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ABSTRACT Fisher’s geometric model was originally introduced to argue that complex adaptations must occur in small
steps because of pleiotropic constraints. When supplemented with the assumption of additivity of mutational effects on
phenotypic traits, it provides a simple mechanism for the emergence of genotypic epistasis from the nonlinear mapping
of phenotypes to fitness. Of particular interest is the occurrence of sign epistasis, which is a necessary condition for
multipeaked genotypic fitness landscapes. Here we compute the probability that a pair of randomly chosen mutations
interacts sign-epistatically, which is found to decrease algebraically with increasing phenotypic dimension n, and varies
non-monotonically with the distance from the phenotypic optimum. We then derive asymptotic expressions for the
mean number of fitness maxima in genotypic landscapes composed of all combinations of L random mutations. This
number increases exponentially with L, and the corresponding growth rate is used as a measure of the complexity of
the genotypic landscape. The dependence of the complexity on the parameters of the model is found to be surprisingly
rich, and three distinct phases characterized by different landscape structures are identified. The complexity generally
decreases with increasing phenotypic dimension, but a non-monotonic dependence on n is found in certain regimes. Our
results inform the interpretation of experiments where the parameters of Fisher’s model have been inferred from data,
and help to elucidate which features of empirical fitness landscapes can (or cannot) be described by this model.
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A fundamental question in the theory of evolutionary adap-
tation concerns the distribution of mutational effect sizes

and the relative roles of mutations of small versus large effects in
the adaptive process (Orr 2005). In his seminal 1930 monograph,
Ronald Fisher devised a simple geometric model of adaptation
in which an organism is described by n phenotypic traits and
mutations are random displacements in the trait space (Fisher
1930). Each trait has a unique optimal value and the combination
of these values defines a single phenotypic fitness optimum that
constitutes the target of adaptation. Because random mutations
act pleiotropically on multiple traits, the probability that a given
mutation brings the phenotype closer to the target decreases
with increasing n. Fisher’s analysis showed that, for large n,
the mutational step size in units of the distance to the optimum
must be smaller than 1√

n in order for the mutation to be bene-
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ficial with an appreciable probability. He thus concluded that
the evolution of complex adaptations involving a large number
of traits must rely on mutations of small effect. This conclusion
was subsequently qualified by the realization that small effect
mutations are likely to be lost by genetic drift, and therefore
mutations of intermediate size contribute most effectively to
adaptation (Kimura 1983).

During the past decade Fisher’s geometric model (FGM) has
become a standard reference point for theoretical and experi-
mental work on fundamental aspects of evolutionary adaptation
(Tenaillon 2014). In particular, it has been found that FGM pro-
vides a versatile and conceptually simple mechanism for the
emergence of epistatic interactions between genetic mutations
in their effect on fitness (Martin et al. 2007; Gros et al. 2009; Blan-
quart et al. 2014). For this purpose two extensions of Fisher’s
original formulation of the model have been suggested. First,
phenotypes are assigned an explicit fitness value, which is usu-
ally taken to be a smooth function on the trait space with a single
maximum at the optimal phenotype. Second, and more impor-
tantly, mutational effects on the phenotypes are assumed to be
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additive. As a consequence, any deviations from additivity that
arise on the level of fitness are solely due to the nonlinear map-
ping from phenotype to fitness, or, in mathematical terms, due
to the curvature of the fitness function. Because the curvature
is largest around the phenotypic optimum, epistasis generally
increases upon approaching the optimal phenotype and is weak
far away from the optimum. Several recent studies have made
use of the framework of FGM to interpret experimental results
on pairwise epistastic interactions and to estimate the parame-
ters of the model from data (Martin et al. 2007; Velenich and Gore
2013; Weinreich and Knies 2013; Perfeito et al. 2014; Schoustra
et al. 2016).

A particularly important form of epistatic interaction is sign
epistasis, where a given mutation is beneficial or deleterious de-
pending on the genetic background (Weinreich et al. 2005). Sign
epistasis can arise in FGM either between large effect beneficial
mutations that in combination overshoot the fitness optimum,
or between mutations of small fitness effect that display antag-
onistic pleiotropy (Blanquart et al. 2014). The presence of sign
epistasis is a defining feature of genotypic fitness landscapes
that are complex, in the sense that not all mutational pathways
are accessible through simple hill-climbing and multiple geno-
typic fitness peaks may exist (Weinreich et al. 2005; Franke et al.
2011; de Visser and Krug 2014). Following a common practice,
here a genotypic fitness landscape is understood to consist in
the assignment of fitness values to all combinations of L haploid,
biallelic loci that together constitute the L-dimensional geno-
type space. A peak in such a landscape is a genotype that has
higher fitness than all its L neighbors that can be reached by a
single point mutation (Kauffman and Levin 1987). Note that, in
contrast to the continuous phenotypic space on which FGM is
defined, the space of genotypes is discrete.

Blanquart et al. (2014) showed that an ensemble of L-
dimensional genotypic landscapes can be constructed from FGM
by combining subsets of L randomly chosen mutational displace-
ments. Each sample of L mutations defines another realization
of the landscape ensemble, and the exploratory simulations
reported by Blanquart et al. (2014) indicate a large variability
among the realized landscapes. Nevertheless some general
trends in the properties of the genotypic landscapes were iden-
tified. In particular, as expected on the basis of the general
considerations outlined above, the genotypic landscapes are es-
sentially additive when the focal phenotype representing the
unmutated wild type is far away from the optimum and become
increasingly rugged as the optimal phenotype is approached.

In this article we present a detailed and largely analytic study
of the properties of genotypic landscapes generated under FGM.
The focus is on two types of measures of landscape complexity,
the fraction of sign-epistatic pairs of random mutations, and the
number of fitness maxima in the genotypic landscape. A central
motivation for our investigation is to assess the potential of FGM
and related phenotypic models to explain the properties of em-
pirical genotypic fitness landscapes of the kind that have been
recently reported in the literature (Szendro et al. 2013; Weinreich
et al. 2013; de Visser and Krug 2014). The ability of nonlinear
phenotype-fitness maps to explain epistatic interactions among
multiple loci has been demonstrated for a virus (Rokyta et al.
2011) and for an antibiotic resistance enzyme (Schenk et al. 2013),
but a comparative study of several different data sets using Ap-
proximate Bayesian Computation has questioned the broader
applicability of phenotype-based models (Blanquart and Batail-
lon 2016). It is thus important to develop a better understanding

of the structure of genotypic landscapes generated by pheno-
typic models such as FGM.

In the next section we describe the mathematical setting and
introduce the relevant model parameters: the phenotypic and
genotypic dimensionalities n and L, the distance of the focal
phenotype to the optimum, and the standard deviation of mu-
tational displacements. As in previous studies of FGM, specific
scaling relations among these parameters have to be imposed in
order to arrive at meaningful results for large n and L. We then
present analytic results for the probability of sign epistasis, and
study the behavior of the number of fitness maxima for large
L, both in the case of fixed phenotypic dimension n and for a
situation where the joint limit n, L→ ∞ is taken at constant ratio
α = n/L.

Similar to other probabilistic models of genotypic fitness land-
scapes (Kauffman and Levin 1987; Weinberger 1991; Evans and
Steinsaltz 2002; Durrett and Limic 2003; Limic and Pemantle
2004; Neidhart et al. 2014), the number of maxima generally in-
creases exponentially with L, and we use the exponential growth
rate as a measure of genotypic complexity. We find that this
quantity displays several phase transitions as a function of the
parameters of FGM which separate parameter regimes character-
ized by qualitatively different landscape structures. Depending
on the regime, the genotypic landscapes induced by FGM be-
come more or less rugged with increasing phenotypic dimension.
This indicates that the role of the number of phenotypic traits
in shaping the fitness landscapes of FGM is much more subtle
than has been previously appreciated. Some implications of
our study for the theory of adaptation and the interpretation of
empirical data will be elaborated in the Discussion.

Model

Basic properties of FGM
In FGM, the phenotype of an organism is modeled as a set of n
real-valued traits and represented by a vector~y = (y1, y2, . . . , yn)
in the n dimensional Cartesian space, ~y ∈ Rn. The fitness W(~y)
is assumed to be a smooth, single-peaked function of the phe-
notype ~y. By choosing an appropriate coordinate system, the
optimum phenotype, i.e., the combination of phenotypic traits
with the highest fitness value, can be placed at the origin in Rn.
We also assume that the fitness W(~y) depends on the distance
to the optimum |~y| but not on the direction of ~y, which can be
justified by arguments based on random matrix theory (Martin
2014). The uniqueness of the phenotypic optimum at the origin
implies that W(~y) is a decreasing function of |~y|. The form of
the fitness function will be specified below when needed. Most
of the results presented in this paper are however independent
of the explicit shape of W(~y), as they rely solely on the relative
ordering of different genotypes with respect to their fitness.

When a mutation arises the phenotype of the mutant becomes
~y +~ξ, where ~y is the parental phenotype and the mutational vec-
tor ~ξ corresponds to the change of traits due to the mutation.
The key result derived by Fisher (1930) concerns the fraction
Pb of beneficial mutations arising from a wild type phenotype
located at distance d from the optimum. Assuming that muta-
tional displacements have a fixed length |~ξ| = r and random
directions, he showed that for n� 1

Pb =
1√
2π

∫ ∞

x
e−t2/2 dt =

1
2

erfc(x/
√

2), (1)

where erfc denotes the complementary error function and x =
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r
√

n
2d . Thus, for large n the mutational step size has to be much

smaller than the distance to the optimum, r ∼ d/
√

n � d, for
the mutation to have a chance of increasing fitness.

As has become customary in the field, we here assume
that the mutational displacements are independent and iden-
tically distributed (i.i.d.) random variables drawn from a n-
dimensional Gaussian distribution with zero mean. The covari-
ance matrix can be taken to be of diagonal form σ2 I, where I
is the n-dimensional identity matrix and σ2 is the variance of a
single trait (Blanquart et al. 2014). In the limit n→ ∞ the form of
the distribution of the mutational displacements becomes irrele-
vant owing to the central limit theorem, and therefore Fisher’s
result Equation 1 holds also in the present setting of Gaussian
mutational displacements of mean size r = σ

√
n (Waxman and

Welch 2005; Ram and Hadany 2015); an explicit derivation will
be provided below. Because lengths in the phenotype space
can be naturally measured in units of σ, the parameters d and σ
should always appear as the ratio d/σ as can be seen in Equa-
tion 1. Thus, without loss of generality, we can set σ = 1. In
the following we denote the (scaled) wild type phenotype by ~Q,
its distance to the optimum by Q = |~Q| = d/σ, and draw the
displacement vectors ~ξ from the n-dimensional Gaussian p(~ξ)
with unit covariance matrix.

The genotypic fitness landscape induced by FGM

In order to study epistasis within FGM, Fisher’s original defi-
nition has to be supplemented with a rule for how the effects
of multiple mutations are combined. As originally proposed by
Martin et al. (2007), we assume that mutations act additively
on the level of the phenotype. Thus the phenotype arising
from two mutations ~ξ1, ~ξ2 applied to the wild type ~Q is sim-
ply given by ~Q + ~ξ1 + ~ξ2. This definition suffices to associate
an L-dimensional genotypic fitness landscapes to any set of L
mutational displacements ~ξ1,~ξ2, . . . ,~ξL (Blanquart et al. 2014).
For this purpose the haploid genotype τ is represented by a
binary sequence with length L, τ = (τ1, τ2, . . . , τL) with τi = 1
(τi = 0) in the presence (absence) of the i’th mutation. For the
wild type τi = 0 for all i, and in general the phenotype vector
associated with the genotype τ reads

~z(τ) = ~Q +
L

∑
i=1

τi~ξi. (2)

Two examples illustrating this genotype-phenotype map and
the resulting genotypic fitness landscapes with L = 3 and n = 2
are shown in Figure 1.

Since fitness decreases monotonically with the distance to the
optimum phenotype, a natural proxy for fitness is the negative
squared magnitude of the phenotype vector

− |~z(τ)|2 = −|~Q|2 − 2
L

∑
i=1

(~Q ·~ξi)τi −
L

∑
i,j=1

(~ξi ·~ξ j)τiτj, (3)

where ~x · ~y denotes the scalar product between vectors. The
genotypic fitness is thus seen to consist of a part that is additive
across loci with coefficients given by the scalar products ~Q · ξi
and a pairwise epistatic part with coefficients ~ξi ·~ξ j.

It is instructive to decompose Equation 3 into contributions
from the mutational displacements parallel and perpendicular

to ~Q. Writing ~ξi = ξ
‖
i Q−1~Q + ~ξ⊥i with ~Q · ~ξ⊥i = 0, Equation 3

(A) (B)

Figure 1 Two three-dimensional genotypic fitness landscapes
induced by FGM with two phenotypic dimensions. The panels
show the projection of the discrete space of genotypes onto
the phenotype plane, where the phenotypic optimum is rep-
resented by a black dot. The wild type phenotype is marked
by a green triangle, and nodes represented by red squares are
local fitness maxima of the genotypic landscape, as can be seen
from the contour lines of constant fitness.

can be recast into the form

− |~z(τ)|2 = −
(

Q +
L

∑
i=1

ξ
‖
i τi

)2

−
L

∑
i,j=1

(~ξ⊥i ·~ξ
⊥
j )τiτj. (4)

The first term on the right hand side contains both additive and
epistatic contributions associated with displacements along the
~Q-axis. The second term is dominated by the diagonal contri-
butions with i = j, and since |~ξ⊥i |

2 = n− 1 on average, it is of
order L(n− 1).

We now show how the first term on the right hand side of
Equation 4 can be made to vanish for a range of Q. For this
purpose consider the subset of phenotypic displacement vectors

for which the component ξ
‖
i in the direction of ~Q is negative.

