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Abstract 

A wide variety of sensory studies have shown that cortical neural activity varies dramatically 

across trials. This trial-by-trial neural variability is relatively large in the pre-stimulus period 

and considerably smaller (quenched) following stimulus presentation. Neural variability 

affects behaviour. For example, perceptual performance is better on trials and in individuals 

where variability quenching is larger. Furthermore, allocating attention to a stimulus 

improves behavioral performance by reducing neural variability. How consistent are neural 

variability measures of individual subjects? Here, we show that neural variability magnitudes 

are remarkably consistent across four different tasks with different attentional and cognitive 

demands as well as across experimental sessions separated by one year. These results 

suggest that, in adults, neural variability magnitudes are solidified individual traits, which 

change little with behavioral state or time, and predispose individual subjects to exhibit 

specific behavioral capabilities.   
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Introduction  

Neural activity in the mammalian brain is notoriously variable/noisy over time1,2. This 

variability is apparent across trials before the presentation of a stimulus (i.e., ongoing 

variability) and also after the presentation of a stimulus (i.e., stimulus-evoked variability)3–5. 

Recent research has shown that ongoing neural variability is considerably larger than 

stimulus-evoked variability, thereby demonstrating that sensory stimulation reduces 

(“quenches”) ongoing neural variability 5. Such variability quenching was consistently 

reported across studies examining a variety of cortical areas and arousal states, while using 

different types of stimuli, and when measuring neural activity with electrophysiology in 

animals 5–10 or neuroimaging in humans11–13.  

Several lines of evidence show that neural variability has a strong impact on behavioral 

performance. First, variability quenching is associated with better perceptual performance, 

whether examined across trials 13 or across individual subjects 14. Second, actively allocating 

attention to a visual stimulus improves behavioral performance primarily by reducing the 

trial-by-trial response variability of single neurons 7 and the shared/correlated variability 

across the local neural population 15,16. Third, increasing dopamine and norepinephrine 

levels increases the magnitude of neural variability in both humans 17 and animals 18,19 and 

generates behavior that is more exploratory (variable)19.  

While neural variability is under the flexible control of attention and neuromodulation to a 

certain extent, many of the mechanisms that generate and govern neural variability are 

likely to be a product of individual genetics and early development. For example, 

mechanisms that govern the reproducibility of neural activity by maintaining stable 

excitation-inhibition balances 20 and reliable synaptic transmission21, are the product of 

individual genetics (which determine, for example, the structure and function of Sodium 

channels) and environmental exposure during early critical periods22,23. Since individual 

subjects have different genetics and experience different environmental exposures, one may 

expect intrinsic neural variability levels to differ across individuals and potentially predispose 

them to different behavioral capabilities.  

To what extent is the level of trial-by-trial neural variability an individual human trait? To 

address this question we measured neural variability with EEG in 24 subjects as they 

performed four different visual tasks with different attentional and cognitive demands 

ranging from a simple reaction time task (i.e., respond when you see a stimulus) to a 

demanding 2-back working memory task (i.e. responds when the stimulus is identical to the 
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one presented two trials ago). The same subjects performed these tasks in two experimental 

sessions separated by a year. This experimental design enabled us to examine the 

consistency of neural variability measures across tasks and over time within the same 

individuals and determine how differences in neural variability across subjects were related 

to differences in their behavioral performance. 

 

Results 

 Twenty four subjects completed two experimental sessions separated by one year. Each 

session included four visual tasks: 1) presentation of a checkerboard annulus in the 

periphery while subjects performed a color-detection task at fixation, 2) a choice reaction 

time (CRT) task where subjects were instructed to respond with one button to a circle 

stimulus and with another button to a tringle stimulus , 3) a go-no-go task where subjects 

were instructed to respond only to the circles (go trials) and not to the triangles (no-go 

trials), and 4) a 2-back working memory task where subjects were presented with four 

Chinese letters and instructed to respond whenever the current letter matched the letter 

that was presented two trials before. 

