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Abstract  

The onset of the readiness potential (RP)—a key neural correlate of upcoming action—was repeatedly 

found to precede subjects’ reports of having made an internal decision. This is famously taken as 

evidence against a causal role for consciousness in human decisions making and thus as a denial of 

free-will. Yet those studies focused on purposeless, unreasoned, arbitrary decisions, bereft of 

consequences. It remains unknown to what degree these neural precursors of action generalize to 

deliberate decisions, which are more ecological and relevant to real life. We therefore directly 

compared the neural correlates of deliberate and arbitrary decision-making during a $1000-donation 

task to non-profit organizations. While we found the expected RPs for arbitrary decisions, they were 

strikingly absent for deliberate ones. Our results are congruent with the RP representing the 

accumulation of noisy, random fluctuations, which drive arbitrary—but not deliberate—decisions. The 

absence of RPs in deliberate decisions challenges the generalizability of studies that argue for no 

causal role for consciousness in decision making from arbitrary to deliberate, real-life decisions. 
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Introduction 

Humans typically experience freely selecting between alternative courses of action, say, ordering a 

particular item off a restaurant menu. Yet a series of human studies using EEG1-3, fMRI4-7, intracranial8, 

and single-cell recordings9 challenged the validity of this common experience, finding neural 

correlates of decision processes hundreds of milliseconds and even seconds prior to the time that 

subjects reported having consciously decided. These findings have been captivating scholars from 

many disciplines in and outside of academia10-15, with the prospect that the subjective human 

experience of freely deciding is but an illusion, because human actions might be unconsciously 

initiated before the conscious decision to act1,15.  

However, in the above studies, subjects were only asked to either decide when to move their hand or 

flex their wrist, and sometimes also to decide whether to move the right or left hand.12,16 That is, their 

decisions were unreasoned, purposeless, and bereft of any real consequence. This stands in sharp 

contrast to most real-life decisions that are reasoned, purposeful, and bear consequences17—from 

which clothes to wear to what route to take to work, to more formative decisions about life partners, 

career choices, and so on. Such deliberate decisions are also at the center of the philosophical debate 

on free will18,19. They typically involve more conscious and lengthy deliberation, and could thus be 

more tightly bound to conscious processes.  

Interestingly, though deliberate decisions have been widely studied in the field of neuroeconomics20,21 

or in perceptual tasks22, little has been done to assess the relation between decision-related activity and 

subjects’ conscious experience of deciding. Here, we combine the two fields of research by comparing 

neural precursors of deliberate and arbitrary decisions in an EEG experiment. Our experiment utilized 

a donation-preference paradigm, in which a pair of non-profit organizations (NPOs) were presented in 

each trial. In deliberate-decision trials, subjects’ chose to which NPO they would like to donate $1000, 

while in arbitrary-decision trials both NPOs received an equal donation of $500, irrespective of 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2017. ; https://doi.org/10.1101/097626doi: bioRxiv preprint 

https://doi.org/10.1101/097626


	 4	

subjects’ key presses (Figure 1). Notably, while the visual inputs and motor outputs were identical 

between deliberate and arbitrary decisions, the decisions’ meaning was radically different: in deliberate 

blocks, the decisions were meaningful and consequential reminiscent of important, real-life 

decisions—while in arbitrary blocks, the decisions were meaningless and bereft of consequences—

mimicking previous studies of volition.  

 

Figure 1: Experimental paradigm. The experiment included deliberate (red, left) and 

arbitrary (blue, right) blocks, each containing nine trials. In each trial, two NPO names 

were presented, and subjects were asked to either choose to which NPO they would like 

to donate (deliberate), or to simply press either right or left, as both NPOs would receive 

an equal donation (arbitrary). Within each block, some of the trials were easy (lighter 

colors) decisions, where the subject’s preferences for the two NPOs substantially 

differed (based on a previous rating session), and some were hard decisions (darker 

colors), where the preferences were more similar (easy and hard trials were intermixed 

within each block). To make sure subjects were paying attention to the NPO names even 

in arbitrary trials, memory tests (in grey) were randomly introduced, where subjects 

were asked to determine which of four NPO names appeared in the immediately 

previous trial.  
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Results 

Behavioral Results  

To validate the experimental paradigm, we manipulated decision difficulty as well as decision type 

(Fig. 1). We reasoned that this should affect only deliberate decisions, and not arbitrary ones. Subjects’ 

behavior confirmed that the experimental manipulation was successful. Subjects’ reaction times (RTs) 

were substantially slower for deliberate than for arbitrary decisions (Figure 2, left; F(1,17)=126.11, 

p<0.0001 for the main effect of decision type, as revealed by a 2-way ANOVA. The ANOVA also 

showed a main effect of decision difficulty, F(1,17)=18.76, p=0.0004; all analyses were performed on 

log-transformed data, because the raw RTs violated the normality assumption (W=0.94, p=0.001)). 

