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While speciation in eukaryotes is well-studied (Coyne et al., 2004), a controversy over the nature of7

bacterial species due to recombination between distant strains continues (Fraser et al., 2007). It is generally8

agreed that bacterial diversity can be classified into genetically and ecologically cohesive units (Vos, 2011;9

Caro-Quintero and Konstantinidis, 2012; Shapiro and Polz, 2014), but what produces such variation is a10

topic of intensive research (Cohan and Perry, 2007; Shapiro, 2014; Shapiro et al., 2016). Recombination may11

maintain coherent species of frequently recombining bacteria (Fraser et al., 2009; Marttinen et al., 2015;12

Dixit et al., 2016), but the emergence of distinct clusters within a recombining species, and the impact of13

habitat structure in this process are not well described, limiting our understanding of how new species are14

created. Here we present a model of bacterial evolution in overlapping habitat space. We show three different15

outcomes are possible for a pair of clusters, depending on the size of their habitat overlap: fast divergence with16

little interaction between the clusters, slow divergence with frequent recombination between the clusters, and17

stationary or near stationary population structure, where the clusters remain at an equilibrium distance for18

an indefinite time. We fit our model to two data sets. In Streptococcus pneumoniae, we find a genomically and19

ecologically distinct subset, held at a relatively constant genetic distance from the majority of the population20

through frequent recombination with it, while in Campylobacter jejuni, we find a minority population we21

predict will continue to diverge at a higher rate. This approach may predict and define speciation trajectories22

in multiple bacterial species.23

Several explanations have been offered for the genetic and ecological differentiation between bacterial24

populations. In the Ecotype Model (Cohan and Perry, 2007), ecological niche -specific adaptive mutations25

cause genome-wide selective sweeps that purge variability among isolates in the same the niche, resulting26

in genetically differentiated clusters that correspond to niches. While recombination may maintain genetic27

coherence, as discussed above, theory suggests selection is necessary for genetic diversification (Polz et al.,28

2013). Recently, a model of ecological differentiation among sympatric recombining bacteria has been de-29

veloped (Shapiro et al., 2012; Friedman et al., 2013). The model assumes an initial freely recombining30

population, and the differentiation is triggered by an acquisition of a few habitat-specific alleles through31

horizontal gene transfer. If the habitat-specificity results in varying recombination rates within and between32

habitats, for example due to increased physical proximity or sequence similarity, the result is gradual di-33

versification across the genome, eventually creating genomically and ecologically distinct clusters. Unlike in34

the Ecotype Model, which assumes genome-wide sweeps, here the sweeps occur only for the habitat-specific35

genes, but the overall genetic differentiation does not happen immediately, thanks to frequent recombina-36

tion that breaks the linkage between the habitat specific genes and the rest of the genome. The resulting37

pattern has a small number of short genome regions with strong habitat association, while the majority of38

the genome shows little correlation with the habitat, and such a pattern was observed between a pair of39

closely-related Vibrio bacteria (Shapiro et al., 2012).40

Fig. 1 shows population structures in data sets with 616 Streptococcus pneumoniae (Croucher et al., 2013)41

and 235 Campylobacter jejuni samples (Sheppard et al., 2013, 2014; Cody et al., 2013) (see Methods). Both42

include strains divergent from the rest of the population, providing us with an opportunity to investigate43

the early stages of bacterial differentiation. In particular, the S. pneumoniae data consists of 16 sequence44

clusters (SCs) of which one, SC12, differs from the rest, and has previously been characterized as atypical45

pneumococci representing a distinct species (Croucher et al., 2013, 2014). All other SCs are at the same46

equilibrium distance from each other, maintained by recombination, corresponding to the main mode in the47

distance distribution (Marttinen et al., 2015). Two additional modes can be discerned: one close to the48

origin comprising the within SC distances, which may be explained by selection of some sort, and the other49

representing the broad division of the data into SC12 vs. rest, which indicates less frequent recombination50
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between these two clusters. Whether SC12 is a nascent cluster, which will continue to diverge, is not known.51