 

Neural variability quenching  

We examined trial-by-trial neural variability as a function of time before and after stimulus 

presentation in each of the four experiments (Figure 1). Trial-by-trial variability was reduced 

(i.e., quenched) following stimulus presentation in all experiments and in both recording 

sessions performed a year apart. Variability quenching was sustained from 150 to 400ms 

after stimulus presentation and most evident in occipital electrodes (O1, O2, PO7 and PO8). 

We quantified variability quenching as the relative change (in units of percent change) 

between pre-stimulus (-200 to 0ms) and post-stimulus (150 to 400ms) periods, while 

focusing our analyses on the four electrodes noted above. 
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Figure 1: Temporal and spatial dynamics of trial-by-trial neural variability. Each time-course 

represents the changes in relative trial-by-trial variability (percent-change units relative to the pre-

stimulus period) during the first (black) or second (grey) experimental session. Each panel displays the 

results of a different experiment. Gray background: 150-400ms post-stimulus period with sustained 

variability quenching that was selected for further analyses. Insets: topographic maps of variability 

quenching magnitudes during the 150-400ms window. 

 

Neural variability is a stable individual trait 

We quantified three measures of trial-by-trial variability for each subject. Absolute trial-by-

trial variability was quantified in the pre-stimulus (-200 to 0 ms) and post-stimulus (150-400 

ms) periods for each subject, in each of the four experiments, and each of the experimental 

sessions (see Methods). Variability quenching was quantified as the difference between 

variability magnitudes in the pre and post stimulus periods. All three measures of variability 

were strongly and significantly correlated across the two EEG recording sessions in each of 

the four experiments (r(24) > 0.58, p < 0.003, Figure 2). This demonstrates that the neural 

variability magnitudes of individual subjects barely changed over a one year period.  
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Figure 2: Individual neural variability magnitudes were consistent across experimental sessions 

separated by one year. Scatter plots present the magnitudes of variability quenching (A), pre-stimulus 

variability (B), and post-stimulus variability (C) in individual subjects during the first and second 

experimental sessions for each of the four experiments. The unity line is drawn for reference in each 

panel. Each point represents a single subject. Asterisks: significant correlation as assessed by a 

randomization test (p<0.001). Pearson’s correlation coefficients are noted in each panel.  

 

Individual variability magnitudes were also strongly correlated across experiments.  Given 

the strong correlations across sessions (Figure 2), we averaged each of the three variability 

measures across the two sessions. We then compared individual variability magnitudes 

across the six experiment pairs. This analysis revealed strong, positive, and significant 

correlations across all pairs of experiments when examining variability quenching 

(r(24)>0.73, p<0.001, Figure 3), pre-stimulus variability (r(24)>0.86, p<0.001), or post-

stimulus variability (r(24)>0.9, p<0.001) magnitudes. 
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Figure 3: Individual variability quenching magnitudes were consistent across experiments.  Scatter 

plots demonstrate the relationship between variability quenching magnitudes in each pair of 

experiments.  Each dot represents a single subject. The linear fit is drawn for reference in each panel. 

Asterisks: significant correlation as assessed by a randomization test (p<0.001). Pearson’s correlation 

coefficients are noted in each panel.  

 

Differences in neural variability across tasks 

The four tasks examined in this study imposed different cognitive and attentional demands. 

In the checkerboard experiment we quantified trial-by-trial neural variability to an 

unattended stimulus (i.e., attention was diverted to a task at fixation). In the three other 

experiments we quantified trial-by-trial neural variability to an attended stimulus, yet the 

cognitive load in the two-back task was considerably larger than in the CRT and go-no-go 

task as can also be seen in the behavioral performance (see below). Note that in the CRT and 

go-no-go tasks the subjects responded with a button press on all of the examined trials 

whereas in the other two tasks they did not.  

