0 and , respectively. For 60 

this model, we can define two types of R2 as:  61 

,
  (2.4) 62 

,
  (2.5) 63 

, 
 (2.6) 64 

yij = β0 + βhxhij +αi +ε
h=1

k

∑
ij

α i ~ Gaussian(0,  σα
2 )

εij ~ Gaussian(0,  σ ε
2 )

σα
2

σ ε
2

RLMM(m)
2 =

σ f
2

σ f
2 + σα

2 + σε
2

RLMM(c )
2 =

σ f
2 +σα

2

σ f
2 +σ α

2 +σ ε
2

σ f
2 = var βhxhijh

k

∑( )
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where  represents the marginal R2, which is the variance accounted for by the fixed effects, 65 

 represents the conditional R2, which is the variance explained by both fixed and random 66 

effects, and  is the variance explained by fixed effects [11, 12]. Since marginal and conditional 67 

R2 differ only in whether the random effect variance is included in the numerator, we avoid 68 

redundancy and present equations only for marginal R2 in the following. 69 

Similarly, there are two types of ICC: 70 

22

2

LMM(adj)ICC
εα

α

σσ
σ
+

=   (2.7) 71 

222

2

LMMICC
εα

α

σσσ
σ

++
=

f
  (2.8) 72 

If no fixed effects are included, the two versions are identical and represent unadjusted ICC, but if 73 

fixed effects are fitted, ICCLMM(adj) represents adjusted ICC, while ICCLMM represented unadjusted 74 

ICC (sensu [2]). Since the two versions of ICC differ only in whether the fixed effect variance, 75 

calculated as in equation (2.6), is included in the denominator, we avoid redundancy and present 76 

equations only for adjusted ICC in the following. 77 

One of the main difficulties in extending R2 from LMMs to GLMMs is defining the residual 78 

varianceσ ε
2 . For binomial and Poisson GLMMs with an additive dispersion terms, we have 79 

previously stated that σ ε
2

 is equivalent to σ e
2 +σ d

2  where  is the variance for the additive 80 

overdispersion term, and σ d
2  is the distribution-specific variance [2, 3]. Here overdispersion 81 

represents the excess variation relative to what is expected from a certain distribution and can be 82 

estimated by fitting an observation-level random effect (OLRE; see, [13, 14]). Alternatively, 83 

overdispersion in GLMMs can be implemented using a multiplicative overdispersion term [15]. In 84 

such an implementation, we stated that σ ε
2

 
is equivalent to ω ⋅σ d

2  where  is a multiplicative 85 

dispersion parameter estimated from the model [2]. However, obtaining σ d
2  for specific 86 

distributions is not always possible, because in many families of GLMMs the parameters are less 87 

RLMM(m)
2

RLMM(c )
2

σ f
2

σ e
2

ω
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clearly separated into a parameter for the expectation of the mean and a parameter for the 88 

(over)dispersion. It turns out that binomial and Poisson distributions are special cases where σ d
2  can 89 

be usefully calculated, because either all overdispersion is modelled by an OLRE (additive 90 

overdispersion) or by a single multiplicative overdispersion parameter (multiplicative 91 

overdispersion). However, as we will show below, we can always obtain the GLMM version of σε
2  92 

(on the latent scale) directly. We refer to this generalised version of σε
2  as ‘the observation-level 93 

variance’ here rather than the residual variance (but we keep the notation σε
2 ). 94 

3. Extension of R
2

GLMM and ICCGLMM 95 

We now define R2
GLMM and ICCGLMM for an overdispersed Poisson (also known as quasi-Poisson) 96 

GLMM, because the overdispersed Poisson distribution is similar to the negative binomial 97 

distribution at least in their uses[9, 16]. Imagine count data repeatedly measured from a number of 98 

individuals with associated data on k covariates. We fit an overdispersed Poisson (OP) GLMM with 99 

the log link function (model 2):  100 

,  (3.1) 101 

,  (3.2) 102 

,  (3.3) 103 

where yij is the jth observation of the ith individual and yij follows an overdispersed Poisson 104 

distribution with two parameters, λij and ω, ln(λij) is the latent value for the jth observation of the ith 105 

individual, ω is the overdispersion parameter (when the multiplicative dispersion parameter ω is 1, 106 

the model becomes a standard Poisson GLMM), αi is an individual-specific effect, assumed to be 107 

normally distributed in the population with the mean and variance of 0 and , respectively (as in 108 

model 1), and the other symbols are the same as above. For such a model, we can define R2
GLMM(m) 109 

and (adjusted) ICCGLMM as: 110 

yij ~ OP(λij,  ω)

ln(λij ) = β0 + βhxhij +αih=1

k

∑

α i ~ Gaussian(0,  σ α
2 )