It is also possible that the distance could be an equilibrium produced by the combination of mutational52

divergence and occasional recombination with the parent cluster. A similar minor mode is found in C.53

jejuni, in this case arising from a single divergent isolate shown in red. Whether this is an isolate from a54

cluster in the early stages of divergence is similarly unknown.55

The goal to understand the population sub-divisions observed in Fig. 1 motivated us to develop a model56

that could re-produce similar patterns. Previously, models have been used to investigate the impact of57

homologous recombination on population structure (Fraser et al., 2009; Doroghazi and Buckley, 2011), the58

distribution of accessory genome (Baumdicker et al., 2012; Lobkovsky et al., 2013; Collins and Higgs, 2012),59

parallel evolution of the core and accessory genomes (Marttinen et al., 2015), and the spread of antibiotic60

resistance (Niehus et al., 2015). Here we extend the model of sympatric differentiation (Shapiro et al., 2012;61

Friedman et al., 2013) in two ways. First, we introduce an explicit, controllable barrier for recombination62

between the two populations, and second, we derive an analytical approximation of the model. An outline of63

the resulting ’Overlapping Habitats Model’, is shown in Fig. 2. Its key characteristic is the existence of two64

populations of different types of strains living in partially overlapping habitats. Recombination between the65

populations only occurs between individuals in the shared habitat, while migration enables strains to move66

between strain type specific and shared parts of the habitat space (see Methods). The explicit barrier for67

recombination together with the analytical approximation make it for the first time possible to do inference68

about the amount of interaction between the populations. In particular, the model allows us to rapidly69

predict how the population structure will evolve given a certain amount of habitat overlap, and, on the other70

hand, to learn the parameters resulting in a given equilibrium population structure.71

To investigate the impact of habitat structure on population structure, we simulated the Overlapping72

Habitats Model for 100,000 generations with two clusters, each with 5,000 strains. We varied the amount73

of habitat overlap and migration, but used realistic mutation and recombination rates (see Methods). Fig.74

3 shows how the within and between cluster distances evolved during the simulation. As expected with75

the smallest overlap (left-most panels), the limited interaction resulted in rapid divergence of the clusters,76

although within cluster distances reached an equilibrium as expected (Fraser et al., 2007; Marttinen et al.,77

2015). With the largest overlap (right panels) two distinguishable clusters emerged, with the between cluster78

distance exceeding the within distance. However the clusters did not proceed to full separation, but rather79

maintained an equilibrium level of separation for what appeared to be an indefinitely long time. With an80

intermediate overlap the simulation still had characteristics of the stationary behaviour; however, now the81

clusters slowly drifted apart as a result of genes one by one escaping the equilibrium. To understand the82

equilibrium, we first note that if the clusters are already very close, then a recombination event between them83

does not make them any more similar. If the clusters are very distant, the ability to recombine vanishes.84

Intuitively, the equilibrium, if such exists, is located at an intermediate distance where the cohesive force of85

recombination equals the diversifying force of mutation.86

We next investigated which of the three alternative types of differentiation: equilibrium, slow divergence,87

or rapid clonal divergence, best explains the population divisions in the S. pneumoniae and C. jejuni data88

(Fig. 1). To fit the Overlapping Habitats Model, which represents the equilibrium or slow divergence cases,89

we tentatively assumed the distances between the divergent strains and other strains to be at equilibrium,90

and used a plug-in recombination rate estimate from the literature to compute the approximate overlap that91

would produce the observed level of separation (see Methods). For both data sets, a simulation with these92

parameters resulted in two separate clusters that were diverging slowly, with rates of 0.32 (S. pneumoniae)93

and 0.45 (C. jejuni) relative to the clonal divergence rates. This indicates the separation between the clusters,94

especially in the C. jejuni data, has exceeded the level where recombination could prevent the divergence,95

and, consequently, the equilibrium distance is easy to escape. However, these results alone do not yet allow96

us to separate the two possible explanations: first, the clusters are in the process of slow divergence, as just97

described, or second, the clusters are in the process of rapid clonal diversification, and the distance between98

them just happens momentarily to be as observed.99

A detailed comparison of the models’ outputs revealed a systematic difference in the ecoSNP distributions100

between the scenarios of clonal divergence vs. equilibrium or slow divergence, where ecoSNPs are defined,101

as in (Shapiro et al., 2012), as variants present in all strains of one cluster and absent from all strains of the102

other cluster. In particular, with rapid divergence and little recombination between the clusters, the ecoSNPs103

were rather uniformly distributed across the genes (Fig. 4). On the other hand, under the equilibrium the104
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majority of ecoSNPs were concentrated in only a few genes that already had escaped the equilibrium, while105

the majority of genes had no ecoSNPs at all. For both data sets, the ecoSNP distribution supports the106

interpretation that the observed population structure is a result of equilibrium or slow divergence, rather107

than rapid clonal divergence. In the S. pneumoniae data the observed proportion of genes with no ecoSNPs108