Moreover, in deliberate decisions subjects were slower for hard vs. easy decisions (F(1,17)=20.12, 

p=0.0003 for the interaction between decision type and decision difficulty; hard vs. easy deliberate 

decisions: t(17)=4.78, p=0.0002, and not significantly different between hard vs. easy arbitrary 

decisions: t(17)=1.01, p=0.325). This further demonstrates that in deliberate decisions, subjects were 

making meaningful decisions, affected by the different values of the two NPOs, while in arbitrary 

decisions they were not. 

The consistency between subjects’ choices throughout the main experiment and the NPO ratings they 

gave prior to the main session was also analyzed (see methods). As expected, subjects were highly 

consistent with their own, previous ratings when making deliberate decisions, but not when making 

arbitrary ones (Figure 2, right; F(1,17)=946.55, p<0.0001 for the main effect of decision type. A main 

effect of decision difficulty was also found: F(1,17)=57.39, p<0.0001. Again, decision type and 

decision difficulty interacted (F(1,17)=25.96, p<0.0001: subjects were much more consistent with their 

choices in easy vs. hard deliberate decisions (t(17)=11.15, p<0.0001), than they were in easy vs. hard 

arbitrary decisions (t(17)=2.50, p=0.028); though subjects were around chance in their consistency in 

arbitrary decisions (ranging between 0.39 to 0.64; it seems some subjects were slightly influenced by 
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their preferences in arbitrary, easy decisions trials). Finally, no differences were found between 

subjects’ tendency to press the right vs. left button in the different conditions (both main effects and 

interaction: F<1).  

 

Figure 2: Behavioral results. Response Times (RTs; left) and Consistency Grades (CG; 

right) in arbitrary (blue) and deliberate (red) decisions. Each dot represents the average 

RT/CG for easy and hard decisions for an individual subject (hard decisions: x-coordinate; 

easy decisions: y-coordinate). Group means and SEs are represented in dark red and blue 

crosses. The histograms at the bottom-left corner of each plot sum the number of dots with 

respect to the solid diagonal line. The dashed diagonal line represents equal 

times/consistency for easy and hard decisions; data points below that diagonal indicate 

longer RTs or higher CGs for hard decisions. In both measures, arbitrary decisions are 

more centered around the diagonal than deliberate decisions, showing no or substantially 

reduced differences between easy and hard decisions. 
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EEG Results 

Readiness Potential (RP) 

The RP, generally held to index unconscious readiness for upcoming movement1,12,23,24 (though see 25-

27), was measured over electrode Cz in the different conditions by averaging the activity in the 2 s prior 

to subjects’ movement. Focusing on the last 500 ms before movement onset for our statistical tests, we 

found a clear RP in arbitrary decisions, yet the RP was completely absent in deliberate decisions 

(Figure 3; ANOVA F(1,17)=11.86, p=0.003 for the main effect of decision type; in t-tests against zero, 

corrected for multiple comparisons, an effect was only found for deliberate decisions (hard: t(17)=5.75, 

p<0.0001; easy: t(17)=5.09, p=0.0004) and not for arbitrary ones (hard: t(17)=1.24, p>0.5; easy: 

t(17)=1.84, p=0.336). Similarly, regressing voltage against time for the last 1000 ms before movement 

onset, the downward trend was significant for arbitrary decisions (p<0.0001, for both easy and hard) 

but not for deliberate decisions (hard: p>0.5, easy: p=0.35; all Bonferroni corrected for multiple 

comparisons)). Notably, this pattern of results was also manifested for single-subject analysis (Fig. S1; 

14 of the 18 subjects had significant downward slopes for arbitrary decisions—i.e., p<0.05, Bonferroni 

corrected for multiple comparisons—when regressing voltage against time for every trial over the last 

1000 ms before movement onset; but only 5 of the 18 subjects had significant downward slopes for the 

same regression analysis for deliberate decisions; see methods. In addition, the average slope for 

deliberate and arbitrary decisions were -0.43±0.31 and -2.30±0.44 (mean±SE), respectively, a 

significant difference: t(17)=3.51, p=0.001). The pattern of results seen in Fig. 3A also persisted when 

separating left-hand button presses from right-hand ones (Figure S2), suggesting that it was not 

affected by the hand that executed the movement. 