Since previous research suggests that neural variability should decrease with attentional 

load, we compared both variability quenching and absolute variability in the pre and post 

stimulus periods across the four tasks (Figure 4). Variability quenching and pre stimulus 

variability were somewhat smaller in the checkerboard experiment in comparison to the 

cognitive tasks, but a one way ANOVA showed that there were no significant differences 
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across tasks in any of the variability measures (Quenching:  𝐹(3,92) = 0.69, 𝑝 = 0.56; pre 

stimulus:  𝐹(3,92) = 1.47, 𝑝 = 0.23; post stimulus: 𝐹(3,92) = 0.46, 𝑝 = 0.7; Figure 4). These 

analyses reveal that neural variability measures differed across subjects to a much larger 

degree than they differed across tasks. 

 

 

Figure 4: Neural variability differences across experiments. (A) Neural variability time courses (mean 

across subjects and sessions) demonstrating the change in trial-by-trial neural variability in each of 

the four experiments. (B) Neural variability quenching. (C) Neural variability in the pre-stimulus 

interval (-200 to 0ms). (D) Neural variability in the post-stimulus interval (150 to 400ms). Error bars: 

Standard error of the mean across subjects.    

 

Neural variability and behavioral performance 

We estimated three performance measures in each of the four experiments: accuracy, mean 

reaction time (RT) and RT variability (Figure 5). One way ANOVA analyses demonstrated that 

there were clear differences in the accuracy (𝐹(3,92) = 56.7, 𝑝 < 0.001), mean reaction time 

(𝐹(3,92) = 99.1, 𝑝 < 0.001), and reaction time variability (𝐹(3,92) = 131.9 , 𝑝 < 0.001) 

across the four tasks. Post-hoc Tukey’s tests revealed that there were significant differences 

across all pairs of tasks, except for the CRT and Go-no-go tasks (p<0.01 for all behavioral 
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measures). These results demonstrate that the CRT and Go-no-go tasks were relatively easy, 

while the color-detection task in the Checkerboard experiment and the 2-back task were 

relatively harder. Note that in the Checkerboard experiment the task diverted the subjects’ 

attention away from the checkerboard stimulus, thereby allowing us to quantify trial-by-trial 

neural variability to an unattended stimulus. In contrast, the 2-back task required that 

subjects attend the stimulus, thereby allowing us to quantify trial-by-trial neural variability 

to a strongly attended stimulus. 

 

Figure 5: Behavioral performance measures. Mean across subjects and sessions for accuracy (A), 

reaction time (B) and reaction time variability (C) in each of the four tasks. Error bars: standard error 

of the mean across subjects. Significant differences across tasks are described in the text.  

 

We found significant relationships between all three neural variability measures and 

accuracy on the 2-back working memory experiment, yet all other relationships were not 

significant (Figure 6). In the 2-back experiment, accuracy was positively correlated with the 

pre-stimulus variability magnitudes (r(24)=0.45, p<0.05; uncorrected) and post-stimulus 

variability magnitudes (r(24)=0.44, p<0.05; uncorrected). Accuracy was also negatively 

correlated with variability quenching magnitudes (r(24)=-0.4 p<0.05; uncorrected). Note that 

variability quenching magnitudes are negative such that larger (more negative) quenching 

was associated with higher accuracy on the 2-back task. While we did not correct these 

analyses for multiple comparisons, it is reassuring that all three significant findings were 

with the same behavioral measure in the same experiment (i.e., accuracy on the 2-back).  
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Figure 6: Relationships between neural variability and behavior. Pearson’s correlation coefficients 

were calculated between each of the three behavioral measures: accuracy (left panel), mean RT 

(middle panel), RT variability (right panel) and each of the three variability measures: variability 

quenching (black bars), pre stimulus variability (light gray bars) and post stimulus variability (dark gray 

bars) in the first (A) and second (B) experimental sessions. Asterisks indicate significant correlations as 

assessed by a randomization analysis (p<0.05, uncorrected). 

 

Alternative sources of trial-by-trial variability  

We examined whether non-neural sources of variability, such as gaze variability or the 

quality of EEG recordings could explain our results regarding consistency across tasks or 

sessions. We utilized eye tracking data from the checkerboard experiment to determine 

whether neural variability measures were associated with the variability of gaze position 

across trials. Gaze position variability, however, was not significantly correlated with 

variability quenching magnitudes in either the first (r(21)=-0.14, p=0.26) or second (r(21)=-

0.28, p=0.1) recording session. In addition, gaze variability was not significantly correlated 

across recording sessions (r(24)=0.33, p=0.07, Figure 7B). This reassured us that the 

magnitude of neural variability across trials was not associated with the ability of the subject 

to maintain fixation. 