There are on average L/2 such mutations and the expected value
of each component is

2
∫ 0

−∞
dx

x√
2π

e−x2/2 = −
√

2
π
≡ −2q0, (5)

where the factor 2 in front of the integral arises from conditioning

on ξ
‖
i < 0. Setting τi = 1 for s out of these L/2 vectors and

τi = 0 for all other mutations, the sum inside the brackets in
Equation 4 becomes approximately equal to−2q0s which cancels
the Q-term for s = Q/2q0. Since s can be at most L/2 in a typical
realization, such genotypes can be constructed with a probability
approaching unity provided Q < q0L.

We will see below that the structure of the genotypic fitness
landscapes induced by FGM depends crucially on whether or
not the phenotypes of multiple mutants are able to closely ap-
proach the phenotypic optimum. Assuming that the contribu-
tions from the perpendicular displacements in Equation 4 can
be neglected, which will be justified shortly, the simple argu-
ment given above shows that a close approach to the optimum
is facile when Q < q0L but becomes unlikely when Q � q0L.
This observation hints at a possible transition between different
types of landscape topographies at some value of Q which is
proportional to L. The existence and nature of this transition is a
central theme of this paper.

Scaling limits
Since we are interested in describing complex organisms with
large phenotypic and genotypic dimensions, appropriate scaling
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relations have to be imposed to arrive at meaningful asymptotic
results. Three distinct scaling limits will be considered.

(i) Fisher’s classic result Equation 1 shows that the distance of
the wild type from the phenotypic optimum has to be increased
with increasing n in order to maintain at a nonzero fraction
of beneficial mutations for n → ∞. In our notation Fisher’s
parameter is

x =
n

2Q
(6)

and hence Fisher scaling implies taking n, Q→ ∞ at fixed ratio
n/Q. We will extend Fisher’s analysis by computing the proba-
bility of sign epistasis between pairs of mutations for fixed x and
large n, which amounts to characterizing the shape of genotypic
fitness landscapes of size L = 2.

(ii) We have argued above that the distance towards the phe-
notypic optimum that can be covered by typical multiple mu-
tations is of order L, and hence the limit L → ∞ is naturally
accompanied by a limit Q→ ∞ at fixed ratio

q =
Q
L

. (7)

From a biological point of view one expects that L � n � 1,
which motivates to consider this limit at constant phenotypic
dimension n. Under this scaling the first term on the right hand
side of Equation 4 is of order L2, whereas the contribution from
the perpendicular displacements is only (n− 1)L. Thus in this
regime the topography of the fitness landscape is determined
mainly by the one-dimensional mutational displacements in the
~Q-direction, which is reflected by the fact that the genotypic
complexity is independent of n to leading order and coincides
with its value for the case n = 1, in which the perpendicular
contribution in Equation 4 does not exist (see Results).

(iii) By contrast, the perpendicular displacements play an
important role when both the phenotypic and genotypic dimen-
sions are taken to infinity at fixed ratio

α =
n
L

. (8)

Combining this with the limit Q → ∞ at fixed q = Q/L, both
terms on the right hand size of Equation 4 are of the same order
∼ L2. Fisher’s parameter Equation 6 is then also a constant
given by x = α/2q.

Preliminary considerations about genotypic fitness maxima
To set the stage for the detailed investigation of the number of
genotypic fitness maxima in the Results section, it is useful to
develop some intuition for the behavior of this quantity based
on the elementary properties of FGM that have been described
so far. For this purpose we consider the probability Pwt for
the wild type to be a local fitness maxima, which is equal to
the probability that all the L mutations are deleterious. Since
mutations are statistically independent, we have

Pwt = [1− Pb]
L = 2−L

[
1 + erf(x/

√
2)
]L

, (9)

where erf = 1− erfc is the error function. Under the (highly
questionable) assumption that this estimate can be applied to all
2L genotypes in the landscape, we arrive at the expression

Nwt = 2LPwt =
[
1 + erf(x/

√
2)
]L

(10)

for the expected number of genotypic fitness maxima.

Consider first the scaling limit (ii), where x = n/2Q =
n/2qL→ 0. Expanding the error function for small arguments
as erf(y) ≈ 2√

π
y we obtain

Nwt ≈
[

1 +
2x√
2π

]L
→ exp

(
q0n

q

)
(11)

for L→ ∞, where q0 = 1√
2π

was defined in Equation 5. We will
show below that this expression correctly captures the asymp-
totic behavior for very large q, but generally grossly underesti-
mates the number of maxima. The reason is that for moderate
values of q (in particular for q < q0) the relevant mutant pheno-
types are much closer to the origin than the wild type, which
entails a mechanism for generating a large number of fitness
maxima that grows exponentially with L.

Such an exponential dependence on L is expected from Equa-
tion 10 in the scaling limit (iii), where x = α/2q is a nonzero
constant and the expression in the square brackets is larger than
1. Although this general prediction is confirmed by the detailed
analysis for this case, the behavior of the number of maxima
predicted by Equation 10 will again turn out to be valid only
when q is very large. In particular, whereas Equation 10 is an
increasing function of α for any q, we will see below that the
expected number of maxima actually decreases with increasing
phenotypic dimension (hence increasing α) in a substantial range
of q. In qualitative terms, this can be attributed to the effect of
the perpendicular displacements in Equation 4, which grows
with α and makes it increasingly more difficult for the mutant
phenotypes to closely approach the origin.

Data availability
All simulations described in this work were implemented in
Mathematica and C++. All relevant source codes are available
from S.-C.P. on request.

Results

Sign epistasis
We first study the local topography of the fitness landscape
around the wild type, focusing on the epistasis between two ran-
dom mutations with phenotypic displacements ~ξ and ~η. Since
fitness is determined by the magnitude of a phenotypic vector,
i.e., the distance of the phenotype from the origin, the epistatic
effect of the two mutations can be understood by analyzing
how the magnitudes of the four vectors ~Q, ~Q + ~ξ, ~Q + ~η and
~Q +~ξ +~η are ordered. To this end, we introduce the quantities

R1 ≡
1
n

(
|~ξ + ~Q|2 −Q2

)
, R2 ≡

1
n

(
|~η + ~Q|2 −Q2

)
,

R ≡ 1
n

(
|~ξ +~η + ~Q|2 −Q2

)
, (12)

where division by n guarantees the existence of a finite limit
for n → ∞. The sign of these quantities determines whether a
mutation is beneficial or deleterious. For example, if R1 < 0, the
mutation ~ξ is beneficial; if R > 0 the two mutations combined
together confer a deleterious effect; and so on. We will see
later that R1,2 and R are actually closely related to the selection
coefficients of the respective mutations.

We proceed to express the different types of pairwise epistasis
defined by Weinreich et al. (2005) and Poelwijk et al. (2007) in
terms of conditions on the quantities defined in Equation 12.
Without loss of generality we assume R1 < R2, and consider
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(A) (B)

Figure 2 Domains of integration in the (R2, R)-plane contribut-
ing to different types of epistasis: magnitude epistasis (ME),
simple sign epistasis (SSE) and reciprocal sign epistasis (RSE).
The two panels illustrate the two cases (A) R1 > 0 and (B)
R1 < 0. Fitness effects are additive along the blue dash-dotted
lines R = R1 + R2. The labeling of the domains D1, . . . , D6 is
used in the derivation in appendix B.

first the case where both mutations are beneficial, R1 < R2 <
0. Then magnitude epistasis (ME), the absence of sign epistasis,
applies when the fitness of the double mutant is higher than
that of each of the single mutants, i.e., R < R1 < R2 < 0.
Similarly for two deleterious mutations the condition for ME
reads R > R2 > R1 > 0. When one mutant is deleterious and
the other beneficial, in the case of ME the double mutant fitness
has to be intermediate between the two single mutants, which
implies that R1 < R < R2 when R2 > 0 > R1.

Two types of sign epistasis are distinguished depending on
whether one of the mutations affects the effect sign of the other
but the reverse is not true (simple sign epistasis, SSE), or whether
the interaction is reciprocal (reciprocal sign epistasis, RSE). The
condition for RSE reads R > R2 > R1 when both single mutants
are beneficial and R < R1 < R2 when both are deleterious,
and the remaining possibility R1 < R < R2 corresponds to
SSE between two mutations of the same sign. If the two single
mutant effects are of different signs, RSE is impossible and SSE
applies when R < R1 < 0 < R2 or R > R2 > 0 > R1. Figure 2
depicts the different categories of epistasis as regions in the
(R2, R)-plane. Note that the corresponding picture for R1 > R2
is obtained by exchanging R1 ↔ R2.

The goal of this section is to compute the probability of ob-
serving each type of epistasis between randomly chosen muta-
tions for fixed x and large n. For this purpose we require the
joint probability density P(R1, R2, R). In appendix A it is shown
that

P(R1, R2, R) =
x2n1/2

4
√

2π3/2
e−

1
8 n(−R+R1+R2)2− x2

2 ((R1−1)2+(R2−1)2)

×
(

1 + O
(

1
n

))
, (13)

a result that can be obtained rather easily by resorting to the
central limit theorem (CLT). The applicability of the CLT follows
from the fact that R1,2 and R are sums of a large number of inde-
pendent terms for n→ ∞ (Waxman and Welch 2005; Ram and
Hadany 2015). According to the CLT, it is sufficient to determine
the first and second cumulants of these quantities. Denoting
averages by angular brackets, we find that 〈Ri〉 = 1,

〈
R2

i
〉
−

〈Ri〉2 = 1/x2 for i = 1, 2 and 〈R1R2〉 − 〈R1〉 〈R2〉 = 0. Similarly,
〈R− R1 − R2〉 = 0,

〈
(R− R1 − R2)

2〉− 〈R− R1 − R2〉2 = 4/n
and 〈(R− R1 − R2)R1〉 − 〈R− R1 − R2〉 〈R1〉 = 0. With the ap-
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Figure 3 The probabilities of simple (Ps) and reciprocal (Pr)
sign epistasis between two randomly chosen mutations. The
curves are the asymptotic behaviors in Equation 14 and Equa-
tion 15 and symbols are simulation results. The asymptotic
expressions provide accurate approximations for n > 10.

propriate normalization constant, this leads directly to Equa-
tion 13.

As a first application, we rederive Fisher’s Equation 1 by
integrating P(R1, R2, R) over the region R1 < 0 for all R2 and R,
which indeed yields

Pb =
∫ 0

−∞
dR1

∫ ∞

−∞
dR2

∫ ∞

−∞
dRP(R1, R2, R) =

1
2

erfc
(

x√
2

)
.

An immediate conclusion from the form of P(R1, R2, R) is that
it is unlikely to observe sign epistasis for large n, because
P(R1, R2, R) becomes concentrated along the line R = R1 + R2
as n increases. As can be seen in Figure 2, this line touches the re-
gion of SSE in one point for R1 < 0, whereas it maintains a finite
distance to the region of RSE everywhere. This indicates that
the probability of reciprocal sign epistasis decays more rapidly
with increasing n than the probability of simple sign epistasis.
Moreover, one expects the latter probability to be proportional to
the width of the region around the line R = R1 + R2 where the
joint probability in Equation 13 has appreciable weight, which is
of order 1/

√
n.

To be more quantitative, we need to integrate P(R1, R2, R)
over the domains in Figure 2 corresponding to the different
categories of epistasis. In appendix B, we obtain the asymptotic
expressions

Pr =
2x2

πn
e−x2

+ O(n−3/2), (14)

Ps =
4x

π
√

n
e−x2/2 + O

(
n−1

)
, (15)

for the probabilities of reciprocal (Pr) and simple (Ps) sign epis-
tasis. The probability of magnitude epistasis is correspondingly
given by Pm = 1 − Pr − Ps. Figure 3 compares analytic re-
sults to simulations, showing excellent agreement. As can be
seen in Figure 3(B), the probability of sign epistasis varies non-
monotonically with x and hence with the distance Q of the wild
type to the phenotypic optimum.

Similarly, we can calculate the probabilities of sign epistasis
conditioned on both mutations being beneficial, which in our
setting implies R2 < 0. The conditioning requires normalization
by the unconditional probability of two random mutations being
beneficial, which is given by the square of Pb in Equation 1.
Hence

Pb
r =

2Pr(D1)

P2
b

≈ 4x2

πnerfc
(

x/
√

2
)2 e−x2

(16)
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and

Pb
s =

2Pr(D5)

P2
b

≈ 4x

π
√

nerfc
(

x/
√

2
) e−x2/2, (17)

where Pr(Di) denotes the integral of the joint probability density
over the domain Di in Figure 2, see appendix B.

As anticipated from the form of Equation 13, the fraction
of sign epistatic pairs of mutations decreases with increasing
phenotypic dimension n, and this decay is faster for reciprocal
sign epistasis (∼ 1/n) than for simple sign epistasis (∼ 1/

√
n).

At first glance this might seem to suggest that FGM has little
potential for generating rugged genotypic fitness landscapes.
However, as we will see below, the results obtained in this sec-
tion apply only to the immediate neighborhood of the wild type
phenotype. They are modified qualitatively in the presence of
a large number of mutations that are able to substantially dis-
place the phenotype and allow it to approach the phenotypic
optimum.

As a slight variation to the previous setting, one may con-
sider the fraction of sign epistasis conditioned on the two single
mutations to have the same selection strength, as recently inves-
tigated by Schoustra et al. (2016). In our notation this implies
that R1 = R2 ≡ R̃, and it is easy to see that sign epistasis is
always reciprocal in this case. If the two mutations are beneficial
R̃ < 0, and the condition for (reciprocal) sign epistasis is R > R̃.
The corresponding probability is

P̃r(R̃) =

∫ ∞
R̃ P(R̃, R̃, R) dR∫ ∞
−∞ P(R̃, R̃, R) dR

=
1
2

erfc
(
−
√

nR̃
2
√

2

)
. (18)

Following the same procedure for deleterious mutations (R̃ > 0)
one finds that the probability is actually symmetric around R̃ = 0
and hence depends only on |R̃|.