is even higher than predicted by the overlap model, suggesting that previously published recombination rates109

may be underestimates.110

We note that the concentration of ecoSNPs in a few genome regions has previously been taken as evidence111

for gene-specific sweeps of habitat-specific adaptive alleles acquired through horizontal gene transfer (Shapiro112

et al., 2012). Our results suggest a similar pattern may emerge as a result of drift making a region divergent113

enough between the clusters to reduce their ability to recombine within the region, after which the region114

continues rapid diversification while the rest of the genome remains at equilibrium. This recalls the concept115

of ’fragmented’ speciation in which different parts of the genome speciate at different times (Retchless116

and Lawrence, 2010), except in this case this can be achieved without explicit selective processes on the117

diverging region. Eventually this results in highly divergent habitat-specific loci surrounded by regions with118

little habitat association. In practice this process could happen together with selection at the habitat-specific119

loci, as both processes have the potential to increase differentiation and create ecoSNPs between the clusters.120

We note that while quantitatively the simulation output obviously depends on the exact parameter values,121

qualitatively the conclusions regarding the main patterns observed in the data sets seem robust across a122

wide range of parameter values.123

We have introduced the Overlapping Habitats Model and shown that with realistic parameter values124

stationary or nearly stationary population divisions may emerge, creating what might be termed ’satellite125

species’ as seen in S. pneumoniae, and that these may be distinguished from dynamically diverging clus-126

ters using ecoSNPs, as shown by the analysis of C. jejuni. In our model the habitat could represent, for127

example, physical separatedness, biochemical properties, or any abstract division of the space according to128

the Hutchinson’s n-dimensional niche (Hutchinson, 1957). Our model is mainly about recombination; the129

ecological and selective aspects are implicit and follow from the division of the habitat-space into regions130

suitable for different strain types. The habitat-specificity is assumed heritable and non-mutable, and could131

in practice be caused by a small number of genes. Despite the simplicity of the model, it adequately captured132

the main sub-divisions in two data sets. Nonetheless, much of the ecological and genomic structure in the133

data will not be captured by the model, for example the individual sequence clusters within the main group134

in the S. pneumoniae data. Our model does not contradict with this additional structure, but instead shows135

that the individual sequence clusters can indeed be ecologically different, and still maintain the equilibrium136

distance between them, as a mere 60% habitat overlap already is sufficient for this (Fig. 3). Our model pro-137

vides means to characterize equilibrium structures in bacterial populations and we believe it will be helpful138

to understand similar patterns in many other bacterial genomic data sets.139

Methods140

Data141

Core gene alignments and the cluster annotation of the S. pneumoniae strains were obtained from (Croucher142

et al., 2013). As an additional data cleaning step, we removed all genes whose alignment length was less143

than 265bp, which corresponded to the 0.05th quantile of the lengths of the alignments of the core genes.144

This step was added to increase confidence in the genes detected. This left us with 1,191 core genes in the145

616 pneumococcal isolates. More specifically, the genes are here clusters of orthologous genes (COGs), and146

we use these terms interchangeably.147

The C. jejuni data consisted of 239 previously published genomes (Sheppard et al., 2013, 2014; Cody148

et al., 2013). From the reference-based assemblies mapped to the NCTC11168 reference genome, we extracted149

423 COGs using ROARY (Page et al., 2015) with default settings. As a data cleaning step, we removed four150

isolates with significantly increased levels of missing data. Additionally, we removed COGs whose alignment151

lengths were less than the 0.05th quantile (225bp) of all lengths. This left us with 401 COGs with 235152

isolates. The divergent isolate in Fig. 1 differs from others in terms of its sampling location (New Zealand),153

and by being the only isolate sampled from ’environment’ and having ST=2381.154
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Simulation model155

As the basis of our model, we use a Wright-Fisher forward simulation of discrete generations, where each156

generation is sampled with replacement from strains in the previous generation. In our model, a strain is157

represented by a collection of genes, similar to (Fraser et al., 2007), and we assume the genes are ’core’,158

i.e., present in all strains. Each gene is encoded as a binary sequence of fixed length (500 bp). Our model159

has in total four free parameters: mutation rate, homologous recombination rate, the proportion of habitat160

overlap, and migration rate. Mutations and recombinations are assumed to take place between sampling of161

the generations. Mutations change one base in the target sequence, while recombination is assumed to result162

in the whole gene of the recipient to be replaced by the corresponding gene of the donor. Recombination163

is allowed only between strains within the same habitat, and accepted with probability that declines with164

respect to increasing sequence divergence (Zawadzki et al., 1995; Vulić et al., 1997; Majewski et al., 2000).165