RTs in deliberate decisions were typically more than twice as long as RTs in arbitrary decisions. We 

therefore wanted to rule out the possibility that the absence of RP in deliberate decisions stems from 

the difference in RTs between the conditions. We carried out two analyses for this purpose. First, we 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2017. ; https://doi.org/10.1101/097626doi: bioRxiv preprint 

https://doi.org/10.1101/097626


	 8	

divided the subjects into two groups based on their RT—lower and higher than the median for 

deliberate and arbitrary trials, respectively—and ran the same analysis using only the faster subjects in 

the deliberate condition (M=1.91s, SD=0.25) and the slower subjects in the arbitrary condition 

(M=1.25s, SD=0.23) (Fig. S3A). If RT length affects RP amplitudes, we would expect the RP 

amplitudes to be more similar between these two groups. However, though there were only half the 

data points, a similar pattern of results was observed (Figure S3; F(1,32)=5.11, p=0.031), with 

significant RP found in arbitrary (easy: t(8)=4.57, p=0.0018; hard: t(8)=4.09, p=0.0035), but not 

deliberate (easy: t(8)=1.92, p=0.09; hard: t(8)=0.63, p=0.54) decisions.  

Figure 3: (A) Mean and SE of the Readiness Potential (RP) in deliberate (red shades) and arbitrary (blue shades) easy and 

hard decisions in electrode Cz, as well as scalp distributions. Zero refers to time of right/left response made by the subject. 

Notably, the RP significantly differs from zero and displays a typical scalp distribution for arbitrary decisions only. The 

scalp distribution was calculated over the averaged activity during the last 500 ms before response, across subjects. The 

inset shows the mean amplitude of the RP, with 95% confidence intervals over the same time window. (B) Individual 

subjects’ Cz activity in the four conditions (n=18). The linear-regression line for voltage against time over the last 1000 ms 

before movement onset is designated by a dashed, dark-grey line. Note that the waveforms converge to an RP only in 

arbitrary decisions. 
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Second, we regressed the difference between RPs (averaged over the last 500 ms before movement 

onset) in deliberate and arbitrary decisions against the difference between the RTs in these two 

conditions for each subject (Fig. S3B). Again, if RT length affects RP amplitudes, we would expect 

differences between RTs in deliberate and arbitrary conditions to correlate with differences between 

RPs in the two conditions. But no correlation was found between the two measures. Taken together, 

these results provide strong evidence against the claim that the difference in RPs stems from or is 

affected by the difference in RTs between the conditions. 

Lateralized Readiness Potential (LRP) 

The LRP, which reflects activation processes within the motor cortex for action preparation after 

response selection,28,29 was measured by subtracting the difference potentials (C3-C4) in right-hand 

response trials from this difference in left-hand responses trials and averaging the activity over the 

same time window.2,28 In this purely motor component, no difference was found between the two 

decision types (Fig S4; all Fs<1).  

Drift Diffusion Model (DDM) 

The main finding of this study—the absence of RP in deliberate decisions – is in line with a recent 

work that used a Drift-diffusion model (DDM) to claim that the RP is a mere artifact of time-locking 

neural activity to movement onset 25. DDMs of decision-making typically feature a process that rises 

toward a threshold. The crossing of that threshold reflects the onset of the decision in the model, 

possibly leading to action. Schurger and colleagues25 modelled arbitrary decisions, and suggested that 

there the threshold crossing leading to movement onset is largely determined by spontaneous 

subthreshold fluctuations of the neural activity. This challenged the common view of the RP as a 

neural correlate of unconscious preparation for upcoming action24. Instead, Schurger and colleagues 

claimed, time-locking to movement onset ensures that these spontaneous fluctuations appear, when 

averaged over many trials, as a gradual increase in neural activity.  
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To further assess this interpretation of the RP, we expanded the model developed by Schurger and 

colleagues25 to a DDM that was composed of a value-assessment component and a noise-generation 

component. Under this assumption, Cz-electrode activity mainly reflects the noise-generation 

component. Each trial was further modeled as a race to threshold between two alternatives: one where 

the subject chose the NPO that was rated higher in the earlier rating session (the congruent option) and 

the other where the subject preferred the lower-rated NPO (the incongruent option). Each race was 

represented as a leaky stochastic accumulator (see Methods for details and model parameters).  