In order to express P̃r in terms of the selection coefficient of
the single mutations we introduce a Gaussian phenotypic fitness
function of the form

W(~y) = W0 exp(−λ|~y|2), (19)

where λ > 0 is a measure for the strength of selection. The
selection coefficient of a mutation with phenotypic effect ~ξ is
then given by

S = ln

[
W(~Q +~ξ)

W(~Q)

]
= −λ

(
|~Q +~ξ|2 − |~Q|2

)
= −λnR̃. (20)

To fix the value of λ we note that the largest possible selection
coefficient, which is achieved for mutations that reach the phe-
notypic optimum, is S0 = λQ2, and hence R̃ is related to the
selection coefficient through R̃ = −Q2

n
S
S0

. With this substitution
the result in Equation 18 becomes

P̃r(S) =
1
2

erfc

(
n3/2

8
√

2x2

|S|
S0

)
. (21)

The probability of sign epistasis conditioned on selection
strength takes on its maximal value P̃r =

1
2 in the neutral limit

S → 0 and decreases monotonically with |S|. Similar to the
results of Equation 14, Equation 15 and Equation 16 for uncon-
strained mutations, it also decreases with increasing phenotypic
dimension n when S and x are kept fixed.

In a previous numerical study carried out at finite Q and n it
was found that P̃r varies non-monotonically with S for the case
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Figure 4 The probability of (reciprocal) sign epistasis P̃r condi-
tioned on the selection coefficients of the two single mutations
to be S > 0. Dashed lines show the asymptotic expression
Equation 21 and full lines were obtained numerically using
the Gaussian approximation for the distribution of epistasis
developed by Schoustra et al. (2016).

of beneficial mutations, and displays a second peak at the maxi-
mum selection coefficient S = S0 (Schoustra et al. 2016). The two
peaks were argued to reflect the two distinct mechanisms giving
rise to sign epistasis within FGM (Blanquart et al. 2014). Muta-
tions of small effect correspond to phenotypic displacements that
proceed almost perpendicular to the direction of the phenotypic
optimum, and sign epistasis is generated through antagonistic
pleiotropy. On the other hand, for mutations of large effect the
dominant mechanism for sign epistasis is through overshooting
of the phenotypic optimum. Because of the Fisher scaling im-
plemented in this section with Q, n → ∞ at fixed x = n

2Q , the
second class of mutations cannot be captured by our approach
and only the peak at small S remains. Figure 4 (A) shows the full
two-peak structure for a few representative values of n, and Fig-
ure 4 (B) illustrates the convergence to the asymptotic expression
Equation 21 for the left peak. Using the results of Schoustra et al.
(2016), it can be shown that the right peak becomes a step func-
tion for n→ ∞, displaying a discontinuous jump from P̃r = 0 to
P̃r = 1 at S/S0 = 8/9 = 0.888 . . . .

Genotypic complexity at fixed phenotypic dimension
In this section, we are interested in the number of local maxima
in the genotypic fitness landscape. We focus on the expected
number of maxima, which we denote by N , and analyze how
this quantity behaves in the limit of large genotypic dimension,
L→ ∞, when the phenotypic dimension n is fixed. For the sake
of clarity, the (unique) maximum of the phenotypic fitness land-
scape will be referred to as the phenotypic optimum throughout.

The number of local fitness maxima. Since fitness decreases
monotonically with the distance to the phenotypic optimum,
a genotype τ is a local fitness maximum if the corresponding
phenotype defined by Equation 2 satisfies

|~z(τ)| < |~z(τ) + (1− 2τi)~ξi| (22)

for all 1 ≤ i ≤ L. The phenotype vector appearing on the right
hand side of this inequality arises from~z(τ) either by removing
a mutation vector that is already part of the sum Equation 2
(τi = 1) or by adding a mutation vector that was not previously
present (τi = 0). The condition Equation 22 is obviously always
fulfilled if~z(τ) = 0, that is, if the phenotype is optimal, and we
will see that in general the probability for this condition to be
satisfied is larger, the more closely the phenotype approaches
the origin. A graphical illustration of the condition Equation 22
is shown in Figure 5.

The ability of a phenotype~z(τ) to approach the origin clearly
depends on the number s = ∑L

i=1 τi of mutant vectors it is com-
posed of, and all phenotypes with the same number of mutations
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Figure 5 The condition Equation 22 for a genotype to be a local
fitness maximum is illustrated for two phenotypic dimen-
sions. The black circle encloses phenotypes that have higher
fitness than the focal phenotype~z(τ). For τ to be a genotypic
fitness maximum, neither the phenotypes obtained from~z by
adding a further mutation (dash-dotted green arrow) nor the
phenotypes obtained by removing one of the mutations that
constitute~z (red segment and dotted blue arrows) should lie
inside the circle.

are statistically equivalent. The expected number of fitness max-
ima can therefore be decomposed as

N =
L

∑
s=0

(
L
s

)
Rs(L), (23)

where (L
s) is the number of possible combinations of s out of L

mutation vectors and Rs(L) is the probability that a genotype
with s mutations is a fitness maximum. The latter can be written
as

Rs(L) =
∫

n
d~z

[
L

∏
i=s+1

∫
D(−~z)

d~ξi p(~ξi)

]
×[

s

∏
i=1

∫
D(~z)

d~ξi p(~ξi)

]
δ

(
~z− ~Q−

s

∑
i=1

~ξi

)
, (24)

with

D(~x) ≡ {~y ∈ Rn||~y−~x| > |~x|}. (25)

Here and below,
∫

n stands for the integral over Rn.
Equation 24 can be understood as follows. First, the delta

function δ
(
~z− ~Q−∑s

i=1
~ξi

)
constrains~z to be the phenotype of

τ as defined in Equation 2. Next, the integration domains of the
~ξi’s reflect the condition in Equation 22. Assuming without loss
of generality that the L genetic loci are ordered such that τi = 1
for i ≤ s and τi = 0 for i > s, the maximum condition for i ≤ s
requires |~z| < |~z− ~ξi|, so the integration domain should beD(~z),
whereas for i > s the condition is |~z| < |~z+ ~ξi|, corresponding to
the integration domainD(−~z). Using the integral representation
of the delta function

δ(~x) =
1

(2π)n

∫
n

d~k exp
(

i~k ·~x
)

, (26)

we can write

Rs(L) =
∫

n

∫
n

d~zd~k
(2π)n exp

[
i~k ·
(
~z− ~Q

)]
F(~k,~z)sF(0,−~z)L−s,

(27)

where

F(~k,~z) ≡
∫
D(~z)

d~ξ p(~ξ) exp
(
−i~k ·~ξ

)
. (28)

It was argued on qualitative grounds in Model that phenotypes
that approach arbitrarily close to the origin are easily generated
when the scaled wild type distance q is small, but they become
rare for large q. As a consequence, it turns out that the main
contribution to the integral over~z in Equation 27 comes from the
region around the origin~z = 0 when q is small, but shifts to a
distance z∗ ∼ L along the ~Q-axis for large q. To account for this
possibility, it is necessary to divide the integral domain into two
parts |~z| < z0 and |~z| > z0, where z0 is an arbitrary non-zero
number with z0/L→ 0 as L→ ∞. Thus, we writeRs(L) as

Rs(L) = R<
s (L) +R>

s (L), (29)

where

R<
s (L) =

∫
|~z|<z0

d~z
∫

n

d~k
(2π)n ei~k·(~z−~Q)F(~k,~z)sF(0,−~z)L−s,

R>
s (L) =

∫
|~z|>z0

d~z
∫

n

d~k
(2π)n ei~k·(~z−~Q)F(~k,~z)sF(0,−~z)L−s, (30)

and correspondingly define N< and N> as

N< = ∑
s

(
L
s

)
R<

s (L), N> = ∑
s

(
L
s

)
R>

s (L). (31)

The total number of local maxima is then N = N< +N>.

Regime I. We first consider R<
s (L). Expanding F(~k,~z) around

the origin~z = 0, we show in appendix C that

R<
s (L) ≈

s−n/2 exp
[
−Q2/(2s)

]
s exp[−Q2/(2s2)] + L− s

. (32)

For an interpretation of Equation 32 it is helpful to refer to Fig-
ure 5. Note first that the probability that~z = ~Q + ∑s

i=1
~ξi lies in

the ball |~z| < ζ with radius ζ � 1 is

Prob(|~z| < ζ) ≈ Vn

(2π)n/2 s−n/2 exp
[
−Q2/(2s)

]
, (33)

where Vn(r) ∼ ζn is the volume of the ball. We need to estimate
how small ζ has to be for τ to be a local fitness maximum with an
appreciable probability. Since the s random vectors contributing
to ~z are statistically equivalent, it is plausible to assume that

their average component parallel to ~Q is ξ
‖
i ≈ −Q/s. We further

assume that the conditional probability density p̃s(~ξ) of these
vectors, conditioned on their sum~z reaching the ball around the
origin, can be approximated by a Gaussian, which consequently
has the form

p̃s(~ξ) ≈
1

(2π)n/2 exp

−1
2

∣∣∣∣∣~ξ + ~Q
s

∣∣∣∣∣
2
 . (34)

For ~z to be a local optimum, all these random vectors should
lie in the region D(~z) and the remaining (unconstrained) L− s
vectors should lie inD(−~z). This event happens with probability(∫

D(~z)
d~ξ p̃s(~ξ)

)s (∫
D(−~z)

d~ξ p(~ξ)
)L−s

≈
{

1− Pζ exp[−Q2/(2s2)]
}s (

1− Pζ

)L−s

≈ exp
[
−Pζ

{
s exp[−Q2/(2s2)] + L− s

}]
, (35)
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Figure 6 The most probable genotypic distance ρ∗ and the
genotypic complexity Σ∗ = Σ(ρ∗(q)) as a function of q deter-
mined by Equation 38 and Equation 39. Starting from 1/2, ρ∗

increases with increasing q. The complexity vanishes at the
phase transition point q ≈ qc ' 0.924 809.

where Pζ ≡ Vn/(2π)n/2. Thus, we can estimate the typical value
of Pζ as

Pζ =
Vn

(2π)n/2 ≈
[
s exp[−Q2/(2s2)] + L− s

]−1
, (36)

which, combined with Equation 33, indeed gives Equation 32.
To find the asymptotic behavior ofN< for large L, we use Stir-

ling’s formula in Equation 31 and approximate the summation
over s by an integral over ρ ≡ s/L. This yields

N< ≈
∫ 1

0
dρ

1
Ln/2ρn/2

eLΣ(ρ)√
2πLρ(1− ρ)

1

1− ρ + ρe
− q2

2ρ2

, (37)

where the exponent Σ(ρ) is given by

Σ(ρ) ≡ −ρ ln ρ− (1− ρ) ln(1− ρ)− q2/2ρ. (38)

Under the condition L� 1, the remaining integral with respect
to ρ can be performed by expanding Σ(ρ) to second order around
the saddle point ρ∗ determined by the condition

0 =
∂

∂ρ
Σ(ρ)

∣∣∣∣
ρ=ρ∗

=
q2

2(ρ∗)2 − ln
ρ∗

1− ρ∗
. (39)

Performing the resulting Gaussian integral with respect to ρ one
finally obtains

N< ≈
1

L1+n/2

√
1

1 + (1− ρ∗) (q/ρ∗)2
(ρ∗)−n/2eLΣ(ρ∗)

1− ρ∗ + ρ∗e
− q2

2(ρ∗ )2

, (40)

where ρ∗ = ρ∗(q) is the solution of Equation 39. This solution
is not available in closed form, but it can be shown that ρ∗ =
1
2 +

q2

2 + O(q4) and Σ(ρ∗) = ln 2− q2 + O(q4) for small q.
Figure 6 shows the behavior of ρ∗ and Σ(ρ∗) as a function

of q obtained from a numerical solution of Equation 39. The
most striking feature of these results is that Σ∗ becomes negative
for q > qc ≈ 0.924 809, which signals a phase transition in the
landscape properties. Inspection of Equation 38 shows that the
transition is driven by a competition between the abundance of
genotypes with a certain number of mutations and their like-
lihood to bring the phenotype close to the optimum. The first
two terms in the expression for Σ(ρ) are the standard sequence
entropy which is maximal at ρ = 1/2 (s = L/2), whereas the
last term represents the statistical cost associated with “stretch-
ing” the phenotype towards to origin. With increasing q, the
genotypes contributing to the formation of local maxima become
increasingly atypical, in the sense that they contain more than

the typical fraction ρ = 1/2 of mutations, and ρ∗ increases. For
q > qc the cost can no longer be compensated by the entropy
term and Σ(ρ∗) becomes negative. In this regime N< decreases
exponentially with L, and therefore the total number of fitness
maxima N , which by construction cannot be smaller than 1,
must be dominated by the second contribution N>.

Regime II. We defer the detailed derivation ofN> to appendix C
and here only report the final result obtained in the limit L→ ∞,
which is independent of L and reads

N> ≈
(

q− q0
q

exp
[

1
q/q0 − 1

])n−1
. (41)

This expression is valid for q > q0 = 1√
2π
≈ 0.398 942, but it

dominates the contribution N< for large L only when q > qc.
To understand the appearance of q0, we refer to section Model,
where it was argued that 2q0s is the maximal distance towards
the origin that can be covered by a phenotype made up of s
typical mutation vectors. Correspondingly, the analysis in ap-
pendix C shows that the main contribution to R>

s (L) comes
from phenotypes located at distance z∗ = 2s(q− q0) from the
origin, i.e., at distance 2sq0 from the wild type. The sum over s
in Equation 31 is dominated by typical genotypes with s = L/2,
and therefore the main contribution to N> comes from pheno-
types at distance z∗ = (q− q0)L from the origin. The seeming
divergence of N> as q→ q+0 is an artifact of the approximation
scheme, which assumes z∗ ∼ O(L); clearly this assumption be-
comes invalid when q→ q+0 . We note that for very large q and
large n Equation 41 reduces to the expression Nwt obtained in
Equation 10 on the basis of Fisher’s formula for the fraction of
beneficial mutations from the wild type phenotype.