σ α
2
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,
  (3.4) 111 

,
  (3.5) 112 

where the subscript of R2 and ICC denote the distributional family, here OP-ln for overdispersed 113 

Poisson distribution with log link, the term  corresponds to the observation-level 114 

variance σ ε
2  (Table 1, for derivation see Appendix S1), ω is the overdispersion parameter, and λ is 115 

the mean value of λij. We discuss how to obtain λ below.  116 

The calculation is very similar for a negative binomial (NB) GLMM with the log link (model 3): 117 

,  (3.6) 118 

,  (3.7) 119 

,  (3.8) 120 

where yij is the jth observation of the ith individual and yij follows a negative binomial distribution 121 

with two parameters, λij and θ, where θ is the shape parameter of the negative binomial distribution 122 

(given by the software often as the dispersion parameter), and the other symbols are the same as 123 

above. R2
GLMM(m) and (adjusted) ICCGLMM for this model can be calculated as: 124 

,
  (3.9) 125 

,
  (3.10) 126 

Finally, for a gamma GLMM with the log link (model 4): 127 

yij ~ gamma(λij,  ν ),  (3.11) 128 

,  (3.12) 129 

,  (3.13) 130 

ROP−ln(m)
2 =

σ f
2

σ f
2 + σα

2 + ln(1+ ω / λ)

ICCOP−ln = σα
2

σα
2 + ln(1+ω / λ)

ln(1+ ω / λ)

yij ~ NB(λij,  θ )

ln(λij ) = β0 + βhxhij +αih=1

k

∑

α i ~ Gaussian(0,  σ α
2 )

RNB−ln(m )
2 =

σ f
2

σ f
2 +σα

2 + ln(1+1/ λ +1/θ )

ICCNB−ln = σα
2

σα
2 + ln(1+1/ λ +1/θ )

ln(λij ) = β0 + βhxhij +αih=1

k

∑

α i ~ Gaussian(0,  σ α
2 )
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where yij is the jth observation of the ith individual and yij follows a gamma distribution with two 131 

parameters, λij and ν, where ν is the shape parameter of the gamma distribution (sometimes 132 

statistical programs report 1/ v instead of v; also note that the gamma distribution can be 133 

parameterized in alternative ways, Table 1), R2
GLMM(m) and (adjusted) ICCGLMM can be calculated 134 

as: 135 

,
  (3.15) 136 

,
  (3.16) 137 

4. Obtaining the observation-level variance by the ‘first’ delta method 138 

For overdispersed Poisson, negative binomial and gamma GLMMs with log link, the observation-139 

level variance  can be obtained via the variance of the log-normal distribution, as described 140 

above (see Appendix S1). There are two more alternative methods to obtain the same target: the 141 

delta method and the trigamma function. The two alternatives have different advantages and will be 142 

discussed in some detail below. 143 

The delta method for variance approximation uses a first order Taylor series expansion, which is 144 

often employed to approximate the standard error (error variance) for transformations (or functions) 145 

of a variable x when the (error) variance of x itself is known (see [17]; for an accessible reference 146 

for biologists, [18]). A simple case of the delta method for variance approximation can be written 147 

as: 148 

,
  (4.1) 149 

where x is a random variable (typically represented by observations), f represents a function (e.g. 150 

log or square-root), var denotes variance, and d/dx is a (first) derivative with respect to variable x. 151 

Rgamma−ln(m)
2 =

σ f
2

σ f
2 +σα

2 + ln(1+1/ν )

ICCgamma−ln = σα
2

σα
2 + ln(1+1/ν )

σε
2

var[ f (x)] ≈ var[x]
d

dx
f (x)

⎛

⎝
⎜

⎞

⎠
⎟

2
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Taking derivatives of any function can be easily done using the R environment (examples can be 152 

found in the Appendices). It is the delta method that Foulley and colleagues [19] used to derive the 153 

distribution specific variance σ d
2  for Poisson GLMMs as 1/λ: Given that  in Poisson 154 

distributions and , it follows that  (note that for Poisson 155 

distributions without overdispersion, σ d
2  is equal to σ ε

2  because σ e
2 = 0 ). One clear advantage of 156 

the delta method is its flexibility, and we can easily obtain the observation-level variance σ ε
2  for all 157 

kinds of distributions/link functions. For example, by using the delta method, it is straightforward to 158 

obtain  for the Tweedie (compound Poisson-gamma) distribution, which has been used to model 159 

non-negative real numbers in ecology (e.g., [20, 21]). For the Tweedie distribution, the variance on 160 

the observed scale has the relationship  where μ is the mean on the observed scale and 161 