We fit our DDM to our average empirical reaction-times, which were 2.13, 2.52, 0.98 and 1.00 s for 

the different conditions (henceforth, magnitudes are given for deliberate easy, deliberate hard, arbitrary 

easy, and arbitrary hard, respectively). The model’s mean RTs were 2.04, 2.46, 0.94, and 0.96 s for 

these conditions (Fig. 4A, B). The model was further fit to the empirical congruency ratios (the 

proportions of congruent decisions), which were 0.99, 0.83, 0.54 and 0.49. The model’s congruency 

ratios were 1.00, 0.84, 0.53 and 0.53. The model then predicted the shape of the ERP in its noise 

component (assumed to reflected by Cz-electrode activity) for each decision type: a continuing, RP-

like decrease in activity for arbitrary decisions, but only a very slight decrease in activity for deliberate 

decisions (Fig. 4C; see also Fig S5), which was well in line with our empirical results (Fig. 3A).  

 

Discussion  

Since the publication of Libet’s seminal work claiming that neural precursors of action, in the form of 

the RP, precede subjects’ reports of having consciously decided to act1, a vigorous discussion has been 

ranging between neuroscientists, philosophers, and other scholars about the meaning of these findings 

for the debate on free will (recent collections include 30-32). Some claim that these results have removed 

conscious will from the causal chain leading to action15,3312,33. Others are unconvinced that these 

results are decisive for, or even applicable to, the free-will debate 18,19,34. At the heart of much of this 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2017. ; https://doi.org/10.1101/097626doi: bioRxiv preprint 

https://doi.org/10.1101/097626


	 11	

debate lies the RP, thought to represent unconscious decision/planning mechanisms that initiate 

subjects’ decisions prior to their conscious experience of deciding1,23.  

 

Figure 4: (A) The empirical distributions of subjects’ RTs across the four decision types. (B) The equivalent 

distributions of RTs for the model. (C) The model’s prediction for the ERP activity in electrode Cz across all 

four decision types. 

Notably, the RP and similar findings showing neural activations preceding the conscious decision to 

act have typically been based on arbitrary decisions of different types1,2,4,5,13,35,36. This, among other 

reasons, rested on the notion that for an action to be completely free, it should not be determined in any 

way by external factors37—which is the case for arbitrary, but not deliberate, decisions (where each 
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decision alternative is associated with a value, and the value of alternatives typically guide one’s 

decision). But this notion of freedom faces several obstacles. First, most discussions of free will focus 

on deliberate decisions, asking when and whether these are free38-40. This might be because everyday 

decisions to which we associate freedom of will—like choosing a more expensive but more 

environmentally friendly car, helping a friend instead of studying more for a test, donating to charity, 

and so on—are generally deliberate, in the sense of being reasoned, purposeful, and bearing 

consequences (although see41). In particular , the free will debate is often considered in the context of 

moral responsibility (e.g., was the decision to harm another person free or not)12,42-46, and free will is 

even sometimes defined as the capacity that allows one to be morally responsible34,47. In contrast, it 

seems meaningless to assign blame or praise to arbitrary decisions. Thus, though the scientific 

operationalization of free will has typically focused on arbitrary decisions, the common interpretations 

of these studies—in neuroscience and across the free will debate—have often alluded to deliberate 

ones. Here, we show that this type of inference may not be justified, as the neural precursors of 

arbitrary decisions do not generalize to meaningful ones18,19. Interestingly, while the RP was present in 

deliberate decisions but absent in arbitrary ones, the LRP—a central, more-motor ERP component—

was indistinguishable between the different decision types. This provides evidence that, at the motor 

level, the neural representation of the deliberate and arbitrary decisions that our subjects made may 

have been indistinguishable, as was our intention when designing the task. 

Our finding and the model thus suggests that two different mechanisms may be involved in arbitrary 

and deliberate decisions. Earlier literature demonstrated that deliberate, reasoned decision-making—

which was mostly studied in the field of neuroeconomics20 or using perceptual decisions22—elicited 

activity in the prefrontal cortex (PFC; mainly the dorsolateral (DLPFC) part48,49 and ventromedial 

(VMPFC) part/orbitofrontal cortex (OFC)50,51 and the anterior cingulate cortex (ACC)52,53. Arbitrary, 

meaningless decisions, in contrast, were mainly probed using variants of the Libet paradigm, showing 
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activations in the Supplementary Motor Area (SMA), alongside other frontal areas like the 

frontomedian cortex54,55 or the frontopolar cortex, as well as the posterior cingulate cortex4,9 (though 

see56, which suggests that a common mechanism may underlie both decision types). Possibly then, 

arbitrary and deliberate decisions may differ not only in respect to the RP, but may be subserved by 

different underlying neural circuits, which makes generalization from one class of decisions to the 

other more difficult. Future studies need to explore the relations between deliberate decision-making 

and subjects’ conscious experience of reaching a decision. 