Electrode offset is a measure that quantifies the quality of the EEG recordings when using 

active electrode systems. Here we computed the electrode offset variability to determine 

whether trial-by-trial changes in electrode offset (indicative of an unstable EEG recording) 

were associated with the neural variability measures. Electrode offset variability, was not 

significantly correlated with the magnitude of variability quenching in any of the 

experiments performed in either the first or second session (-0.26<r(24)<0.21, p>0.11). 

Furthermore, electrode offset variability in each of the four experiments was not 

significantly correlated across the two sessions (-0.05<r(24)<0.18, p>0.2, Figure 7A). This 

reassured us that the strong and significant correlations of neural variability magnitudes 
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across tasks and sessions were not due to between-subject differences in the quality of EEG 

recording. 

  

 

 

Figure 7: Electrode offset variability or gaze variability were not significantly correlated across 

sessions. (A) Scatter plots of electrode offset variability measure in the first and second EEG recording 

sessions, for each of the four experiments. (B) Correlation between gaze variability in the first and 

second session, as measured in the checkerboard task. Each dot represents a single subject, 

correlation coefficients are noted in each panel.  
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Discussion 

Our results demonstrate that neural variability magnitudes differ across adult subjects in a 

consistent and reproducible manner over long periods of time and regardless of the task 

that the subjects are performing. This was true for measurements of neural variability in 

either pre-stimulus or post-stimulus periods and also when computing relative variability 

quenching (Figures 2&3). These consistent individual differences in the magnitude of neural 

variability were much larger than differences across the tasks (Figure 4) despite the use of 

tasks with considerably different attentional and cognitive demands (Figure 5). Furthermore, 

when examining the task with the largest cognitive demands in our study, a two-back 

working memory task, we found that individuals with larger pre-stimulus variability, post-

stimulus variability, and larger variability quenching exhibited more accurate detection of 

letter repeats. Taken together, these results reveal that neural variability magnitudes are 

mostly static individual traits that can be modified only slightly by mechanisms of attention 

or neuromodulation, yet can explain differences in behavioral capabilities across subjects 

when the task is demanding. 

Neural variability: state or trait? 

To what degree is neural variability under flexible behavioral control? Previous studies have 

reported that actively allocating attention to a visual stimulus reduces the trial-by-trial 

response variability of single neurons 7 and the shared/correlated variability across the local 

neural population 15,16. Indeed, it has been proposed that attention improves behavioral 

performance primarily by reducing correlated trial-by-trial variability/noise 16. Additional 

studies have reported that raising the levels of dopamine and/or norepinephrine increases 

the magnitude of neural variability in both humans 17 and animals 18,19. It has been suggested 

that these neuromodulatory mechanisms are associated with activation of exploration 

versus exploitation states. In the exploration state, the animal behaves in a more variable 

manner that enables learning through trial-and-error, whereas in the exploitation state the 

animal behaves in a more reproducible manner in order to exploit previously learned 

information.  

While attention and neuromodulation are invaluable mechanisms for flexibly changing the 

magnitude of trial-by-trial neural and behavioral variability, individual differences in neural 

variability magnitudes are also governed by a many other neurophysiological mechanisms. 

At the single cell level, these include the noisy response characteristics of peripheral sensors 

24, the stochastic nature of synaptic transmission 21, and the dynamic changes caused by 
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neural adaptation 25 and synaptic plasticity 26. At the neural network level, additional 

variability is generated by adjustments of the excitation/inhibition balance 20 and continuous 

interaction and competition across large neural populations 27. These mechanisms are likely 

to be the product of multiple genetic and environmental factors that create and modify 

developing neural circuits and eventually solidify their structure and function during specific 

critical periods in development23.   