φ is the dispersion parameter, comparable to λ and ω in equation (3.1), and p is a positive constant 162 

called an index parameter. Therefore, when used with the log-link function, an approximated σε
2  163 

value can be obtained by  according to equation (4.1). The log-normal approximation 164 

 is also possible (see Appendix S1; cf. Table 1).  165 

The use of the trigamma function  is limited to distributions with log link, but it should provide 166 

the most accurate estimate of the observation level variance σ ε
2 . This is because the variance of a 167 

gamma-distributed variable on the log scale is equal to  where ν is the shape parameter of the 168 

gamma distribution [22] and hence σ ε
2  is . At the level of the statistical parameters (Table 1; 169 

on the ‘expected data’ scale; sensu [23]; see their Figure 1), Poisson and negative binomial 170 

distributions can be both seen special cases of gamma distributions, and σ ε
2  can be obtained using 171 

the trigamma function (Table 1). For example, σ ε
2  for the Poisson distribution is  with the 172 

speciality that in the case of Poisson distributions σε
2 = σ d

2 . As we show in Appendix S2, ln(1+1/λ) 173 

(log-normal approximation), 1/λ (delta method approximation) and  (trigamma function) are 174 

var[λij ] = λ

d ln(λ) / dx =1/ λ var[ln(λij )] ≈ λ(1 / λ)2

σε
2

var[y] = ϕμ p

ϕμ ( p−2)

ln(1+ϕμ ( p−2) )

ψ1

ψ1(ν )

ψ1(ν )

ψ1(λ)

ψ1(λ)
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similar if λ is greater than 2. Nonetheless, our recommendation is to use the trigamma function for 175 

obtaining  whenever this is possible.  176 

We note that in calculations of heritability (which can be seen as a type of ICC although in a strict 177 

sense, it is not; see [23]) using negative binomial GLMMs, the trigamma function has been 178 

previously used to obtain observation-level variance ([22, 24]; cf. [23]). Table 1 summarises 179 

observation-level variance  for overdispersed Poisson, negative binomial and gamma 180 

distributions for commonly used link functions.  181 

5. How to estimate λ from data 182 

Imagine a Poisson GLMM with log link and additive overdispersion fitted as an observation-level 183 

random effect (model 5):  184 

yij ~ Poisson(λij ),  (5.1) 185 

,  (5.2) 186 

,  (5.3) 187 

, 
 (5.4) 188 

where yij is the jth observation of the ith individual, and follows a Poisson distribution with the 189 

parameter λij, eij is an additive overdispersion term for jth observation of the ith individual, and the 190 

other symbols are the same as above. Using the log-normal approximation R2
GLMM(m) and (adjusted) 191 

ICCGLMM can be calculated as: 192 

, 
 (5.5) 193 

, 
 (5.6) 194 

σε
2

σε
2

ln(λij ) = β0 + βhxhij + α i + e
h=1

p

∑ ij

α i ~ Gaussian(0,  σα
2 )

eij ~ Gaussian(0,  σ e
2 )

RP−ln(m )
2 =

σ f
2

σ f
2 +σα

2 +σ e
2 + ln(1+1/ λ )

ICCP−ln = σα
2

σα
2 +σ e

2 + ln(1+1/ λ)
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where, as mentioned above, the term ln(1+1/λ) is σ ε
2  (or ) for Poisson distributions with the log 195 

link (Table 1).  196 

In our earlier papers, we proposed to use the exponential of the intercept (from the intercept-only 197 

model or models with centred fixed factors) exp(β0) as an estimator of λ [2, 3]. We also suggested 198 

that it is possible to use the mean of observed values yij. Unfortunately, these two recommendations 199 

are often inconsistent with each other. This is because, given the model 5 (and all the models in the 200 

previous section), the following relationships hold:  201 

,
  (5.7) 202 

,
  (5.8) 203 

,
  (5.9) 204 

where E represents the expected value (i.e., mean) on the observed scale, β0 is the mean value on 205 

the latent scale (i.e. β0 from the intercept-only model),  is the total variance on the latent scale 206 

(e.g.,  in the models 1and 5, and  in models 2-4[2]; see also [25]). In fact, exp(β0) gives 207 

the median value of yij rather than the mean of yij, assuming a Poisson distribution. Thus, the use of 208 

exp(β0) will often overestimate , providing conservative (smaller) estimates of R2 and ICC, 209 

compared to when using averaged yij, which is a better estimate of E[yij]. Quantitative differences 210 

between the two approaches may often be negligible, but when λ is small, the difference can be 211 

substantial so the choice of the method needs to be reported for reproducibility (Appendix S2). Our 212 

new recommendation is to obtain λ via equation (5.8). When sampling is balanced (i.e. observations 213 

are equally distributed across individuals and covariates), equation (5.8) and the mean of the 214 

observed values will give similar values, but when unbalanced, method equation (5.8) is preferable. 215 