Phase transition. To sum up, the leading behavior of N is

N =

{
N<, q < qc,
N>, q ≥ qc

(42)

with N< and N> given by Equation 40 and Equation 41, respec-
tively. SinceN< decreases to zero with L in a power-law fashion
at q = qc, the dominant contribution at this value is N>. At
q = qc the typical genotypic location of the fitness maxima jumps
discontinuously from ρ∗(qc) ≈ 0.7035 to ρ∗ = 1/2 (Figure 6 (A)),
and the phenotypic position jumps from z∗ ≈ 0 to z∗ = (qc− qo)L.
The genotypic complexity defined as

Σ∗ = lim
L→∞

lnN
L

, (43)

is given by

Σ∗ =

{
Σ(ρ∗), q < qc,
0, q ≥ qc,

(44)

where ρ∗ is the solution of Equation 39, and hence vanishes
continuously at q = qc (Figure 6 (B)). Note that the value Σ∗ =
ln 2 attained at q = 0 is the largest possible, because the total
number of genotypes is 2L = eL ln 2. Remarkably, these leading
order results are independent of the phenotypic dimension. A
dependence on n emerges at the subleading order, and it affects
the number of fitness maxima in qualitatively different ways
in the two phases. For q < qc the pre-exponential factor in
Equation 40 is a power law in L with exponent 1 + n/2 and
hence decreases with increasing n, whereas the expression in
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Figure 7 Mean number of maxima N is shown as a function
of the genotypic dimension L for q = 0, 0.2, 0.4, and 0.6 with
n = 1. Data from numerical simulations are represented as
dots and the analytical prediction Equation 40 is shown as
solid lines.
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Figure 8 (A), (B) Average number of fitness maxima N as a
function of the genotypic dimension L in regime II from the
analytical prediction Equation 41 (solid lines) and numerical
simulation (dots) averaged over 2× 106 realizations for q =
1.0, 1.1, 1.2 and n = 2, 3, 4. Already for moderate L, the average
number of local maxima converges to the theoretical lines. The
deviations from the theoretical lines appear to be larger in
(B) because of the finer resolution of the y-axis. (C) To verify
that the numerical data converges to the theoretical values,
we estimated the sub-leading correction to Equation 41 by
calculating 1− Ndata

Ntheory
for n = 4 where the largest deviations are

observed. The black dashed line with slope -1 shows that this
correction is of the form C/L and vanishes for L→ ∞.
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Figure 9 Histograms of the average phenotypic distance over
fitness landscape realizations with L = 15 and n = 2, weighted
by the number of local maxima in each realization. The bi-
modal structure implies that within one realization, only one
of two mechanisms for generating multiple fitness maxima is
operative. The blue dashed arrows indicate the mean pheno-
typic position z∗ = q− q0 predicted in regime II.

Equation 41 describing the regime q > qc increases exponentially
with n.

To confirm our results, we compared the analytical predic-
tions with simulations. In Figure 7, we compare N for q < qc
with Equation 40 and in Figure 8, we compareN for q > qc with
Equation 41. In both cases we see an excellent agreement even
for moderately large L. In particular, for q > qc the number of
maxima converges for large L to a value that is independent of
L and increases with n (Figure 8(B)). The expected number of
maxima is small in absolute terms in this regime, which can be
attributed to the fact that the expression inside the parentheses
in Equation 41 takes the value 1.2142...at q = qc and decreases
rapidly towards unity for larger q.

Interpretation. The phase transition reflects a shift between two
distinct mechanisms for generating genotypic complexity in the
FGM, which are analogous to the two origins of pairwise sign
epistasis that were identified by Blanquart et al. (2014) and dis-
cussed above in Sign epistasis . In regime I (q < qc) the mutant
phenotype approaches closely the origin and multiple fitness
maxima are generated by overshooting the phenotypic optimum.
By contrast, in regime II (q > qc) the phenotypic optimum can-
not be reached and the genotypic complexity arises from the
local curvature of the fitness isoclines. These two situations are
exemplified by the two panels of Figure 1.

The approach to the origin in regime I is a largely one-
dimensional phenomenon governed by the components of the
mutation vector along the direction of the wild type pheno-
type ~Q, which explains why the leading order behavior of the
genotypic complexity is independent of n. For q < qc, the n-
dependence of the pre-exponential factor in Equation 40 arises
from the increasing difficulty of the random walk formed by
the mutational vectors to locate the origin in high dimensions.
By contrast, the mechanism operating for q > qc relies on the
existence of the transverse dimensions, which is the reason why
N> in Equation 41 is an increasing function of n with N> = 1
for n = 1.

As our analysis is restricted to the average number of local
maxima, at this point we cannot decide whether both mecha-
nisms described above appear in a single realization of the fitness
landscape, or if one of them dominates for a given realization.
To answer this question, we generated 106 realizations sharing
the same parameters and calculated the average phenotypic
position of the local fitness maxima present in each realization.
Then, a histogram is constructed from these averages with a
weight defined by the total number of local maxima in each
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Figure 10 Phase diagrams illustrating the different regimes in
the parameter space (q, α), where q = Q/L is the scaled dis-
tance of the wildtype phenotype from the origin and α = n/L
is the ratio of phenotypic and genotypic dimensions. Dashed
lines are phase boundaries at which the typical genotypic and
phenotypic locations of the local fitness maxima change dis-
continuously. (A) The phase boundary separating regimes I
and II starts at (q, α) ' (0.925, 0) and continues to exist until
approximately α ' 0.18. (B) The phase boundary separating
regimes II and III starts at (q, α) ' (0, 0.238) and continues to
exist until approximately q ' 0.62.

realization. The resulting distributions shown in Figure 9 are
clearly bimodal with peaks at z∗ ≈ 0 and z∗ ≈ q − q0, and
the weight of the second peak grows at the expense of the first
with increasing q. This shows that within a single realization,
most of the local optima belong to either of the two phases. The
weighting by the number of maxima is indispensible, because
realizations corresponding to regime I are very rare but contain
a large number of maxima once they occur. Thus we conclude
that the ensemble of fitness landscapes generated by FGM is
highly heterogeneous, and the exponential dependence of the
mean number of fitness maxima on L for q < qc is caused by a
small number of exceptional realizations.

Genotypic complexity in the joint limit

In the previous subsection, we have calculated the mean number
of local fitness maxima N at a fixed phenotypic dimension n,
assuming that the genotypic dimension L � n. However, in
applications of FGM one often expects that both L and n are large
and possibly of comparable magnitude. In this case the results
derived above can be unreliable for large n, as exemplified by
the fact that the sub-leading correction to Equation 40 is of the
order of O(L−1/n) (see appendix C).

To obtain a reliable expression for N that is valid when both
n and L are large, we now consider the joint limit n, L → ∞
at fixed ratio n/L = α. This will allow us to find the leading
behavior of the mean number of local maxima with a correction
of order O(1/L). Furthermore, we will clarify the role of the
phenotypic dimension in the two phases described in the previ-
ous subsection, and we will uncover a third phase that appears
at large α (see Figure 10).

The number of local fitness maxima. We relegate the detailed
calculation to appendix D and directly present our final expres-
sion for the mean number of local maxima,

N = C(a∗, b∗, g∗)eLΣred(a∗ ,b∗ ,g∗)
(

1 + O
(

1
L

))
, (45)

where the function Σred(a, b, g) in the exponent is given by

Σred(a, b, g) =

− α

2
log
(

α (α + g)
2 (ac(g) + b2)

)
+

α + 2b + g
2

+ log
(

1
2

(
e−2c(g)

(
erf
(

α + 2b√
2
√

a

)
+ 1
)
+ erf

(
α√
2
√

a

)
+ 1
))

(46)

with c(g) = α2−g2

16q2 . As before, the starred variables a∗, b∗ and g∗

denote the solution of the extremum condition

∇Σred(a, b, g)|(a,b,g)=(a∗ ,b∗ ,g∗) = (0, 0, 0) (47)

where ∇ is the gradient with respect to the three variables
(a, b, g). When several solutions of Equation 47 exist, the one giv-
ing the largest value of Σred is chosen. The prefactor C(a∗, b∗, g∗),
which is independent of L, can be determined from Equation D17
presented in appendix D. Even though the variables (a, b, g) lack
a direct intepretation in terms of the original setting of FGM, we
show in appendix E that a∗ is related to the typical phenotypic
distance z∗ by the equation z∗ = L

√
a∗/2.

An immediate consequence of Equation 45 is that the num-
ber of local maxima increases exponentially in L for any value
of q and α without algebraic corrections of the kind found in
Equation 40. Obtaining closed form solutions of Equation 47,
which ultimately determine the functional dependence of the
complexity on α and q, seems to be a formidable task. Instead,
we resort to numerical methods by sweeping through the most
interesting intervals, q ∈ (0, 2) and α ∈ (0, 3). Surprisingly, we
find three independent branches of solutions that correspond to
distinct phases. In order to acquire a qualitative understanding
of these branches, it is instructive to first focus on the small α
behavior, where one expects a smooth continuation to the results
of Equation 40 and Equation 41 as α → 0. For an overview of
the behavior of the various quantities of interest as a function of
q and α we refer to Figure 11.

Small α behavior. In contrast to the fixed n case where two sepa-
rate analyses were carried out for the two regimes q < qc and
q > qc, respectively, the present approach yields a single expres-
sion describing the genotypic complexity for arbitrary values of
q and α. Consistently with the fixed n analysis, only two out of
the three branches of solutions that were found in the numerical
analysis exist for sufficiently small α, and they are separated by a
phase transition as shown in the phase diagram in Figure 10(A).
By extrapolating the behavior of Σ towards α→ 0 as shown in
Figure 12, we are able to identify the correct counterparts for
each of the two previously found regimes.

The extrapolation is straightforward in regime II, where the
replacement n → Lα in Equation 41 yields an exponential de-
pendence of N on L with the growth rate

Σ(II)
approx = α ln

(
q− q0

q
exp

[
(q/q0 − 1)−1

])
. (48)

This crude approximation turns out to be remarkably accurate
even at α = 0.1 as illustrated by Figure 12(B). By contrast, in
regime I the naive replacement of n by αL in Equation 40 yields
an expression that vanishes faster than exponential in L, as
exp[−(α/2)L ln L]. This reflects the fact that the typical phe-
notypic position z∗ of the fitness maxima moves away from the
origin for any α > 0, and hence the complexity cannot be de-
rived only by inspecting Equation 24 around z = 0 (see Figure
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Figure 11 Number of local maxima and their mean pheno-
typic and genotypic positions are shown as a function of q
(left column) and α (right column). (A-D): The phenotypic
and genotypic distances behave similarly to the fixed n case
which effectively corresponds to α = 0. As α increases, the
first order transition visualized by the red dashed lines dis-
appears, and z∗ and ρ∗ vary continuously as a function of q.
For sufficiently large α and small q, another phase transition to
the regime III appears that was not observed in the previous
limit (blue dashed lines in (B) and (D)). The genotypic maxima
in regime III are located very close to the wild type position,
z∗/L = q and ρ∗ = 0. This transition ceases to exist when q
exceeds approximately 0.62. (E-F): The genotypic complexity
is shown as a function of α or q. Note that the dependence on
α is non-monotonic for q = 0.7.
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Figure 12 Convergence of the complexity to the fixed n
case for small α. (A) The solid lines are constructed for
α = 0.01, 0.05 and 0.1 by numerically finding the solution
of Equation 47 that belongs to Regime I. The convergence to
Equation 40 (dashed line) is clearly seen as α → 0. (B) The
blue solid line is similarly constructed from the second branch
of solutions of Equation 47, whereas the dashed line is Equa-
tion 48 obtained from Equation 41. Even though a slight devi-
ation is noticed as q approaches to q0, Equation 48 remains a
good approximation unless α becomes large.

11 (A, B)). At the same time the typical genotypic position ρ∗ of
the maxima, which is equal to the expected fraction of nonzero
entries in the genotype sequence τ, decreases with increasing α
and eventually falls below the value ρ∗ = 1/2 favored by the
sequence entropy (Figure 11 (C, D)).

Both trends can be attributed to the increasing role of the per-
pendicular mutational displacements that make up the second
term on the right hand side of Equation 4. Under the scaling of
the joint limit, this term is of order ρL(n− 1) ≈ ραL2 and hence
comparable to the first term originating from the parallel dis-
placements. The perpendicular displacements always increase
the phenotypic distance to the origin, and they are present even
when q = 0. The additional cost to reduce the perpendicular
contribution results in a smaller value of Σ compared to the
case of fixed n. Moreover, whereas the parallel contribution is
minimized (for q > q0) by making ρ as large as possible, the
reduction of the perpendicular displacements requires small ρ.

In the fixed n analysis the number of fitness maxima was
found to decrease (increase) with n in regime I (II), respectively,
and this tendency is recovered from the joint approach when α
is not too large (Figure 11 (E)). Because of these opposing trends
of Σ in the two regimes, the location of the phase transition
separating them is expected to decrease with increasing α, as
can be seen in Figure 10(A). If one ignores the contribution from
the perpendicular displacements, the phenotypic position of the
fitness maxima is expected to jump from z∗ = 0 to z∗ = qc − q0
at the transition, and thus the jump size should decrease as qc de-
creases. This observation suggests that the two branches should
merge into one when qc reaches q0. With the additional contri-
bution of perpendicular dimensions, we numerically found that
this critical end point at which the phases I and II merge occurs
even earlier, at α ' 0.18 and q ' 0.62 > q0 (Figure 10).