As opposed to (Fraser et al., 2007; Marttinen et al., 2015), we simulate complete binary sequences, avoiding166

the need for additional approximations.167

A population of strains of two types, A and B, is simulated. We assume the strain types live in different168

habitats, such that type A strains live in habitat a and type B strains in habitat b; however, part of the169

habitat space is shared such that both strain types can inhabit it, and we denote the shared part by ab.170

Habitat-specificity encoding genes are assumed implicit and not simulated in our model, and we assume171

that a strain type can not be changed by recombination or mutation. Migration of type A strains between172

habitats a and ab is achieved by sampling the next generation of strains in a, for example, from all type A173

strains such that strains in ab are sampled with a relative weight determined by the migration parameter.174

This corresponds to the assumption that strains within each habitat compete against each other and those175

trying to enter the habitat. In detail, the sampling scheme can be described as follows. We denote by Aa176

and Aab type A strains that are currently in a or ab environments; Bb and Bab are defined correspondingly.177

We sample strains for a with replacement from Aa and Aab such that the probability of sampling a strain x178

is equal to179

Pr(x) =
1

|Aa|+ m|Aab|
, if x ∈ Aa, (1)

and180

Pr(x) =
m

|Aa|+ m|Aab|
, if x ∈ Aab, (2)

where 0 ≤ m ≤ 1 is the migration parameter. Value m = 0 corresponds to no migration, in which case
Equations 1 and 2 reduce to sampling the next generation for environment a from strains already in that
environment. On the other hand, m = 1 corresponds to unlimited migration, and the next generation is
sampled with equal probability from all type A strains in both environments a and ab. Strains for the
b environment are sampled similarly from strains in b and ab environments. Finally, strains for the ab
environment are sampled according to

Pr(x) =
1

m|Aa|+ m|Bb|+ |Aab|+ |Bab|
,

if x ∈ Aab or x ∈ Bab, (3)

and

Pr(x) =
m

m|Aa|+ m|Bb|+ |Aab|+ |Bab|
,

if x ∈ Aa or x ∈ Bb. (4)

Thus, if m = 0, the next generation of strains for the ab environment is sampled from strains already in the181

environment. In the other extreme (m = 1), the strains are sampled from all strains in both populations.182

Deterministic approximation of the model183

We also derive a deterministic approximation of the Overlapping Habitats Model, which enables rapid184

prediction of the evolution of the population structure without simulating the actual sequences. The model185

is based on average distances between and within the different sub-groups of the whole population: Aa,186
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Aab, Bab, and Bb (see the previous sub-section). In detail, let d be a vector comprising all 4 within and 6187

between distances possible for the four groups. In the Supplementary Text S1, we derive a function f , that188

expresses how the average distances in the next generation, d∗, approximately depend on the distances d in189

the current generation:190

d∗ = f(d). (5)

One of the main interests is to identify stationary points in the distance distribution, i.e., distances d, for191

which192

d = f(d) (6)

holds.193

We have implemented two methods to solve Equation (6). The first consists of using the update rule
(5) repeatedly until the d converges, in which case the stationarity condition (6) is satisfied. The second
way to solve (6) is to use a quasi-Newton method, implemented in the optim-function of the R software, to
minimize the objective function h, defined as follows:

h(d) = ||f(d)− d||2 (7)

=

[
10∑
i=1

(fi − di)
2

] 1
2

, (8)

where fi is the prediction for the ith element in the distance vector of the next generation, and di the current194

value of the corresponding element. In practice, we have reached the best performance by first running the195

Newton’s method, which is fast, followed by the robust sequential update procedure to confirm convergence.196

Investigation of Fig. 3 reveals that the deterministic approximation predicts the within cluster distances197

observed in simulation with high accuracy. Also, with the smallest overlap, the deterministic approximation198

does not have a solution, allowing us to immediately predict the rapid divergence seen in the simulation.199

However, we also see that the approximation has a tendency to underestimate the between cluster distances200

compared to the simulation. The reason for this is that the deterministic approximation is based on average201

distances within and between the populations, and therefore it does not account for variation in distances202

between specific donor and recipient alleles, resulting in overestimation of the impact of recombination.203