This recommendation for obtaining λ also applies to negative binomial GLMMs (see Table 1). 216 

σ d
2

exp(β0 ) ≤ E[yij ]

E[λij ] = exp(β0 + 0.5στ
2 )

E[yij ] = E[λij ]

στ
2

σ α
2 +σ e

2 σα
2

σ d
2
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6. Jensen’s inequality and the ‘second’ delta method 217 

A general form of equation (5.7) is known as Jensen’s inequality,  where g is a convex 218 

function. Hence, the transformation of the mean value is equal to or larger than the mean of 219 

transformed values (the opposite is true for a concave function; that is, ; [26]). In fact, 220 

whenever the function is not strictly linear, simple application of the inverse link function (or back-221 

transformation) cannot be used to translate the mean on the latent scale into the mean value on the 222 

observed scale. This inequality has important implications for the interpretation of results from 223 

GLMMs, and also generalized linear models GLMs and linear models with transformed response 224 

variables. 225 

Although log-link GLMMs (e.g., model 5) have an analytical formula, equation (5.8), this is not 226 

usually the case. Therefore, converting the latent scale values into observation-scale values requires 227 

simulation using the inverse link function. However, the delta method for bias correction can be 228 

used as a general approximation to account for Jensen’s inequality when using link functions or 229 

transformations. This application of the delta method uses a second order Taylor series expansion 230 

[17, 27]. A simple case of the delta method for bias correction can be written as: 231 

,
       (6.1) 232 

where d2/dx2 is a second derivative with respect to the variable x and the other symbols are as in 233 

equations (4.1) and (5.8). By employing this bias correction delta method (with 234 

), we can approximate equation (5.8) using the same symbols as in 235 

equations (5.7)-(5.9): 236 

     (6.2) 237 

g(x ) ≤ g(x)

g(x ) ≥ g(x)

E[ f (x)] ≈ f (x) + 0.5σ τ
2 d 2

dx2
f (x)

d2 exp(x) / dx2 = exp(x)

E[λij ] = E[exp(β0 )] ≈ exp(β0 ) + 0.5στ
2 exp(β0 )
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The comparison between equation (5.8) (exact) and equation (6.2) (approximate) is shown in 238 

Appendix S3. The approximation is most useful when the exact formula is not available as in the 239 

case of a binomial GLMM with logit link (model 6): 240 

,
        (6.3) 241 

logit(pij ) = β0 + βhxhij +αi + e
h=1

k

∑
ij ,

       (6.4) 242 

,
        (6.5) 243 

,
        (6.6) 244 

where yij is the number of ‘success’ in nij trials by the ith individual at the jth occasion (for binary 245 

data, nij is always 1), pij is the underlying probability of success, and the other symbols are the same 246 

as above.  247 

To obtain corresponding values between the latent scale and data (observation) scale, we need to 248 

account for Jensen’s inequality (note the logit function combines of concave and convex sections). 249 

For example, the overall intercept,  on the latent scale could be transformed not just with the 250 

inverse (anti) logit function ( logit−1(x) = exp(x) / (1+ exp(x))) but also the bias corrected 251 

approximation. For the case of the binomial GLMM, we can use this approximation below given 252 

that d2logit−1(x) / dx2 = exp(x)(1− exp(x)) / (1+ exp(x))3: 253 

E[yij ] = E[logit−1(β0 )] ≈ exp(β0 )
1+ exp(β0 )

+ 0.5στ
2 exp(β0 )(1− exp(β0 ))

(1+ exp(β0 ))3 .
   (6.7) 254 

We can replace  with any value obtained from the fixed part of the model (i.e. ). 255 

Another approximation proposed by Zeger and colleagues [28] produces similar (but slightly better) 256 

estimates than equation (6.7). Using our notation, this approximation can be written as: 257 

yij ~ binomial(pij,  nij )

α i ~ Gaussian(0,  σα
2 )

eij ~ Gaussian(0,  σ e
2 )

β0

β0 β0 + βh xhij∑
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.
      (6.8) 258 

A comparison between equations (6.7) and (6.8) is also shown in Appendix S3. This approximation 259 

uses the exact solution for the inverse probit function, which can be written for a model like model 260 

6 but using the probit link: i.e., probit(pij ) = β0 + βhxhij +αi + e
h=1

k

∑
ij
 in place of equation (6.4): 261 

.       (6.9) 262 

Simulation will give the most accurate conversions when no exact solutions are available. The use 263 

of the delta method for bias correction accounting for Jensen’s inequity is a very general and 264 

versatile approach that is applicable for any distribution with any link function (see Appendix S3) 265 

and can save computation time. We note that the accuracy of the delta method (both variance 266 

approximation and bias correction) depends on the form of the function f, the conditions for and 267 

limitation of the delta method are described in the article by Oehlert [27]. 268 

7. Special considerations for binomial GLMMs 269 

The observation-level variance σ ε
2  can be thought of as being added to the latent scale on which 270 

other variance components are also estimated in a GLMM (equations (3.2), (3.7), (3.12), (5.2) and 271 