Aside from highlighting the differences between arbitrary and deliberate decisions, this study 

also challenges a common interpretation of the function of the RP. If the RP is not present before 

deliberate action, it does not seem to be a necessary link in the general causal chain leading to action. 

Schurger and colleagues25 suggested that the RP reflects stochastic fluctuations in neural activity that 

lead to action following a threshold crossing when humans arbitrarily decide to move. Our results and 

our model are in line with that interpretation and expand upon it, suggesting that the RP represents the 

accumulation of noisy, random fluctuations that drive arbitrary decisions, while deliberate decisions 

are mainly driven by the values associated with the decision alternatives57. Our DDM was based on the 

assumption that every decision is driven by a component based on the values of the decision 

alternatives (the subject’s support for the two NPOs in our case) and by another component 

representing noise—random fluctuations in neural activity. The value component plays little to no role 

in arbitrary decisions, so action selection and timing depend on when the accumulation of noise crosses 

the decision threshold for the congruent and incongruent decision alternatives. In deliberate decisions, 

in contrast, the value component drives the decisions, while the noise has a smaller effect. Thus, in 

arbitrary decisions, action onset closely tracks threshold crossings of the noise accumulation. But, in 

deliberate decisions, the noise component is at more random levels at movement onset. Hence, locking 

the ERP to movement onset and averaging over trials to obtain the RP, leads to a relatively flat signal 
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for deliberate decisions but to the expected RP shape in arbitrary decisions. This provides strong 

evidence that the RP is an artificial signal, induced by threshold crossing of random fluctuations in 

arbitrary decisions and absent in deliberate ones. Further studies of the causal role of consciousness in 

deliberate versus arbitrary decisions are required to test this claim. 

 

Methods 

Subjects  

Eighteen healthy subjects participated in the study. They were California Institute of Technology 

(Caltech) students as well as members of the Pasadena community. All subjects had reported normal or 

corrected-to-normal sight and no psychiatric or neurological history. They volunteered to participate in 

the study for payment ($20 per hour). Subjects were prescreened to include only participants who were 

socially involved and active in the community (based on strength of their support of social causes, past 

volunteer work, past donations to social causes, and tendency to vote). Two additional subjects were 

excluded, one due to highly noisy recording and the other due to extremely long RTs, which deviated 

from the mean by more than two standard deviations. The experiment was approved by Caltech’s 

Institutional Review Board, and informed consent was obtained from all participants after the 

experimental procedures were explained to the subjects.  

Stimuli and apparatus   

Subjects sat in a dimly lit room. The stimuli were presented on a 21” Viewsonic G225f (20” viewable) 

CRT monitor with a 60-Hz refresh rate and a 1024×768 resolution using Psychtoolbox version 3 and 

Mathworks Matlab 2014b58,59. They appeared with a gray background (RGB values: [128, 128,128]). 

The screen was located 60 cm away from subjects' eyes. Stimuli included names of 50 real non-profit 

organizations (NPOs). Twenty organizations were consensual (e.g., the Cancer Research Institute, or 
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the Hunger project), and thirty were more controversial: we chose 15 causes that are widely debated 

(e.g., pro/anti guns, pro/anti abortions), and selected one NPO that supports each of the two sides of the 

debate. This was done to achieve variability in subjects’ willingness to donate to the different NPOs. In 

the main part of the experiment, succinct descriptions of the causes (e.g., pro-marijuana legalization, 

pro-child protection; for a full list of NPOs and acronyms, see Table S1) were presented in black 

Comic Sans MS.  

Procedure & Experimental Design 

In the first part of the experiment, subjects were presented with each NPO separately. They were 

instructed to rate how much they would like to support that NPO with a $1000 donation on a scale of 1 

(“I would not like to support this NPO at all) to 7 (“I would very much like to support this NPO”). No 

time pressure was put on the subjects, and they were given access to the website of each NPO to give 

them the opportunity to learn more about the NPO and the cause it supports. 