Our results reveal that there are large differences in neural variability magnitudes across 

adult subjects and clearly show that individual neural variability magnitudes are remarkably 

consistent across tasks and over time. This suggests that they represent individual traits 

rather than flexible states. We speculate that examining these measures in young children 

would be particularly interesting for understanding how neural variability may change during 

development and then stabilize in adolescence or adulthood. Analogous behavioral research 

in humans28 and birds29 has already shown that behavioral variability diminishes during 

development and stabilizes in adulthood. 

The behavioral significance of neural variability 

There is ongoing debate regarding the potential behavioral significance of different 

measures of neural variability. On the one hand, several studies have demonstrated that 

smaller trial-by-trial neural variability is associated with better perceptual and cognitive 

performance. For example, fMRI studies have reported that trial-by-trial variability is smaller 

on trials where a threshold-level stimulus is detected 30 and on trials where a stimulus is 

later remembered 31 . Similarly, MEG and EEG studies have reported that neural variability 

quenching is larger on trials where a threshold-level stimulus is detected 13 and in individuals 

with lower (better) contrast discrimination thresholds 14 . Furthermore, excessive neural 

variability has been reported in different disorders including autism 32,33, ADHD 34, and 

schizophrenia 35, while electrophysiology studies have reported that neural responses are 

more variable in elderly animals 36,37 and humans 38 who exhibit cognitive decline. These 

results are in line with signal detection theory principles, which suggest that intrinsic 

variability/noise reduces the detection and discrimination abilities of a perceptual system39.   

Other studies, however, have reported that younger individuals exhibit larger fMRI time-

course variability than elderly individuals 40 and that this coincides with faster and more 

consistent responses when performing cognitive tasks such as perceptual matching, 

attentional cueing, and delayed match to sample 41. It has been proposed that such 

increased ongoing variability may be beneficial for cognitive performance, because it allows 

for higher neural complexity and enables a neural network to flexibly switch between 
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different states 42. A possible compromise between these potentially contradictory studies is 

that large ongoing neural variability together with large quenching may yield the best 

perceptual and cognitive performance 13,14. An important conclusion from both lines of 

research is that it is essential to carefully de-compose neural variability into distinct 

components such as ongoing variability and stimulus-evoked variability when examining 

relationships with behavioral measures43. 

Our results also represent a potential compromise between the two views described above. 

We found significant positive correlations between the accuracy of performance on the two-

back task and pre-stimulus or post-stimulus neural variability magnitudes as well as a 

significant negative correlation with variability quenching magnitudes (Figure 6). This 

suggests that a combination of larger ongoing neural variability along with stronger 

variability quenching are associated with better behavioral performance. These effects were 

only found with respect to the two-back task, which was the hardest task in our study 

(Figure 5). We speculate that this evidence suggests that individual differences in neural 

variability magnitudes exhibit a behavioral impact mostly in tasks that involve considerable 

attentional and cognitive loads. 

Measurement noise 

Measures of trial-by-trial neural variability may be biased by subject-specific measurement 

noise of non-neural origin. We examined two potential sources of non-neural variability in 

our study: eye-gaze variability (indicative of the stability of fixation across trials) and trial-by-

trial variability in electrode offset (indicative of the stability of the EEG recording). We did 

not find any significant correlation between electrode-offset variability or gaze-position 

variability and neuronal measures of variability. Furthermore, electrode offset variability or 

gaze position variability were not significantly correlated across recording sessions (Figure 

7). These results demonstrate that the individual magnitudes of trial-by-trial variability were 

not associated with potential sources non-neural measurement noise.        

Conclusions and future directions 

This study adds to accumulating evidence demonstrating that neural variability measures of 

individual subjects are remarkably useful for understanding their individual behavioral 

capabilities. While neural variability is to some degree under flexible control of attention and 

neuromodulation, our results demonstrate that, in adults, neural variability magnitudes are 

mostly consistent across distinct tasks and recording sessions. We, therefore, suggest that 

neural variability magnitudes represent stable between-subject differences in fundamental 

neural characteristics that were forged by genetics and environmental exposures during 
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early development. Revealing how neural variability magnitudes change during early 

development and predispose individuals to exhibit different behavioral capabilities and/or 

specific developmental disorders is likely to be of great interest for further research 43. 