Large α behavior and regime III. In order to develop some in-
tuition about the FGM fitness landscape in the regime where
α = n/L� 1, we revisit the results obtained in subsection Sign
epistasis, where pairs of mutations were considered. Two con-
clusions can be drawn about the typical shape of these small
genotypic landscapes (of size L = 2) in the limit n → ∞. First,
the probability that the wild type is a genotypic maximum tends
to unity according to Equation 9. Second, the joint distribution
given in Equation 13 enforces additivity of mutational effects
for large n, and correspondingly the probability for sign epista-
sis vanishes. Thus for large n the two-dimensional genotypic
landscape becomes additive with a single maximum located at
the wild type. Assuming that this picture holds more generally
whenever the limit n → ∞ is taken at finite L, we expect the
following asymptotic behaviors of the quantifiers of genotypic
complexity for large α: (i) N → 1, Σ → 0 (unique genotypic
optimum); (ii) z∗/L → q, ρ∗ → 0 (location of the maximum at
the wild type phenotype and genotype).

This expectation is largely borne out by the numerical results
shown in panels (B), (D) and (F) of Figure 11. However, depend-
ing on the value of q, the approach to the additive limit can be
either smooth (for large q) or display characteristic jumps indi-
cated by the blue dashed lines in Figure 11 (B) and (D). These
jumps as well as the discontinuity in the slope of Σ as a function
of α in Figure 11 (F) are hallmarks of the phase transition to the
new regime III that is represented by the dashed line in Figure
10 (B). Fortunately, the solution of Equation 47 describing the
new phase can be obtained analytically from Equation 46 or
Equation F3 as a series expansion. The derivation outlined in
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Appendix G yields

a∗ = 4q2 −

16
√

2
π q3

α2 + O(q4/α3)

 ε + O(ε2),

b∗ = −α +
αε√
2πq

+ O(ε2),

g∗ = α + O(ε2), and ρ∗ =

√
2
π qε

α
+ O(ε2), (49)

where the expansion parameter ε = e
− α2

8q2 decays rapidly with
increasing α/q. The corresponding genotypic complexity can
also be evaluated in a series expansion,

Σ(III)(a∗, b∗, c∗) =
αε2

4πq2 + O(ε3), (50)

which shows that Σ is positive but vanishingly small in this
regime. We note that using Equation E5, the expression for a∗ in
Equation 49 amounts to

z∗

L
' q−

2
√

2
π q2

α2 ε, (51)

implying that the small number of local maxima that exist in
this phase are located very close to the wild type phenotype.

To first order in ε, the results for ρ∗ and z∗ in Equation 49
and Equation 51 can be easily derived from the idea that fitness
effects become approximately additive for large α, thus provid-
ing further support for this assumption. If mutational effects
are strictly additive, the probability for a genotype contaning s
mutations to be a local fitness maximum is given by

Radd
s = Ps

b(1− Pb)
L−s (52)

where Pb is the probability for a mutation to be beneficial.
Equation 52 expresses the condition that reverting the s mu-
tations contained in the genotype as well as adding one of
the unused L − s mutations should lower the fitness. Using
Fisher’s Equation 1, the probability for a beneficial mutation is

Pb ≈
√

2
π (q/α)ε for large α. Thus to linear order in ε or Pb, the

expected number of mutations contributing to such a genotype

is LPb = Lρ∗ = L
√

2
π (q/α)ε, which is the same as Equation 49.

The phenotypic location of a local maximum deviates from
~Q in those rare instances where one of the mutations from the
wild type is beneficial, which happens with probability Pb. To
estimate the corresponding shift in z∗, we refer to the results of
subsection Sign epistasis, where it was shown that the squared
phenotypic displacement R1 defined in Equation 12 has a Gaus-
sian distribution with mean 1 and variance 1/x2 = 4q2/α2 for
large n. Using this, it is straightforward to show that the ex-
pected value of R1 conditioned on the mutation to be beneficial
(R1 < 0) is R̄1 = −4q2/α2 to leading order. Multiplying this by
the expected number of mutations LPb we obtain the relation

Lρ∗R̄1 =
(z∗)2 −Q2

n
, (53)

which yields the same leading behavior for z∗/L as in Equa-
tion 51.

As previously observed for the transition between regimes I
and II, the phase boundary separating regimes II and III termi-
nates at a point where the two solutions defining the regimes
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Figure 13 Numerical estimates of N as a function of L for q =
0, 0.2, 0.4, 0.6 and (A) α = 0.2, (B) α =???. The solid lines show
the analytical prediction presented in Equation D17.

merge (Figure 10 (B)). Beyond this point the jumps in z∗ and
ρ∗ seen in Figure 11 (B) and (D) disappear and all quantities
approach smoothly to their asymptotic values. A surprising
feature of the large α behavior that persists also for larger q is
that the complexity becomes an increasing function of q when
α > 1.7 (Figure 11 (F)). In Figure 13 we verify this behavior using
direct simulations of FGM. These simulations also show that
the predictions based on Equation 46 are remarkably accurate
already for moderate values of L and n.

Discussion

Fisher’s geometric model (FGM) provides a simple yet generic
scenario for the emergence of complex epistatic interactions from
a nonlinear mapping of an additive, multidimensional pheno-
type onto fitness. Its role in the theory of adaptation may be
aptly described as that of a “proof of concept model” (Servedio
et al. 2014), and as such it is widely used in fundamental the-
oretical studies (Blanquart et al. 2014; Chevin et al. 2010; Gros
et al. 2009; Martin 2014; Moura de Sousa et al. 2016) as well as for
the parametrization and interpretation of empirical data (Bank
et al. 2014; Blanquart and Bataillon 2016; Martin et al. 2007; Per-
feito et al. 2014; Schoustra et al. 2016; Velenich and Gore 2013;
Weinreich and Knies 2013). Rather than tracing the mutational
effects and their interactions to the underlying molecular basis,
the model aims at identifying robust features of the adaptive
process that can be expected to be shared by large classes of
organisms.

To give an example of such a feature that is of central impor-
tance in the present context, it was pointed out by Blanquart et al.
(2014) that pairwise sign epistasis is generated in FGM through
two distinct mechanisms. In one case the mutational displace-
ments overshoot the phenotypic optimum, whereas in the other
case the displacements are directed approximately perpendic-
ular to the direction of the optimum and sign epistasis arises
because the fitness isoclines are curved. The first mechanism
is obviously operative also in a one-dimensional phenotype
space, but in the second case [termed antagonistic pleiotropy by
Blanquart et al. (2014)] at least two phenotypic dimensions are
required. Interestingly, both mechanisms have been invoked in
empirical studies where a nonlinear phenotype-fitness map was
used to model epistatic interactions between multiple mutations.
In one study, Rokyta et al. (2011) explained the pairwise epistatic
interactions between 9 beneficial mutations in the ssDNA bacte-
riophage ID11 by assuming that fitness is a single-peaked non-
linear function of a one-dimensional additive phenotype. In the
second study the genotypic fitness landscapes based on all com-
binations of two groups of four antibiotic resistance mutations
in the enzyme β-lactamase were parametrized by a nonlinear
function mapping a two-dimensional phenotype to resistance
(Schenk et al. 2013). The fitted function was in fact monotonic
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Figure 14 The logarithm of the number of local fitness maxima
divided by the number of loci L is shown as a function of L
for FGM with the parameter values n = 19.3, Q = 6.89 and
n = 34.8, Q = 9.81 obtained by Schoustra et al. (2016) for the
fungus A. nidulans growing in complete (CM) and minimal
medium (MM), respectively. For the evaluation of N Equa-
tion 46 was used.

and did not possess a phenotypic optimum, which makes it
clear that the epistatic interactions arose solely from antagonistic
pleiotropy in this case.

In this work we have shown that the two mechanisms de-
scribed by Blanquart et al. (2014) lead to distinct regimes or
phases in the parameter space of FGM, where the genotypic fit-
ness landscapes display qualitatively different properties (Figure
10(A)). When the phenotypic dimension n is much smaller than
the genotypic dimension L, the two regimes are separated by a
sharp phase transition where the average number and location
of genotypic fitness maxima changes abruptly as the distance
q of the wild type phenotype from the optimum is varied. In
regime I (q < qc) the phenotypic optimum is reachable at least by
some combinations of mutational displacements. Overshooting
of the optimum is therefore possible and sign epistasis is strong,
leading to rugged genotypic landscapes with a large number
of local fitness maxima that grows exponentially with L. By
contrast, in regime II (q > qc) only antagonistic pleiotropy is
operative and the number of fitness maxima is much smaller.
More precisely, for finite n the number tends to a finite limit
for L → ∞, but the limiting value is an exponentially growing
function of n.

An important consequence of our results is that the depen-
dence of the fitness landscape ruggedness on the phenotypic
dimension n is remarkably complicated. For n� L, landscapes
become less rugged with increasing n in regime I (q < qc) but dis-
play increasing ruggedness in regime II (q > qc). When n� L
the ruggedness decreases with n for all q and the landscapes
become approximately additive (regime III). In particular, the
probability of sign epistasis vanishes algebraically with n in this
regime. Thus the common designation of n as “phenotypic com-
plexity” may be somewhat misleading, as a larger value of n
does not imply that the corresponding fitness landscape is more
complex.

This observation is relevant for the interpretation of experi-
ments where the parameters of FGM are estimated from data.
In recent work, two of us used FGM to analyze data on pair-
wise epistasis between beneficial mutations in the filamentous
fungus Aspergillus nidulans growing in two different media (Sc-
houstra et al. 2016). The estimates obtained for the phenotypic
dimension and the distance of the wildtype phenotype from the
optimum were n = 19.3, Q = 6.89 in complete medium and

n = 34.8, Q = 9.81 in minimal medium, which, surprisingly,
may seem to suggest a higher “phenotypic complexity” in the
minimal medium. Using the results derived in this paper we
can translate the estimated parameter values into the average
number of maxima that a genotypic fitness landscape of a given
dimension L would have. As can be seen in Figure 14, with
respect to this measure the fitness landscape of the fungus grow-
ing in complete medium is more rugged, as might be expected
intuitively.

We hope that the results presented here will promote the use
of FGM as part of the toolbox of probabilistic models that are cur-
rently available for the analysis of empirical fitness landscapes
(Bank et al. 2016; Blanquart and Bataillon 2016; de Visser and
Krug 2014; Hayashi et al. 2006; Neidhart et al. 2014; Szendro et al.
2013). Compared to purely genotype-based models such as the
NK- and Rough-Mount-Fuji (RMF) models, FGM is arguably
more realistic in that it introduces an explicit phenotypic layer
mediating between genotypes and fitness (Martin 2014). Some-
what similar to the RMF model, the fitness landscapes of FGM
are anisotropic and display a systematic change of properties as
a function of the distance to the optimal phenotype (FGM) or
the reference sequence (RMF), respectively (Neidhart et al. 2014).
The idea that fitness landscape ruggedness increases systemat-
ically and possibly abruptly when approaching the optimum
has been proposed previously in the context of in vitro evolution
of proteins (Hayashi et al. 2006). If this is indeed a generic pat-
tern, it may have broader implications e.g. for the evolutionary
benefits of recombination (de Visser et al. 2009).

A recent investigation of 26 published empirical fitness land-
scapes using Approximate Bayesian Computation concluded
that FGM could account for the full structure of the landscapes
only in a minority of cases (Blanquart and Bataillon 2016). One
of the features of the empirical landscapes that prevented a close
fit to FGM was the occurrence of sign epistasis far away from
the phenotypic optimum. Our analysis confirms that this is an
unlikely event in FGM, and precisely quantifies the correspond-
ing probability through Equation 14 and Equation 15. Blanquart
and Bataillon (2016) also found that the phenotypic dimension
is particularly difficult to infer from realizations of genotypic
fitness landscapes, which matches our observation that the struc-
ture of the landscape depends only weakly on n when n � L.
We expect that our results will help to further clarify which
features of an empirical fitness landscape make it more or less
amenable to a phenotypic description in terms of FGM or some
generalization thereof.

We conclude by mentioning some open questions that should
be addressed in future theoretical work on FGM. First, a sig-
nificant limitation of our results lies in their restriction to the
average number of local fitness maxima. The number of maxima
induced by a given realization of mutational displacements is a
random variable, and unless the distribution of this variable is
well concentrated, the average value may not reflect the typical
behavior. The large fluctuations between different realizations
of fitness landscapes generated by FGM were noticed already
by Blanquart et al. (2014) on the basis of small-scale simulations,
and they clearly contribute to the difficulty of inferring the pa-
rameters of FGM from individual realizations that was reported
by Blanquart and Bataillon (2016). In the light of our analysis
this pronounced heterogeneity can be attributed to the existence
of multiple phases in the model, and it is exemplified by the
simulation results in Figure 9. To quantitatively characterize the
fluctuations between different realizations a better understand-
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ing of the distribution of the number of fitness maxima and its
higher moments is required.