For the same reason it is not possible to use the approximation to determine how easy it is to escape the204

equilibrium mode in the distance distribution. Therefore, we adopted in our analyses a strategy to first205

estimate the parameters with the deterministic approximation (see below), and then run the simulation206

model with the learned parameter values to produce the final detailed prediction.207

Model fitting208

As discussed above, the S. pneumoniae data can be broadly divided into two sub-populations. To estimate209

the habitat overlap, we tentatively assumed the population structure, i.e., the within and between sub-210

population distances observed, represented an equilibrium. We fitted the model by solving the deterministic211

formula to determine parameter values that produced the distances in the data (within=0.01, between=0.017)212

as a stationary condition (Fig. S2). To determine the remaining parameters, we set the recombination rate,213

r/m to a previously reported value r/m = 11.3 (Croucher et al., 2013). The proportion of diverging strains214

of the whole population was set to 5%, and migration to 0.5 (results were insensitive to these choices, see215

Fig. S2). These specifications led to an estimate of 41% habitat overlap.216

The parameters for the C. jejuni were estimated similarly. In detail, we assumed that the within pop-217

ulation distance was 0.015 (the main mode) in the data and the between distance 0.03 (the small separate218

mode). We fixed the recombination rate to a plug-in estimate of r/m = 49, derived from an estimate that 98219

percent of substitutions in MLST genes in the species are due to recombinations (Yu et al., 2012). We again220

set the proportion of the diverging strains to be 5% of the whole population. These specifications yielded221

an estimate of 24% habitat overlap.222

For both data sets, we set the total number of strains simulated as 10,000 and the number of genes as223

30. As each gene had length 500, this corresponded to the total genome size of 15,000 bp. The probability224

of accepting a recombination was assumed to decline log-linearly with respect to the distance between the225

alleles in the donor and recipient strains, according to 10−Ax, where x is the Hamming distance between the226
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alleles. We used A = 18 for the parameter that determines the rate of the decline, according to empirical227

data, see Fraser et al. (2007).228

Code availability229

R-code to run the model is available at https://users.ics.aalto.fi/~pemartti/habitat_simulation/.230
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Figure 1: Population structures in S. pneumoniae and C. jejuni data sets. The left panels
show distributions of pairwise distances computed between all strain pairs in the data sets, and the right
panels show the phylogenies. In the S. pneumoniae phylogeny, previously identified 16 sequence clusters
are annotated as follows: the divergent cluster with red, 14 other monophyletic clusters with gray, and the
remaining non-monophyletic cluster is not colored. Distances within and between these clusters are annotated
in the distance histogram. Similarly, for C. jejuni, three clusters corresponding to separate branches of the
phylogeny are colored with gray and one divergent strain with red, and the distances within and between
these clusters are shown in the histogram. Annotation ”Other” refers to within cluster comparisons as well
as distances between the non-colored strains and other strains.
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Figure 2: Outline of the Overlapping Habitats Model. The model assumes two types of strains, A
and B, that live in habitats a or b, respectively. In addition, both types can live in the intersection of the
habitats, denoted as ab. Type A strains can migrate between a and ab and type B strains between b and
ab. Strain can recombine with other strains in the same habitat.
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Figure 3: Simulation results from the Overlapping Habitats Model. The figure shows the evolution
of distances within and between strain types in simulations with 106 generations. The solid thin red and gray
lines show the median between and within strain type distances in ten repetitions, and the thick lines show
the averages across the repetitions. The dashed horizontal lines show the predicted equilibrium distances
from the deterministic approximation. If no dotted line is shown, the deterministic model did not have a
solution.
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Figure 4: Comparing model output with the S. pneumoniae and C. jejuni data, and a summary
of divergence rates. For each data set, we simulated the Overlapping Habitats Model 20 times without
overlap (leftmost small panels) and with the estimated overlap (center small panels). A barrier representing
the size of the overlap between the clusters was introduced at the 30,000th generation (dashed vertical line)
after which the clusters diverged. The horizontal lines show for reference the within and between cluster dis-
tances in S. pneumoniae and C. jejuni. Simulated ecoSNP distributions with and without overlap, computed
at the generation when the simulated between-cluster distance matched the observed value, are compared
with the observed ecoSNP distributions (rightmost small panels). The panel on the right summarizes the
simulated rate of divergence between the two clusters relative to the clonal divergence. (*the heatmap is
based on the mutation rate in S. pneumoniae, and, therefore, the location of C. jejuni is modified by moving
it to the closest contour line corresponding to the divergence rate estimated using the correct mutation rate,
for which results are shown in Supplementary Fig. S3)
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