 

Methods 

Subjects. Twenty four subjects (eight males, mean age during the first session= 23.7 years, 

SD= 1.4) took part in this study. All subjects had normal or corrected-to-normal vision. The 

study was approved by the Ben-Gurion University Internal Review Board.  Subjects provided 

written informed consent during both experimental sessions and were either paid for their 

participation or received research credit.  

Experimental design. All subjects completed four experiments in each of two experimental 

sessions. The gap in time between the first and the second session was 12.3 months on 

average (SD = 1.1). The study was performed in a dark and sound proof room. The stimuli 

were presented using MATLAB (Mathworks, Inc., USA) and Psychtoolbox 44.  

Checkerboard experiment: The visual stimulus consisted of a circular, doughnut shaped, 

checkerboard with an inner radius of 0.6° visual angle and an outer radius of 3.7° visual 

angle. The experiment consisted of 600 trials; 400 trials containing a stimulus and 200 trials 

where the stimulus was omitted. Stimuli were presented for 50ms and were followed by a 

randomized inter-trial interval lasting 750-1200ms. The experiment included an orthogonal 

color-detection task at fixation, which was intended to divert attention away from the 

checkerboard stimuli. Subjects were instructed to press a key whenever the black fixation 

cross changed its color to gray. The experiment contained 80 random color changes, which 

lasted 30ms and subjects had one second to respond. Correct and incorrect responses were 

indicated by changing the fixation cross to green or red, respectively. 

Choice Reaction time (CRT) experiment: In each trial, either a black triangle or a circle was 

presented at the center of the screen for 300ms and subjects were instructed to press the 

right or left arrow keys, respectively, as quickly as possible using their right index finger. 

Each trial was followed by an inter-trial interval of 1200ms. A total of 400 trials were 

presented, 200 trials of each of the two stimuli.  

Go-no-go experiment: Stimuli and structure were identical to those described in the CRT 

experiment, except that participants were instructed to press the spacebar as quickly as 

possible with their right index finger whenever they saw a circle ( “go” trial) and not when 
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the triangle was presented (“no go” trial). A total of 600 trials were presented and 80% of 

the trials contained the “go” stimulus. 

2-back experiment: Stimuli were composed of 4 Chinese letters, presented at the center of 

the screen and participants were asked to press the "J" key whenever the current letter 

matched the one that was presented 2 trials before. Each letter was presented for 500ms 

and followed by an inter-trial interval of 500ms. A total of 600 trials were presented with 

20% of them containing a 2-back repeat. 

EEG and eye tracking recordings. EEG data were recorded using a 64-channel BioSemi 

system (Biosemi Inc., Netherlands), connected to a standard EEG cap according to the 

international 10-20 system. Data were referenced to the vertex electrodes. 

Electrooculography (EOG) was recorded using two electrodes at the outer canthi of the left 

and right eyes and one electrode placed below the right eye. In the checkerboard 

experiment, the position of the right eye was recorded using an eye-tracker (EyeLink 1000, 

SR-research) at a sampling rate of 1000Hz. 

EEG preprocessing. Data was analyzed using Matlab (Mathworks, Inc.) and the EEGLAB 

toolbox 45. Continuous EEG data was down sampled to 512Hz, filtered using a 1-40 Hz band 

pass filter, and re-referenced to the bilateral mastoid electrodes. EEG epochs were extracted 

using a time window of 700ms (200ms pre-stimulus to 500ms post-stimulus) and baseline 

correction was not performed so as not to alter trial-by-trial variability in the pre-stimulus 

interval. In the checkerboard experiment only trials where stimulus was presented were 

extracted, in the CRT experiment trials with both stimuli (circle or triangle) were extracted, 

in the go-no-go experiment only the “go” trials were extracted and in the 2-back experiment 

trials with the four different stimuli (Chinese letters) were extracted. Epochs where the 

absolute amplitude exceeded 70µV or where the power exceeded 25db in the 20-40Hz 

frequency range were identified as containing eye blinks or muscle artifacts, respectively, 

and were removed from further analysis.  In the checkerboard experiment identification of 

eye blinks was confirmed by eye tracking - trials containing horizontal or vertical eye 

movements that exceeded 1.5 SD of the mean were identified as trials where fixation was 

not maintained (i.e. trials containing saccades) and excluded from EEG analyses. Mean 

number of trials across subjects and sessions after trials rejection in the four experiment was 