Second, the consequences of relaxing some of the assump-
tions underlying the formulation of FGM used in this work
should be explored. The level of pleiotropy can be reduced by
restricting the effects of mutational displacements to a subset
of traits (Chevin et al. 2010; Moura de Sousa et al. 2016), and it
would be interesting to see how this affects the ruggedness of
the fitness landscape. However, the most critical and empiri-
cally poorly motivated assumption of FGM is clearly the absence
of epistatic interactions on the level of phenotypes. It would
therefore be important to understand how robust the results
presented here are with respect to some level of phenotypic
epistasis, which should ideally arise from a realistic model of
phenotypic networks (Martin 2014).
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Derivation of the joint probability density P(R1, R2, R)

For the purpose of this calculation it will turn out to be convenient to locate the wild type phenotype on the diagonal of the trait space,
i.e. to set ~Q = Q√

n (1, 1, 1, . . . , ). The probability density P(R1, R2, R) can then be formally defined as

P(R1, R2, R) = n3

〈
δ

(
nR1 −

n

∑
i=1

[
(ξi + Qi)

2 −Q2
i

])
δ

(
nR2 −

n

∑
i=1

[
(ηi + Qi)

2 −Q2
i

])
δ

(
nR−

n

∑
i=1

[
(ξi + ηi + Qi)

2 −Q2
i

])〉
~ξ,~η

,

(A1)

where Qi = Q/
√

n and 〈· · ·〉~ξ,~η stands for the average over the distribution of ~ξ and ~η. Using the integral representation of the delta
function, we can write

P(R1, R2, R) =
n3

(2π)3

∫
d~keik1nR1+ik2nR2+iknR ∏

i

〈
e−ik1(ξi+Qi)

2−ik2(ηi+Qi)
2−ik(ξi+ηi+Qi)

2+iQ2
i (k1+k2+k3)

〉
~ξ,~η

, (A2)

where d~R and d~k stand for dR1dR2dR and dk1dk2dk, respectively and we factorized the average by taking into account that the ξi’s
and ηi’s are all independent and identically distributed. The average in Equation A2 is readily calculated as

1
2π

∫ ∞

−∞
dξ
∫ ∞

−∞
dη exp

[
− η2

2
− ξ2

2
− ik1ξ2 − ik2η2 − ik(ξ + η)2 − 2ik1

Q√
n

ξ − 2ik2
Q√

n
η − 2ik

Q√
n
(ξ + η)

]

=

√
1

(1 + 2ik1)(1 + 2ik2)− 4k(k1 + k2 − i)
exp

[
2Q2

n
2i(k + k1)(k + k2)(k1 + k2 − i) + (k1 − k2)

2

4k(k1 + k2 − i) + (2k1 − i)(2k2 − i)

]
, (A3)

which gives

P(R1, R2, R) =
n3

(2π)3

∫
d~k

eik1nR1+ik2nR2+iknR

[(1 + 2ik1)(1 + 2ik2)− 4k(k1 + k2 − i)]n/2 exp
[

n2

2x2
2i(k + k1)(k + k2)(k1 + k2 − i) + (k1 − k2)

2

4k(k1 + k2 − i) + (2k1 − i)(2k2 − i)

]
. (A4)

In the limit n → ∞, the integral is dominated by contributions from the vicinity of the extremum of the exponent, which can be
algebraically determined to be k = k1 = k2 = 0. By expanding the argument of the exponential function up to the second order around
this point and performing the Gaussian integral, we obtain

P(R1, R2, R) ≈ n3

(2π)3

∫
d~k exp

[
− n2

2x2

{
(k1 + k2 + k)2 − 2k1k2

}

− n
{

4k2 + k2
1 + k2

2 − ik1(R1 − 1)− ik2(R2 − 1) + k(2i + 2k1 + 2k2 − iR)
}]

=

√
nx2

4
√

2π3/2
(1 + O(n−1)) exp

[
−n

8
(R− R1 − R2)

2 − x2

2

{
(R1 − 1)2 + (R2 − 1)2

}]
, (A5)

which is Equation 13.

Probability of sign epistasis

In this appendix, we present the mathematical details of the derivation of the probabilities Pr and Ps of observing reciprocal sign
epistasis (RSE) and simple sign epistasis (SSE), respectively. As in the main text, let us assume R1 < R2. In calculating the probabilities,
the integral over R takes one of three forms∫ R1

−∞

√
n

8π
e−

n
8 (−R+R1+R2)2

dR =
1
2

erfc
(√

nR2

2
√

2

)
,

∫ ∞

R2

√
n

8π
e−

n
8 (−R+R1+R2)2

dR =
1
2

erfc
(
−
√

nR1

2
√

2

)
,

∫ R2

R1

√
n

8π
e−

n
8 (−R+R1+R2)2

dR =
1
2

[
erfc

(√
nR1

2
√

2

)
− erfc

(√
nR2

2
√

2

)]
. (B1)

First we consider RSE which corresponds to the two domains

D1 = {(R1, R2, R)|R1 < R2 < R, R2 < 0}, D2 = {(R1, R2, R)|R < R1 < R2, R1 > 0} (B2)

illustrated in Figure 2. The probability of being in D1 is

Pr(D1) =
∫ 0

−∞
dR1

∫ 0

R1

dR2

∫ ∞

R2

dRP(R1, R2, R3) =
x2

2π

∫ 0

−∞
dR1

∫ 0

R1

dR2 exp
[
− x2

2
(R1 − 1)2 − x2

2
(R2 − 1)2

]
erfc

(
−
√

nR1

2
√

2

)
=

x2

2π

∫ ∞

0
dR1

∫ R1

0
dR2 exp

[
− x2

2
(R1 + 1)2 − x2

2
(R2 + 1)2

]
erfc

(√
nR1

2
√

2

)
, (B3)
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where we have changed variables Ri 7→ −Ri. Since erfc(y) ∼ e−y2
/(y
√

π) for y� 1, the above integral is dominated by the region
R1 � 1 for large n. Thus, it is sufficient to approximate exp[−x2((R1 − 1)2 + (R2 − 1)2)/2] ≈ e−x2

, which yields

Pr(D1) ≈
x2e−x2

4π

∫ ∞

0
dR1

∫ R1

0
dR2erfc

(√
nR1

2
√

2

)
≈ x2e−x2

4π

∫ ∞

0
dR1R1erfc

(√
nR1

2
√

2

)
=

2x2e−x2

nπ

∫ ∞

0
dy yerfc(y) =

x2

2nπ
e−x2

. (B4)

The probability of being in D2 has the same leading behavior,

Pr(D2) =
∫ ∞

0
dR2

∫ R2

0
dR1

∫ R1

−∞
dRP(R1, R2, R3) =

x2

2π

∫ ∞

0
dR2

∫ R2

0
dR1 exp

[
− x2

2
(R1 − 1)2 − x2

2
(R2 − 1)2

]
erfc

(√
nR2

2
√

2

)
≈ x2

2π

∫ ∞

0
dR1

∫ R1

0
dR2e−x2

erfc
(√

nR1

2
√

2

)
=

x2

2nπ
e−x2

, (B5)

where we have exchanged the variables R1 ↔ R2. Due to the symmetrical roles of R1 and R2, the total probability of RSE is

Pr ≡ 2
2

∑
i=1

Pr(Di) ≈
2x2

nπ
e−x2

. (B6)

We can use a similar approximation scheme to calculate the probability of SSE. There are four domains contributing to SSE (see
Figure 2),

D3 = {(R1, R2, R)|R < R1 < 0 < R2}, D4 = {(R1, R2, R)|R1 < 0 < R2 < R},
D5 = {(R1, R2, R)|R1 < R < R2 < 0}, D6 = {(R1, R2, R)|0 < R1 < R < R2}. (B7)

As we will see, all integrals can be represented by the functions

G1(a, b) =
x2

4π

∫ ∞

0
dR1

∫ R1

0
dR2 exp

[
− x2

2
(R1 + a)2 − x2

2
(R2 + b)2

]
erfc

(√
nR2

2
√

2

)
, (B8)

G2(a, b) =
x2

4π

∫ ∞

0
dR1

∫ R1

0
dR2 exp

[
− x2

2
(R1 + a)2 − x2

2
(R2 + b)2

]
erfc

(√
nR1

2
√

2

)
=

x
4
√

2π
erfc

(
bx√

2

) ∫ ∞

0
dR1 exp

[
− x2

2
(R1 + a)2

]
erfc

(√
nR1

2
√

2

)
− G1(b, a), (B9)

where a, b = ±1 and we have used that ∫ ∞

0
dy
∫ ∞

y
dz f (y, z) =

∫ ∞

0
dy
∫ y

0
dz f (z, y). (B10)

To be specific, we write the probabilities of being in each domain as

Pr(D3) =
x2

4π

∫ 0

−∞
dR1

∫ ∞

0
dR2 exp

[
− x2

2
(R1 − 1)2 − x2

2
(R2 − 1)2

]
erfc

(√
nR2

2
√

2

)
= G1(1,−1) + G2(−1, 1),

Pr(D4) =
x2

4π

∫ 0

−∞
dR1

∫ ∞

0
dR2 exp

[
− x2

2
(R1 − 1)2 − x2

2
(R2 − 1)2

]
erfc

(
−
√

nR1

2
√

2

)
= G1(−1, 1) + G2(1,−1),

Pr(D5) =
x2

4π

∫ 0

−∞
dR1

∫ 0

R1

dR2 exp
[
− x2

2
(R1 − 1)2 − x2

2
(R2 − 1)2

] [
erfc

(√
nR1

2
√

2

)
− erfc

(√
nR2

2
√

2

)]
= G1(1, 1)− G2(1, 1),

Pr(D6) =
x2

4π

∫ ∞

0
dR1

∫ ∞

R1

dR2 exp
[
− x2

2
(R1 − 1)2 − x2

2
(R2 − 1)2

] [
erfc

(√
nR1

2
√

2

)
− erfc

(√
nR2

2
√

2

)]
= G1(−1,−1)− G2(−1,−1),

where we have changed negative integral domains into positive domains and made use of Equation B10. Using the approximation
scheme explained above, we get

G1(a, b) =
x

4
√

2π

∫ ∞

0
dR2e−x2(R2+b)2/2erfc

(√
nR2

2
√

2

)
erfc

(
x(R2 + a)√

2

)
≈ x

4
√

2π
erfc

(
ax√

2

)
e−x2/2

∫ ∞

0
dR2erfc

(√
nR2

2
√

2

)
=

x
2
√

nπ
erfc

(
ax√

2

)
e−x2/2 + O(1/n). (B11)

Since

x
4
√

2π
erfc

(
bx√

2

) ∫ ∞

0
dR1 exp

[
− x2

2
(R1 + a)2

]
erfc

(√
nR1

2
√

2

)
≈ x

2
√

nπ
erfc

(
bx√

2

)
e−x2/2 + O(1/n), (B12)

we conclude that G2(a, b) = O(1/n). Using erfc(y) + erfc(−y) = 2, we finally obtain

Ps ≡ 2
6

∑
i=3

Pr(Di) ≈
4x√
nπ

e−x2/2. (B13)
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Large L behavior of Rs(L) for fixed n

In this appendix, we calculate the asymptotic behavior of the probabilityRs(L) for a genotype with s mutations to be a local fitness
maximum in the limit where L is large and the phenotype dimensions n is fixed. As explained in the main text, this probability has
two contributions which arise from expanding the function F(~k,~z) defined in Equation 28 near |~z| = 0 and |~z| = z∗ ∼ L, respectively
(see Equation 29).

First we consider the contribution from the region |~z| � 1. In this case, we can approximate F(~k,~z) as

F(~k,~z) =
∫

n
e−i~k·~ξ p(~ξ)d~ξ −

∫
Dc(~z)

e−i~k·~ξ p(~ξ)d~ξ ≈ e−k2/2 −
∫
Dc(~z)

p(0)d~ξ = e−k2/2 − Anzn ≈ exp
[
− k2

2
− Anznek2/2

]
, (C1)

where k = |~k|, z = |~z|, Dc(~z) = {~y||~y−~z| ≤ z} which is the complement of D(~z), An = p(0)Sn−1/n with Sn−1 = 2πn/2/Γ(n/2)
being the surface area of the unit sphere in (n− 1) dimensions, and p(0) = (2π)−n/2. Note that the error of the above approximation
is O(zn+1). Thus, setting ρ ≡ s/L we can approximate

R<
s (L) ≈

∫
n

d~zd~k
(2π)n ei~k·~z exp

[
L
{
−i~k ·~q− ρ

k2

2
− ρAnznek2/2 − (1− ρ)Anzn

}]
≡
∫

n

d~zd~k
(2π)n exp

[
i~k ·~z + LH1(~k,~z)

]
, (C2)

where ~q = ~Q/L and the definition of H1 is clear from the context. Since L is large, we can employ the saddle point approximation.
One can easily see that the saddle point solving the equations ∂k j

H1 = ∂zk H1 = 0 is at~z = 0 and kj = −iqj/ρ. Around the saddle
point, we expand

H1 ≈ −
q2

2ρ
− ρ

2

(
~k + i~q/ρ

)2
− Anzn

[
ρe−q2/(2ρ2) + (1− ρ)

]
, (C3)

which gives

R<
s (L) ≈ exp

(
−L

q2

2ρ

) ∫
n

d~z exp
[
−LAnzn

{
ρe−q2/(2ρ2) + (1− ρ)

}] ∫
n

d~k
(2π)n exp

[
− Lρ

2

(
~k + i~q/ρ

)2
]

=
exp

(
−L q2

2ρ

)
(2πLρ)n/2

∫ ∞

0
Sn−1zn−1dz exp

[
−LAnzn

{
ρe−q2/(2ρ2) + (1− ρ)

}]
=

s−n/2 exp
[
−Q2/(2s)

]
s exp[−Q2/(2s2)] + L− s

[
1 + O(L−1/n)

]
, (C4)

and the last step involves a change of variables z→ t = Sn−1zn/n. Since L appears in the integrand in the combination Lzn, the error
that arises from neglecting terms of O(zn+1) is L−1/n. The leading order of Equation C4 was reported in Equation 32.

Now we move on to the calculation ofR>
s (L), where the dominant contribution to F(~k,~z) comes from a region where z ∼ O(L).