(6.4) for models 2-6). Since the proposed R2
GLMM and ICC GLMM are ratios between variance 272 

components and their additive combinations, we can show using the delta method that R2
GLMM and 273 

ICC GLMM calculated via σ ε
2  approximate to those of R2 and ICC on the observation (original) scale 274 

(shown in Appendix S4). In some cases, there exist specific formulas for ICC on the observation 275 

scale [2]. In the past, we distinguished between ICC on the latent scale and on the observation scale 276 

[2]. Such a distinction turns out to be strictly appropriate only for binomial distributions but not for 277 

Poisson distributions (and probably also not for other non-Gaussian distributions). This is because 278 

E[ pij ] ≈ logit−1 β0 1+ 16 3
15π

⎛

⎝
⎜

⎞

⎠
⎟

2

σ τ
2

−1⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

E[pij ] = probit−1 β0 1+σ τ
2

−1⎛

⎝
⎜

⎞

⎠
⎟
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the property of what we have called the distribution-specific variance σ d
2  for binomial distributions 279 

(e.g. π2/3 for binomial error distribution with the logit link function) is quite different from what we 280 

have discussed as the observation-level variance σ ε
2  although these two types of variance are 281 

related conceptually (i.e., both represents variance due to non-Gaussian distributions with specific 282 

link functions). Let us explain this further.  283 

A binomial distribution with a mean of p (the proportion of successes) has a variance of p(1–p) and 284 

we find that the observation-level variance is 1/(p(1–p)) using the delta method on the logit-link 285 

function (see Table 2). This observation-level variance 1/(p(1–p)) is clearly different from the 286 

distribution-specific variance π2/3. As with the observation-level variance for the log-Poisson model 287 

(which is 1/λ and changes with λ; note that we would have called 1/λ the distribution-specific 288 

variance; [2, 3]), the observation-level variance of the binomial distribution changes as p changes 289 

(see Appendix S5), suggesting these two observation-level variances (1/λ and 1/(p(1–p))) are 290 

analogous while the distribution-specific variance π2/3 is not. Further, the minimum value of 291 

1/(p(1–p)) is 4, which is larger than π2/3 ≈ 3.29, meaning that the use of 1/p(1–p) in R2 and ICC will 292 

always produce larger values than those using π2/3. Consequently, Browne and colleagues [15] 293 

showed that ICC values (or variance partition coefficients, VPCs) estimated using π2/3 were higher 294 

than corresponding ICC values on the observation (original) scale using logistic-binomial GLMMs 295 

(see also [29]). Then, what is π2/3? 296 

Three common link functions in binomial GLMMs (logit, probit and complementary log-log) all 297 

have corresponding distributions on the latent scale: the logistic distribution, standard normal 298 

distribution and Gumbel distribution, respectively. Each of these distributions has a theoretical 299 

variance, namely, π2/3, 1 and π2/6, respectively (Table 2). As far as we are aware, these theoretical 300 

variances only exist for binomial distributions. It is important to notice that, for example, the 301 

meaning of 1/(p(1–p)), which is the variance on the latent scale that approximates to the variance 302 

due to binomial distributions on the observation scale is distinct from the meaning of π2/3, which is 303 
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the variance of the latent distribution (i.e., the logistic distribution) according to which the original 304 

data are theoretically distributed on the logit scale. We need distinguishing these theoretical 305 

(distribution-specific) variances from the observation-level variance. Put another way, R2 and ICC 306 

values using the theoretical distribution-specific variance can rightly be called the latent (link) scale 307 

(sensu [2]) while, as mentioned above, R2 and ICC values using the observation-level variance 308 

estimate the counterparts on the observation (original) scale (cf. [23]). The use of the theoretical 309 

distribution-specific variance will almost always provide different values of R2
GLMM and ICC GLMM 310 

from those using the observation-level obtained via the delta method (see Appendix S5). In any 311 

case, we should be aware that binomial GLMMS are special cases for obtaining R2
GLMM and ICC 312 

GLMM from binomial GLMMs.  313 

8. Worked examples: revisting the beetles 314 

In the following, we present a worked example by expanding the beetle dataset that was generated 315 

for the previous work [3]. In brief, the dataset represents a hypothetical species of beetle that has the 316 

following life cycle: larvae hatch and grow in the soil until they pupate, and then adult beetles feed 317 

and mate on plants. Larvae are sampled from 12 different populations (‘Population’; see Figure 1). 318 