252 trials in the checkerboard experiment (SD=46), 150 trials in the CRT experiment (SD=37), 

162 trials in the go-no-go experiment (SD=52), and 256 trials in the 2-back experiment 

(SD=42). Mean number of trials did not differ between the first and second experimental 

sessions.    
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EEG data analysis. Trial by trial variability was computed for each time-point in the extracted 

epochs (-200 to 500ms) for each of the 64 electrodes, in each subject separately. Trials from 

the first and second sessions were analyzed separately. Absolute level of trial-by-trial 

variability in the pre-stimulus interval was computed as the mean variance within a time 

window of -200ms and 0ms pre-stimulus. Absolute level of trial-by-trial variability in the 

post-stimulus interval was computed as the mean variance within a time window of 150-

400ms post-stimulus.  

Relative trial-by-trial variability was computed by converting the variability time courses to 

percent change units relative to the mean trial-by-trial variability in the pre-stimulus period 

(-200 to 0ms). We then estimated variability quenching for each subject in each task and 

session by computing the difference in variability between the pre-stimulus period (-200 to 

0ms) and post stimulus period (150 to 400ms). We focused our analyses on the four occipital 

electrodes (O1, O2, PO7 and PO8) with the strongest visual responses. 

Behavioral data analysis. Mean accuracy, mean reaction time (RT) and reaction time 

variability (across trials) was computed for each subject and each session, in CRT, go-no-go 

and two-back tasks as well as the color-detection task in the checkerboard experiment. The 

first 10 trials in each block, trials with RT below 200ms and trials with incorrect responses 

were excluded from the analysis.     

Statistical tests. We assessed relationships across measures using Pearson's correlations. 

The statistical significance of the correlation coefficients was assessed with a randomization 

test where we shuffled the labels of the subjects before computing the correlation 

coefficient. This procedure was performed 10,000 times while shuffling the labels across 

subjects randomly each time to generate a null distribution for each pair of EEG/behavioral 

measures. For the true correlation coefficient to be considered significant it had to be higher 

than the 95th percentile or lower than the 5th percentile of this null distribution (i.e., 

equivalent to a p-value of 0.05 in a one tailed t-test). Comparisons across experiments/tasks 

were performed using a one-way ANOVA with task as the only factor, followed by post hoc 

Tukey’s tests when the initial result indicated significant differences.   

Electrode offset variability. The Biosemi EEG system utilizes active electrodes, which do not 

yield a measure of impedance. Instead, fluctuations in electrode offset (i.e. slow changes in 

the voltage potential over time) are considered the best indication for the quality of EEG 

recording 46. We, therefore, computed the electrode offset variability across trials for each 

subject during each of the experiments in each experimental session. We computed the 
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offset value for each trial, the variability across trials in each of the four electrodes, and 

finally the mean across electrodes in each experiment. We then correlated offset variability 

with the EEG variability measures to check if differences in the quality of EEG recordings 

across individuals could explain our results.   

Gaze variability. Gaze position was measured during the checkerboard experiment only. We 

computed the distance from the fixation cross at each time point from stimulus onset to 

500ms post stimulus, then computed the standard deviation across trials for each time 

point, and finally averaged across all time points (0-500ms) to generate a single measure of 

gaze variability per subject. We correlated gaze variability across the first and second 

sessions to determine whether individual subjects exhibited reproducible gaze variability 

across sessions. Three subjects were excluded from this analysis due to difficulties in the 

calibration process of the eye tracker in one of sessions.  
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