Using
∫

d~ξ p(~ξ) exp(−i~k ·~ξ) = exp(−k2/2), we calculate the integral I ≡ exp(−k2/2)− F(~k,~z) as

I =
1

(2π)n/2

∫ 2z

0
dξne−iknξn−ξ2

n/2
∫

B(2z,ξn)
d~ξ⊥e−i~k⊥ ·~ξ⊥−~ξ2

⊥/2

=
1

(2π)n/2

∫ 2z

0
dξne−iknξn−ξ2

n/2
[∫

Rn−1
d~ξ⊥e−i~k⊥ ·~ξ⊥−~ξ2

⊥/2 −
∫

Bc(2z,ξn)
d~ξ⊥e−i~k⊥ ·~ξ⊥−~ξ2

⊥/2
]

=
e−~k

2
⊥/2

√
2π

[∫ ∞

0
dξne−iknξn−ξ2

n/2 −
∫ ∞

2z
dξne−iknξn−ξ2

n/2
]
− 1

(2π)n/2

∫ 2z

0
dξne−iknξn−ξ2

n/2
∫

Bc(2z,ξn)
d~ξ⊥e−i~k⊥ ·~ξ⊥−~ξ2

⊥/2

=
e−k2/2

2

(
1− erf

(
ikn√

2

))
− e−~k

2
⊥/2

√
2π

∫ ∞

2z
dξne−iknξn−ξ2

n/2 − C1(~k, z), (C5)

where we set ~z = z~en, ~ξ⊥ = ~ξ − ξn~en and ~k⊥ = ~k − kn~en with ~en = (0, . . . , 0, 1), B(2z, ξn) is an (n − 1) dimensional ball with
radius

√
ξn(2z− ξn) whose center is located at the origin, Bc is the relative complement of B with respect to Rn−1, and erf(z) =

2
∫ z

0 e−t2
dt/
√

π is the error function. The definition of C1 is self-explanatory. Since∣∣∣∣∫ ∞

2z
dξne−iknξn−ξ2

n/2
∣∣∣∣ ≤ ∫ ∞

2z
dξne−ξ2

n/2 = 2z
∫ ∞

1
dye−2z2y2 ≈ e−2z2

2z
, (C6)

where we used the Laplace method for the asymptotic expansion, the leading finite z correction is expected to come from C1 for n > 1.
Note that C1 is identically zero for n = 1. Thus we get

F(~k,~z) ≈ 1
2

e−k2/2

(
1 + erf

(
i~k ·~z√

2z

))
+ C1(~k, z), (C7)

where kn is written as a projection of~k along the~z direction, kn =~k ·~z/z. Since∣∣∣C1(~k, z)
∣∣∣ ≤ 1

(2π)n/2

∫ 2z

0
dξne−ξ2

n/2
∫

Bc(2z,ξn)
d~ξ⊥e−~ξ

2
⊥/2 = C1(0, z), (C8)
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it is sufficient to find an approximate formula for C1(0, z) to determine the z dependence of C1(~k, z). Using spherical coordinates in
Rn−1, we get

C1(0,z) =
Sn−2

(2π)n/2

∫ 2z

0
dye−y2/2

∫ ∞
√

y(2z−y)
dxxn−2e−x2/2

=
Sn−2

(2π)n/2

[∫ 2z

0
dye−y2/2

∫ ∞

z
dxxn−2e−x2/2 +

∫ z

0
dxxn−2e−x2/2

{∫ M−(x,z)

0
dye−y2/2 +

∫ z

M+(x,z)
dye−y2/2

}]
, (C9)

where Sn−2 = 2π(n−1)/2/Γ[(n− 1)/2] is the surface area of the unit (n− 2)-sphere. In the second term on the second line the order of
integration was reversed and the integration boundaries M±(x, z) = z±

√
z2 − x2 were introduced. Since the first integral (

∫ ∞
z dz)

and the third integral (
∫ z

M+
dy) decrease exponentially with z, the main contribution to C1(0, z) comes from the second integral. Thus,

C1(0, z) ≈ Sn−2

(2π)n/2

∫ z

0
dxxn−2e−x2/2

∫ M−(x,z)

0
dye−y2/2 =

Sn−2zn

(2π)n/2

∫ 1

0
dxxn−2e−z2x2/2

∫ M−(x,1)

0
dye−z2y2/2

=
Sn−2zn−1

(2π)n/2

√
π

2

∫ 1

0
dxxn−2e−z2x2/2erf(M−(x, 1)z/

√
2). (C10)

Since the last integral is dominated by the region xz ≤ 1, we can approximate M−(x, 1)z ≈ x2z/2 ∼ O(1/z) and erf(M−(x, 1)z/
√

2) =
x2z/
√

2π. Finally, we get

C1(0, z) ≈ Sn−2zn

(2π)n+1/2

√
π

2

∫ 1

0
dxxne−z2x2/2 ≈ Sn−2zn

(2π)n+1/2

√
π

2

∫ ∞

0
dxxne−z2x2/2 =

n− 1
2
√

2πz
, (C11)

which also implies that C1(~k, z) ∼ O(z−1).
If we write

F(~k,~z) =
1
2

e−k2/2

(
1 + erf

(
i~k ·~r√

2r

))(
1 +

1
L

f (~r,~k) + O(z−2)

)
, (C12)

where~r = ~z/L and r = z/L, then comparison with Equation C7 and Equation C11 shows that f (~r, 0) = (n− 1)/(
√

2πr). Inserting
Equation C12 into Equation 30, it follows that

R>
s (L) ≈ Ln

2L

∫ d~rd~k
(2π)n exp

[
ρ f (~r,~k) + (1− ρ) f (~r, 0)

]
exp

[
LH2(~k,~r)

]
, (C13)

with

H2(~k,~r) = i~k · (~r−~q)− ρ
k2

2
+ ρ ln

(
1 + erf

(
i~k ·~r√

2r

))
. (C14)

Now we employ the steepest descent method. For convenience, we set~q = (q, 0, . . . , 0). The saddle point satisfies the equations

∂H2
∂rj

= ikj + i
√

2ρ√
πr3 exp

(
(~k ·~r)2

2r2

) [
kjr2 − rj(~k ·~r)

] (
1 + erf

(
i~k ·~r√

2r

))−1

= 0, (C15)

∂H2
∂kj

= i(rj − qδj1)− ρkj + i
√

2ρ√
πr

exp

(
(~k ·~r)2

2r2

)
rj

(
1 + erf

(
i~k ·~r√

2r

))−1

= 0, (C16)

with the solution~k∗ = 0 and~r∗ = (q− ρ
√

2/π, 0, . . . , 0). Note that there is no solution if q < ρ
√

2/π, so the valid range of ρ has the
upper boundary ρc(q) = min(1,

√
π/2q). The matrix of second derivatives around the saddle point~k∗,~r∗ is

∂2H2
∂rl∂rj

∣∣∣∣∣
∗
= 0,

∂2H2
∂km∂kj

∣∣∣∣∣
∗
= −ρδmj

(
1− 2

π
δl1

)
,

∂2H2
∂rm∂kj

∣∣∣∣∣
∗
= iδjl

[
1 + (1− δm1)

√
2ρ

√
πq−

√
2ρ

]
. (C17)

Thus, we get

R>
s (L) ≈ Ln

2L e f (~r∗ ,0)
∫ d~yd~k

(2π)n exp

[
−L

ρ

π
(π − 2)k2

1 − Lρ~k2
⊥ + iLk1y1 + iL

√
πq

√
πq−

√
2ρ
~k⊥ ·~y⊥

]
, (C18)

where ~y =~r−~r∗, ~y⊥ = (0, y2, . . . , yn), and~k⊥ = (0, k2, . . . , kn). If we perform the integration over ~y first, we obtain delta functions
which make the integral over~k trivial. Finally, we arrive at

R>
s (L) ≈ 2−Lθ (ρc − ρ)

(
q− 2ρ/

√
2π

q
exp

(
1√

2πq− 2ρ

))n−1

(C19)
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where θ(x) is the Heaviside step function defined by θ(x ≥ 0) = 1 and θ(x < 0) = 0.
To evaluate the corresponding contribution to the number of fitness maxima, N>, we replace the summation over s in Equation 31

by an integral over ρ = s/L and use Stirling’s formula to approximate the binomial coefficients. This yields

N> =
√

L
∫ 1

0
dρ

exp[L{−ρ ln ρ− (1− ρ) ln(1− ρ)− ln 2}]√
2πρ(1− ρ)

(
q− 2ρ/

√
2π

q
exp

(
1√

2πq− 2ρ

))n−1

θ(ρc − ρ). (C20)

If ρc <
1
2 or q <

√
2π
−1

= q0, the integral is dominated around ρ ≈ ρc, which results in an exponential decrease with L. On the other
hand, if ρc >

1
2 , the integral is dominated around ρ ≈ 1

2 , which gives

N> ≈
√

2L
π

∫ ∞

−∞
dxe−2Lx2

[
q− 1/

√
2π

q
exp

(
1√

2πq− 1

)]n−1

=

[
q− 1/

√
2π

q
exp

(
1√

2πq− 1

)]n−1

(C21)

as reported in Equation 41.

Derivation of Equation 46

In this appendix, we calculate the average number of fitness maxima N in the limit n, L→ ∞ at fixed ratio α ≡ n/L. To this end, we
write Iτ , the probability for the genotype τ to be a local fitness maximum, using the Heaviside step function as

Iτ =
∫ L

∏
k=1

[
d~ξk p(~ξk)θ

(
1
L
(~z + (1− 2τk)~ξk)

2 − 1
L
|~z|2
)]
≡
∫
Dξ ∏

k
θ (Ek) , (D1)

where~z is determined by τ through Equation 2,
∫
Dξ ≡

∫
∏k d~ξk p(~ξk), and Ek is defined as

Ek =
1
L

(
~z +~ξk(1− 2τk)

)2
− 1

L
|~z|2 =

1
L

(
2~z ·~ξk(1− 2τk) +

∣∣∣~ξ∣∣∣2) =
1
L

2

~Q + ∑
j

~ξ jτj

 ·~ξk(1− 2τk) + |~ξk|2
 . (D2)

Note that the prefactor 1/L is introduced to make Ek finite in the limit L→ ∞ and we have used that (1− 2τk)
2 = 1. Applying the

identity (Tanaka and Edwards 1980; Bray and Moore 1980)

θ(Ek) =
∫ ∞

0
dλkδ (λk − Ek) =

∫ ∞

0
dλk

∫ ∞

−∞

dφk
2π

exp [iφk (λk − Ek)] (D3)

to Equation D1, the expected number of local fitness maxima reads

N = ∑
τ

∫
Dξ

L

∏
k=1

[∫ ∞

0
dλk

∫ ∞

−∞

dφk
2π

eiφk(λk−Ek)
]
= ∑

τ

∫
DξDλDφ exp

 L

∑
k=1

iφkλk +
i
L

φk

2~ξk ·
L

∑
j=1

~ξ jτj + 2~ξk · ~Q− |~ξk|2



= ∑

τ

∫
DξDλDφ exp

[
L

∑
k=1

{
iφkλk +

i
L

φk

(
2~ξk · ~Q− |~ξk|2

)}]
exp

 i
L

L

∑
k=1

φk~ξk ·
L

∑
j=1

~ξ j

(
2τj

) , (D4)

where
∫
Dλ ≡

∫ ∞
0 ∏k dλk,

∫
Dφ ≡

∫ ∞
−∞ ∏k

dφk
2π , and we made the change of variables (2τk − 1)~ξk 7→ ~ξk to arrive at the second equality.

Using the identity

exp
(

i
L
~X · ~Y

)
= Ln

∫
n

d~νδ
(

L~ν− ~X
)

exp
(

i~Y ·~ν
)
=

(
L

2π

)n ∫
n

d~µd~ν exp
[
iL~µ ·~ν− i~X ·~µ + i~Y ·~ν

]
(D5)

which is valid for any n-dimensional real vectors ~X and ~Y, we can write the last term of Equation D4 as

exp

 i
L ∑

k
φk~ξk ·∑

j

~ξ j(2τj)

 =

(
L

2π

)n ∫
n

d~µd~ν exp

[
iL~µ ·~ν + i ∑

k

~ξk · (−φk~µ + 2τk~ν)

]
, (D6)

which gives

N = ∑
τ

∫
DλDφDµDνeiφ·λ+iL~µ·~ν

L

∏
k=1

n

∏
s=1

∫ dξks√
2π

exp

[
i
{

1
L

φk

(
2ξksQs − ξ2

ks

)
+ ξks(−φkµs + 2τkνs)

}
−

ξ2
ks
2

]
, (D7)
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where
∫
DµDν ≡

(
L

2π

)n ∫
n d~µd~ν, φ · λ ≡ ∑L

k=1 φkλk, and ξks, Qs, µs, νs are the s-th components of the vectors ~ξk, ~Q, ~µ,~ν, respectively.

Note that the integrals over the ξks’s become independent of each other. If we choose Qs = Q/
√

n = q
√

L/α for all s and define
χ ≡ 2Qs/L, the integral over ξks becomes

∫ ∞

−∞

dξks√
2π

exp

[
−

ξ2
ks
2

(1 + 2iφk/L) + iξks {φk(χ− µs) + 2τkνs}
]
=

1√
1 + 2iφk/L

exp

[
−{2νsτk + (χ− µs)φk}2

2(1 + 2iφk/L)

]

=
1√

1 + 2iφk/L
exp

[
−(µs − χ)2φ2

k + 4τk(µs − χ)νsφk − 4ν2
s τk

2(1 + 2iφk/L)

]
, (D8)

which, in turn, gives

N = ∑
τ

∫
DλDφDµDνeiφ·λ+iL~µ·~ν

L

∏
k=1

1
(1 + 2iφk/L)n/2 exp

[
−φ2

k ∑s(µs − χ)2 + 4τkφk ∑s(µs − χ)νs − 4τk ∑s ν2
s

2(1 + 2iφk/L)

]
. (D9)

If we now insert the identity

1 =
∫ ∞

0
da
∫

dbdcδ

(
a−∑

s
(µs − χ)2

)
δ

(
b−∑

s
(µs − χ)νs

)
δ

(
c−∑

s
ν2

s

)

=
∫ ∞

0
da
∫

dbdc
∫ dA

2π/L
dB

2π/L
dC

2π/L
exp

[
iAL

{
a−∑

s
(µs − χ)2

}
+ iBL

{
b−∑

s
(µs − χ)νs

}
+ iCL

{
c−∑

s
ν2

s

}]
, (D10)

we can write

N =∑
τ

∫
DλDφDµDνeiφ·λ+iL~µ·~ν

∫ ∞

0
da
∫ dAdbdBdcdC

(2π/L)3 ∏
k
(1 + 2iφk/L)−Lα/2 exp

[
−aφ2

k + 4bτkφk − 4cτk

2(1 + 2iφk/L)

]

× exp

[
iAL

{
a−∑

s
(µs − χ)2

}
+ iBL

{
b−∑

s
(µs − χ)νs

}
+ iCL

{
c−∑

s
ν2

s

}]
(D11)

where we have replaced n by Lα. The integral domain of a is restricted to the positive real axis in order to ensure that the integral with
respect to φk in Equation D9 continues to be well-defined after the substitution. Performing the integrals over µs and νs, we get

L
2π

∫
dµsdνseiLµsνs−iLA(µs−r)2−iLB(µs−r)νs−iLCν2

s = exp

[
−1

2

(
Log

{(
(B− 1)2 − 4AC

)
Ai

}
+ Log(Ai)

)
+

i4q2 A/α

4AC− (B− 1)2

]
, (D12)

where Logx is the principal value of the logarithm with argument in the interval (−π, π] and the branch cut lies on the negative real
axis.