Within each population, larvae are collected at two different microhabitats (‘Habitat’): dry and wet 319 

areas as determined by soil moisture. Larvae are exposed to two different dietary treatments 320 

(‘Treatment’): nutrient rich and control. The species is sexually dimorphic and can be easily sexed 321 

at the pupa stage (‘Sex’). Male beetles have two different color morphs: one dark and the other 322 

reddish brown (‘Morph’, labeled as A and B in Figure 1). Sexed pupae are housed in standard 323 

containers until they mature (‘Container’). Each container holds eight same-sex animals from a 324 

single population, but with a mix of individuals from the two habitats (N[container] = 120; N[animal] = 325 

960).  326 

We have data on the five phenotypes, two of them sex-limited: (i) the number of eggs laid by each 327 

female after random mating which we had generated previously using Poisson distributions (with 328 
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additive dispersion) and we revisit here for analysis with quasi-Poisson models (i.e. multiplicative 329 

dispersion), (ii) the incidence of endo-parasitic infections that we generated as being negative 330 

binomial distributed, (iii) body length of adult beetles which we had generated previously using 331 

Gaussian distributions and that we revisit here for analysis with gamma distributions, (iv) time to 332 

visit five predefined sectors of an arena (employed as a measure of exploratory tendencies) that we 333 

generated as being gamma distributed, and (v) the two male morphs, which was again generated 334 

with binomial distributions. We will use this simulated dataset to estimate R2
GLMM and ICC GLMM.  335 

All data generation and analyses were conducted in R 3.3.1 [10]. We used functions to fit GLMMs 336 

from the three R packages: 1) the glmmadmb function from glmmADMB [30], 2) the glmmPQL 337 

function from MASS [31], and 3) the glmer and glmer.nb functions from lme4 [32]. In Table 1, we 338 

only report results from glmmADMB because this is the only function that can fit models with all 339 

relevant distributional families. All scripts and results are provided as an electronic supplement 340 

(Appendix S6). In addition, Appendix S6 includes an example of a model using the Tweedie 341 

distribution, which was fitted by the cpglmm function from the cplm package [21]. Notably, our 342 

approach for R2
GLMM is kindly being implemented in the rsquared function in the R package, 343 

piecewiseSEM [33]. Another important note is that we often find less congruence in GLMM results 344 

from the different packages than those of linear mixed-effects models, LMM. Thus, it is 345 

recommended to run GLMMs in more than one package to check robustness of the results although 346 

this may not always be possible.  347 

In all the models, estimated regression coefficients and variance components are very much in 348 

agreement with what is expected from our parameter settings (Table 1 and Appendix S6). When 349 

comparing the null and full models, which had ‘sex’ as a predictor, the magnitudes of the variance 350 

component for the container effect always decrease in the full models. This is because the variance 351 

due to sex is confounded with the container variance in the null model. As expected, (unadjusted) 352 

ICC values from the null models are usually smaller than adjusted ICC values from the full models 353 

because the observation-level variance (analogous to the residual variance) was smaller in the full 354 
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models, implying that the denominator of equation (3.2) shrinks. However, the numerator also 355 

becomes smaller for ICC values for the container effect from the parasite, size and exploration 356 

models so that adjusted ICC values are not necessarily larger than unadjusted ICC values. 357 

Accordingly, adjusted ICC[container] is smaller in the parasite and size models but not in the 358 

exploration model. The last thing to note is that for the morph models (binomial mixed models), 359 

both R2 and ICC values are larger when using the distribution-specific variance rather than the 360 

observation-level variance, as discussed above (Table 3; also see Appendix S4). 361 

9. Alternatives and a cautonary note 362 

Here we extended our simple methods for obtaining R2
GLMM and ICC GLMM for Poisson and 363 

binomial GLMMs to other types of GLMMs such as negative binomial and gamma. We have 364 

described three different ways of obtaining the observational-level variance and how to obtain the 365 

key rate parameter λ for Poisson and negative binomial distributions. We discussed important 366 

considerations which arise for estimating R2
GLMM and ICC GLMM with binomial GLMMs. As we 367 

have shown, the merit of our approach is not only its ease of implementation but also that our 368 

approach encourages researchers to pay more attention to variance components at different levels. 369 

Research papers in the field of ecology and evolution often report only regression coefficients but 370 

not variance components of GLMMs [3].  371 

We would like to highlight two recent studies that provide alternatives to our approach. First, Jaeger 372 

and colleagues [5] have proposed R2 for fixed effects in GLMMs, which they referred to as R2
β* (an 373 

extension of an R2 for fixed effects in linear mixed models or R2
β by Edwards and colleagues [34]). 374 