Subsequently, the remaining integral over φi and λi can be readily evaluated as follows:

1
2π

∫ ∞

0
dλk

∫
dφk(1 + 2iφk/L)−Lα/2 exp

[
−

aφ2
k + 4bτkφk − 4cτk

2(1 + 2iφk/L)
+ iφkλk

]
= T(a, bi, c, τk) +

1
L

U(a, bi, c, τk) + O(1/L2), (D13)

where

T(a, b, c, τ) =
1
2

e−2cτ

(
erf
(

α + 2bτ√
2a

)
+ 1
)

,

U(a, b, c, τ) =− 4acτ + a + 2bτ(α + 2bτ)√
2πa3/2

exp
[
− (α + 2bτ)2

2a
− 2cτ

]
. (D14)

After summing over the τk’s, we arrive at the equation

N =
∫ ∞

0
da
∫ dAdbdBdcdC

(2π/L)3 exp
[

U(a, bi, c, 1) + U(a, bi, c, 0)
T(a, bi, c, 1) + T(a, bi, c, 0)

]
exp (LΣ(a, bi, c, Ai, B, Ci)) (D15)

where

Σ(a, b, c, A, B, C) = aA + bB + cC− 1
2

α ln
(

4AC + (B− 1)2
)
− 4Aq2

4AC + (B− 1)2 + ln(T(a, b, c, 1) + T(a, b, c, 0)). (D16)

The remaining integrals are hard to evaluate analytically. Instead, we resort to the saddle point method to obtain an asymptotic
expansion of the integral. Since Σ is the exponential growth factor of the number of local maximam which must be a real number, one
expects that the saddle points of Equation D16 are formed for the real arguments of Σ. This suggests that we should make the changes
of variables b→ b/i, A→ A/i and C → C/i. For large L, the integrals are then dominated by the saddle point (a∗, b∗, c∗, A∗, B∗, C∗)
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of Σ(a, b, c, A, B, C). If there is more than one saddle point, the one giving the largest value of Σ(a, b, c, A, B, C) has to be chosen. Then,
the leading behavior of the number of maxima can be expressed in terms of the saddle point as

N =
1√

|det H(Σ)|
exp

[
U(a∗, b∗, c∗, 1) + U(a∗, b∗, c∗, 0)
T(a∗, b∗, c∗, 1) + T(a∗, b∗, c∗, 0)

]
exp (LΣ(a∗, b∗, c∗, A∗, B∗, C∗)) , (D17)

where H(Σ) is the Hessian matrix around the saddle point. The reader may have noticed that the two principal values of the logarithm
defined in Equation D12 are replaced by a real-valued logarithm in Equation D16, which can be dangerous in general. However, it
can be shown that this substitution is indeed correct by verifying that (B∗ − 1)2 + 4A∗C∗ is always positive for all saddle points of
Equation D16, and thus the imaginary arguments always cancel each other out.

Now, let us evaluate the saddle point conditions. The derivatives of Σ with respect to A, B, C are

∂Σ
∂A

= a− 2
αC[4AC + (B− 1)2] + 2q2(B− 1)2

[4AC + (B− 1)2]2
,

∂Σ
∂B

= b− (B− 1)[α(B− 1)2 + A(4Cα− 8q2)]

[4AC + (B− 1)2]2
,

∂Σ
∂C

= c− 2A[α(B− 1)2 + A(4Cα− 8q2)]

[4AC + (B− 1)2]2
. (D18)

By requiring that the above three equations are zero at the saddle point, we get

A =
αc

2 (ac + b2)
, B− 1 =

αb
ac + b2 , C =

1
4

(
2aα

ac + b2 +
−α±

√
α2 − 16cq2

c

)
. (D19)

The two solutions of C force us to perform a two-fold analysis for the remaining integrals since we cannot a priori determine which
solution will yield the correct saddle point. Instead, we introduce another real number g = ±

√
α2 − 16cq2 which is allowed to take

both signs. Then, by imposing the functional relation c(g) = α2−g2

16q2 , both solutions are covered by a single analysis. In this way, the
saddle point is obtained in terms of g instead of c. Finally, substituting this solution into Equation D17 gives Equation 46.

Phenotypic location of typical local maxima

In this appendix, we will explain how the fixed point value a∗ of the variable a entering the complexity function Equation 46 is related
to the typical magnitude of the phenotype vectors corresponding to local genotypic fitness maxima, i.e. to the typical phenotypic
location z∗ of such maxima. To this end, we first consider the probability density P(τ, a) that a genotype τ whose phenotypic vector is
of squared magnitude L2a/4 is a local maximum. Formally, we can write

P(τ, a) =
∫

Dξ ∏
k

θ(Ek)δ

a− 4
L2

(
~Q + ∑

k

~ξkτk

)2
 =

∫ L
2π

dA
∫

Dξ ∏
k

θ(Ek) exp

iLaA− i
4A
L

(
~Q + ∑

k

~ξkτk

)2


=
L

2π

∫
dA

∫
Dξ ∏

k
θ(Ek)

∫
Dψ exp

[
iLaA + i

L
16A

~ψ2 + i~ψ ·
(
~Q + ∑

k

~ξkτk

)]
, (E1)

where we have used the identity
∫ ∞
−∞ dx exp(ipx2 + iqx) =

√
π/pe−iπ/4 exp[−iq2/(4p)] for p > 0, Dψ = ∏s(

√
Leiπ/4dψs)/(4

√
πA),

and the notation is the same as in Appendix D. Following the same procedure in the previous appendix, we get

P(τ, a) =
∫
DξDλDφDµDνeiφ·λ+iL~µ·~ν exp

[
∑
k

i
L

φk

(
2~ξk · ~Q− |~ξk|2

)
+ i ∑

k

~ξk · (−φk~µ + 2τk~ν)

]

× L
2π

∫
dA

∫
Dψ exp

[
iLaA + i

L
16A

~ψ2 + i~ψ · (~Q + ∑
i

~ξiτi)

]
(E2)

By shifting~ν→ ~ν− ~ψ/2 and integrating over ~ψ, we have

P(τ, a) =
∫
DξDλDφDµDνeiφ·λ+iL~µ·~ν exp

[
∑
k

i
L

φk

(
2~ξk · ~Q− |~ξk|2

)
+ i ∑

k

~ξk · (−φk~µ + 2τk~ν)

]

× L
2π

∫
dA

∫
Dψ exp

[
iLaA + i

L
16A

~ψ2 + i~ψ · (~Q− L~µ/2)
]

=
∫
DξDλDφDµDνeiφ·λ+iL~µ·~ν exp

[
∑
k

i
L

φk

(
2~ξk · ~Q− |~ξk|2

)
+ i ∑

k

~ξk · (−φk~µ + 2τk~ν)

]

×
∫ dA

2π/L
exp

iLA

a−
(

2~Q
L
−~µ

)2
 (E3)
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Since we have set Qs = Q/
√

n for s = 1, . . . , n, the last integral becomes

∫ dA
2π/L

exp

iLA

a−
(

2~Q
L
−~µ

)2
 =

∫ dA
2π/L

exp

{
iLA

[
a−∑

s
(µs − χ)2

]}
. (E4)

Since N = ∑τ

∫ ∞
0 daP(τ, a), by applying the manipulations of Appendix D to Equation E3 we arrive at the same integral form as in

Equation D10. Since ∑τ P(τ, a) is the mean number of local maxima whose phenotypic vectors have squared magnitude a, we see that
the saddle point a∗ of Equation D16 determines the distance z∗ of typical local fitness maxima from the phenotypic optimum through

z∗ = L
√

a∗

2
. (E5)

This shows in particular that z∗ is linear in L.

Typical number of mutations ρ∗ of a local fitness maximum

To have access to the information about the typical value of the genotypic (Hamming) distance of a local fitness maximum from the
wild type, we rewrite Equation D15 as

N =
∫ ∞

0
da
∫ dAdbdBdcdC

(2π/L)3

L

∑
s=0

(
L
s

)(
T(a, b, c, 1) +

U(a, b, c, 1)
L

)s (
T(a, b, c, 0) +

U(a, b, c, 0)
L

)L−s

≈
∫ ∞

0
da
∫ dAdbdBdcdC

(2π/L)3

∫ 1

0
dρ

eLΣ(a,b,c,A,B,C,ρ)√
2πLρ(1− ρ)

exp
[

ρ

(
1 +

U(a, b, c, 1)
T(a, b, c, 1)

)
+ (1− ρ)

(
1 +

U(a, b, c, 0)
T(a, b, c, 0)

)]
, (F1)

where we have rearranged the summation ∑τ as ∑L
s=0 (

L
s) taking advantage of the inherent permutation symmetry, Stirling’s formula

has been used to evaluate the binomial coefficients, ∑s is approximated as L
∫ 1

0 dρ with s = Lρ, and

Σ(a, b, c, A, B, C, ρ) ≡aA + bB + cC− 1
2

α ln
(

4AC + (B− 1)2
)
− 4Aq2

4AC + (B− 1)2

+ ρ ln T(a, b, c, 1) + (1− ρ) ln T(a, b, c, 0)− ρ ln ρ− (1− ρ) ln(1− ρ). (F2)

The saddle point equations for this expression involve seven variables including ρ. Since the saddle point equations for A, B, C are the
same as Equation D18, we may again insert Equation D19 into Equation F2, which yields

Σred(a, b, g, ρ) =− ln 2 +
α

2

[
1− ln

α

2

]
− α

2
ln
(

α + g
ac(g) + b2

)
+ b +

g
2
− ρ ln ρ− (1− ρ) ln(1− ρ)

+ (1− ρ) ln
(

erf
(

α√
2a

)
+ 1
)
+ ρ

(
ln
[(

erf
(

α + 2b√
2a

)
+ 1
)]
− 2c(g)

)
. (F3)

Since

∂Σ
∂ρ

= ln
T(a, b, c, 1)
T(a, b, c, 0)

− ln ρ + ln(1− ρ), (F4)

the saddle point value of ρ∗ is

ρ∗ =
T(a∗, b∗, c∗, 1)

T(a∗, b∗, c∗, 1) + T(a∗, b∗, c∗, 0)
=

1 + e2c∗

 erf
(

α/
√

2a∗
)
+ 1

erf
(
(α + 2b∗)/

√
2a∗
)
+ 1


−1

. (F5)

By inserting ρ∗ into the saddle point equations for a, b, c, one can easily see that the final equations are the same as those derived from
Equation D16.

Derivation of Equation 49

The determination of the solution describing regime III relies on the intuition that as α becomes large, the fitness landscape is
asymptotically linear with the wild type being the global fitness maximum, as demonstrated in Sign epistasis for L = 2. This suggests
an ansatz where a∗ is close to 4q2, which corresponds to the wild type phenotypic distance as shown in Equation E5. Given this clue,
one can additionally find that

∂

∂a
Σred(a, b, g) = 0 (G1)
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is solved by a = 4q2, b = −α and g = α. Furthermore, if we evaluate the remaining saddle point conditions around this point, we find
that this solution fails to solve them by a slight margin,

∂

∂b
Σred(a, b, g)

∣∣∣∣
a=4q2, b=−α, g=α

=
e
− α2

8q2

√
2πq

(G2)

and

∂

∂c
Σred(a, b, g)

∣∣∣∣
a=4q2, b=−α, g=α

=
α

8q2 erfc

(
α

2
√

2q

)
. (G3)

Given the fact that erfc(x) = e−x2
(

1√
πx + O

((
1
x

)3
))

, these non-vanishing terms are seen to be of the order of ε = e
− α2

8q2 . Hence, it

is sufficient to consider an expansion around the zeroth order solution of the form Σred(4q2 + A1ε,−α + A2ε, α + A3ε) to show that
Equation 49 satisfies the saddle point conditions Equation 47. To this end, we first focus on the derivatives with respect to A1 and A2,

1
ε

∂

∂A1
Σred(4q2 + A1ε,−α + A2ε, α + A3ε) = − A3ε

16q2 + O(ε2),

1
ε

∂

∂A2
Σred(4q2 + A1ε,−α + A2ε, α + A3ε) =

(
1√
2πq
− 2A2 + A3

2α

)
ε + O(ε2). (G4)

The vanishing contributions in ε imply that the zeroth order solution (4q2,−α, α) satisfies the first two saddle point conditions.
Additionally, we find that the corrections of the order O(ε) are A3 = 0 and A2 = α√

2πq
. Since A3 = 0 to leading order, the saddle point

equation with respect to g should be evaluated to order O(ε2). This yields

1
ε2

∂

∂B3
Σred(4q2 + A1ε,−α + A2ε, α + B3ε2) =

− A1
16q2 −

√
2
π q

α2 + O
(

q3

α4

) ε + O(ε2), (G5)

and subsequently, A1 is solved to be A1 =

(
16
√

2
π q3

α2 + O(q4/α3)

)
ε + O(ε2). Finally, by inserting the solutions A1, A2 and A3 as well

as the zeroth order solutions into Equation F5, the solution for ρ∗ is found to be

ρ∗ =


√

2
π qε

α
+ O

(
q3

α3

)+ O(ε2). (G6)
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