They show that R2
β* is a general form of our marginal R2

GLMM; in theory, R2
β* can be used for any 375 

distribution (error structure) with any link function. Jaeger and colleagues highlight that in the 376 

framework of R2
β*, they can easily obtain semi-partial R2, which quantifies the relative importance 377 

of each predictor (fixed effect). As they demonstrate by simulation, their method potentially gives a 378 

very reliable tool for model selection. One current issue for this approach is that implementation 379 
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does not seem as simple as our approach. We note that our R2
GLMM framework could also provide 380 

semi-partial R2 via commonality analysis (see [35]; note that unique variance for each predictor in 381 

commonality analysis corresponds to semi-partial R2;; [36]).  382 

Second, de Villemereuil and colleagues [23] provided a framework with which one can estimate 383 

exact heritability using GLMMs at different scales (e.g. data and latent scales). Their method can be 384 

extended to obtain exact ICC values on the data (observation) scale, which is analogous to, but not 385 

the same as, our ICC GLMM using the observation-level variance, σε
2  described above. Further, this 386 

method can, in theory, be extended to estimate R2
GLMM on the data (observation) scale. One 387 

potential difficulty is that the method of de Villemereuli and colleagues. is exact but that a 388 

numerical method is used to solve relevant equations so one will require a software package (e.g., 389 

the QGglmm package; [23]). 390 

Finally, we finish by repeating what we said at the end of our original R2 paper [3]. Both R2 and 391 

ICC are indices that are likely to reflect only one or a few aspects of a model fit to the data and 392 

should not be used for gauging the quality of a model. We encourage biologists use R2 and ICC in 393 

conjunctions with other indices like information criteria (e.g. AIC, BIC and DIC), and more 394 

importantly, with model diagnostics such as checking for model assumptions, heteroscedasticity 395 

and sensitivity to outliers.  396 
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Table 1. The observation-level variance σ ε
2  for the three distributional families: quasi-Poisson (overdispersed Poisson), negative binomial and 

gamma with the three different methods for deriving σε
2
: the delta method, long-normal approximation and the trigamma function, . 

Family Distributional 

parameters  

Mean (E[y])  

Variance (var[y]) 

Link function Delta method log-normal 

approximation 

trigamma function 

Quasi-Poisson 

(OP: overdispersed 

Poisson) 

  log    

Poisson  

(when ) 

λ > 0  

ω > 0  

 square-root  -  

Negative binomial 

(NB) 
  log    

ψ1

OP(λ,  ω ) E[y] = λ ω
λ

ln 1+ ω
λ

⎛
⎝⎜

⎞
⎠⎟

ψ1

λ
ω

⎛

⎝
⎜

⎞

⎠
⎟

ω =1

var[y] = λω 0.25ω

NB(λ,  θ ) E[y] = λ 1

λ
+ 1

θ
ln 1+

1

λ
+

1

θ
⎛
⎝⎜

⎞
⎠⎟

ψ1

1

λ
+ 1

θ
⎡

⎣⎢
⎤

⎦⎥

−1⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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 when x follows gamma distribution. In the R environment, the function, trigamma can be used to obtain .  

 

var[ln(x)] = ψ1(ν ) = 1/ (ν + n)
n=1

∞
∑ ψ1(ν )

 

λ  > 0  

θ > 0  

 square-root  -  

Gamma   log    

 

λ > 0  

ν > 0  

inverse 

(reciprocal) 

 -
 

 

Gamma (alternative 

parameterization) 
  

 
log  

 
 

 

ν > 0 

κ > 0  

inverse 

(reciprocal) 

 -
 

 

       

var[y] = λ + λ 2

θ
0.25 1+ λ

θ
⎛
⎝⎜

⎞
⎠⎟

gmma(λ,  ν ) E[y] = λ 1

ν
ln 1+ 1

ν
⎛
⎝⎜

⎞
⎠⎟

ψ1 ν( )

var[y] = λ 2

ν
1

νλ 2

gamma(ν,  κ ) E[y] = ν
κ

1

ν
ln 1+ 1

ν
⎛
⎝⎜

⎞
⎠⎟

ψ1 ν( )

var[y] = ν
κ 2

κ 2

ν 3
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Table 2. The distribution-specific variance σ d
2

 
and observation-level variance σ ε

2  for binomial (and Bernoulli) distributions; note that only one 

of them should be used for obtaining R2 and ICC. 

Family Distributional 

parameters, mean 

& variance 

Link name Link function Distribution-specific 

variance  

 

Observation-level variance using the 

delta method 

(min. values and corresponding p) 

Binomial 

(Bernoulli; 

n = 1) 

binomial(p, n) 

0 < p < 1 

n > = 1 (integers) 

logit  
~ 3.29 

(logistic distribution) 

 

(min = 4; p = 0.5) 

 

 

E[y] = np 

var[y] = np(1 – p) 

probit 

( ) 
 

1 

(standard normal 

distribution) 

 

(min ~ 1.57; p = 0.5) 

ln
p

1− p

⎛

⎝⎜
⎞

⎠⎟

π 2

3

1

p(1− p)

Φ(p)

2erf −1(2p −1)

2π p(1− p) exp erf−1(2 p −1)⎡⎣ ⎤⎦
2( )2 .

C
C

-B
Y

-N
C

-N
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  ‘erf-1’ is the inverse of the Gauss error function, which is often denoted as ‘erf’. 

  

  

cloglog 

(complimentary 

log-log)
 

 

~ 1.65 

(Gumbel distribution) 

 

(min ~ 1.54;  p ~ 0.8; 

~ 2.08; p = 0.5) 

      

ln(− ln(1− p))

π 2

6

p

ln(1− p)( )2
(1− p)
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Table 3. Mixed-effects model analysis of a simulated dataset estimating variance components and regression slopes for nutrient manipulations on fecundity, endoparasite 

loads, body length, exploration levels and male morph types; N[population]=12, N[container]=120 and N[animal]=960. 

Model name Fecundity models (log-link) 

Quasi-Poisson mixed models  

Parasite models (log-link) 

Negative binomial mixed models  

Size models (log-link) 

Gamma mixed models  

Exploration models (log-link) 

Gamma mixed models  

Morph models (logit-link) 

Binomial (binary) mixed models 

 Null Model  Full Model  Null Model  Full Model  Null Model  Full Model  Null Model  Full Model  Null Model  Full Model  

Fixed effects b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

b  

[95% CI] 

Intercept 1.630 

[1.379, 1.882] 

1.261 

[0.989, 1.532] 

0.766 

 [0.330, 1.202] 

1.752 

[1.282, 2.223] 

2.682 

[2.616, 2.689] 

2.737 

[2.699, 2.775] 

4.752 

 [4.555, 4.949] 

4.056 

[3.842, 4.269] 

-0.108 

[-0.718, 0.501] 

-0.740 

[-1.450, -0.030] 

Treatment 

(experiment) 

- 0.491 

[0.391, 0.591] 

- -0.768 

[-0.870, -0.667] 

- 0.033 

[0.023, 0.044] 

- 2.007 

[1.965, 2.050] 

- 0.840 

[0.422, 1.258] 

Habitat (wet) - 0.152 

[0.055, 0.249] 

- 0.700 

[0.599, 0.801] 

- 0.009 

[-0.001, 0.019] 

- -0.560 

[-0.603, -

0.518] 

- 0.414 

[0.002, 0.826] 

Sex (male) -  - - -2.198 - -0.213 - -1.105 - - 
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 [-2.511, -1.884] [-0.230, -0.196] [-1.256, -

0.955] 

- 

Random effects  σ
2 

σ
2 σ

2 σ
2 σ

2 σ
2 σ

2 σ
2 σ

2 σ
2 

Population 0.178 0.187 0.375 0.541 0.0026 0.0039 0.071 0.104 1.002 1.111 

Container 0.042 0.059 1.976 0.613 0.0140 0.0014 0.364 0.163 0.136 0.186 

Observation-level 

(Distribution-

specific) 

0.477 0.349 0.873 0.397 0.0069 0.0064 1.664 0.118 4.010 (3.290) 4.010 (3.290) 

 

Fixed factors - 0.066 - 1.479 - 0.0116 - 1.393 - 0.220 

           

  - 10.01% - 48.83% - 49.54% - 78.34% - 

 

3.98% (4.57%) 

  - 47.19% - 86.91% - 72.52% - 93.34% 3.98% (4.57%) 27.46% 

(31.55%) 

ICC[Population] 25.50% 31.47% 11.62% 34.89% 11.38% 33.17% 3.40% 26.94% 19.49% 

(22.63%;) 

20.96% 

(24.23%) 

RGLMM(m)
2

RGLMM(c )
2
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ICC[Container] 5.98% 9.84% 61.30% 39.53% 59.57% 12.37% 17.34% 42.34% 2.67% (3.07%;) 3.50% (4.05%) 

AIC 2498.8 2412.3 4342.6 3920.5 3379.9 3139.5 11223.8 9004.3 605.5 589.6 

95 % CI (confidence intervals) were calculated by the confint function in lme4. The observation-level variance was obtained by using the trigamma function. In the Morph 

models, both the observation-level variance and distribution-specific variance were used; note that ones in brackets use the distribution-specific variance for R2 and ICC. 

ICC[Container] is not a typical ‘repeatability’ but the proportion of variance due to the container effect beyond the population variance.  
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Figure legends 

Figure 1. A schematic of how hypothetical datasets are obtained (see the main text for details).  
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