After the subjects finished rating all NPOs, the main experiment began. It included 360 trials, divided 

into 40 blocks of 9 trials each. In each block, subjects made either deliberate or arbitrary decisions. 

Two succinct causes descriptions. representing two actual NPOs, were presented in each trial (Fig. 1). 

In deliberate blocks, subjects were instructed to choose the NPO to which they would like to donate 

$1000 by pressing the <Q> or <P> key on the keyboard, for the NPO on the left or right, respectively, 

as soon as they decided. Subjects were informed that at the end of each block one of the NPOs they 

chose would be randomly selected to advance to a lottery. Then, at the end of the experiment, the 

lottery will take place and the winning NPO will receive a $20 donation. In addition, that NPO will 

advance to the final, inter-subject lottery, where one subject’s NPO will be picked randomly and will 

be given a $1000 donation. It was stressed that the donations were real and that no deception was used 

in the experiment. To persuade the subjects that the donations are real, we presented a signed 

commitment to donate the money, and promised to send them the donation receipts after the 
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experiment. Thus, subjects knew that in deliberate trials, every choice they made was not hypothetical, 

and could potentially lead to an actual $1020 donation to their chosen NPO.  

Arbitrary trials were identical to deliberate trials except for the following crucial differences. Subjects 

were told that, at the end of each block, the pair of NPOs in one randomly selected trial would advance 

to the lottery together. And, if that pair wins the lottery, both NPOs would receive $10 each. Further, 

the NPO pair that would win the inter-subject lottery would receive a $500 donation each. Hence it 

was stressed to the subjects that there was no reason for them to prefer one NPO over the other in 

arbitrary blocks, as both NPOs would receive the same donation regardless of their button press. 

Subjects were told to therefore simply press either <Q> or <P> when they felt the urge to do so.  

Thus, while subjects’ decisions in the deliberate blocks were meaningful and consequential, their 

decisions in the arbitrary blocks had no impact on the final donations that were made. In these trials, 

subjects were further urged not to let their preferred NPO dictate their response. Note that we did not 

ask subjects to report their “W-time” (time of consciously reaching a decision), because this measure 

was shown to rely on neural processes occurring after movement onset60 and to potentially be 

backward inferred from movement time61. Even more importantly, clock monitoring was demonstrated 

to have an effect on RP size62, so it could potentially confound our results63. 

In addition, we manipulated decision difficulty (Easy/Hard) throughout the experiment, randomly 

intermixed within each block. Decision difficulty was determined based on the rating difference 

between the two presented NPOs. NPO pairs with 1 or 4 or more rating point difference were 

designated hard or easy, respectively.  Based on each subject’s ratings, we created a list of NPO pairs, 

half of each were easy choices and the other half hard choices.  

Each block started with an instruction written either in dark orange (Deliberate: “In this block choose 

the cause to which you want to donate $1000”) or in blue (Arbitrary: “In this block both causes may 

each get a $500 donation regardless of the choice”). Short-hand instructions appeared at the top of the 
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screen throughout the block in the same colors as that block’s initial instructions; Deliberate: “Choose 

for $1000” or Arbitrary: “Press for $500 each” (Fig. 1). Each trial started with a fixation cross, with a 

duration drawn from a uniform distribution between 1 and 1.5s. Then, the two cause descriptions 

appeared on the left and right side of the fixation cross (left/right assignments were randomly 

counterbalanced), and remained on the screen until the subjects responded with a key press. The cause 

corresponding to the pressed button then turned white, and a new trial started. If subjects did not 

respond within 20s, they received an error message and were informed that if this trial would be 

selected for the lottery, no NPO would receive a donation. However, this did not happen for any 

subject on any trial.  

To assess the consistency of subjects’ decisions during the main experiment with their ratings in the 

first part of the experiment, subjects’ choices were coded in the following way: each binary choice in 

the main experiment was given a consistency grade of 1, if subjects chose the NPO that was rated 

higher in the rating session, and 0 if not. Then a consistency grade was calculated as the mean over all 

the choices. A consistency grade of 1 indicates perfect consistency with one’s ratings, 0 – perfect 

inconsistency, and 0.5 – chance performance. 

To better equate memory load, attention, and other cognitive aspects between deliberate and arbitrary 

decisions—except those aspects directly associated with the decision type, which was the focus of our 

investigation—we wanted to make sure subjects were carefully reading and remembering the causes 

also during the arbitrary trials. We therefore randomly interspersed 36 memory catch-trials throughout 

the experiment (thus more than one catch trial could occur per block). On such trials, four succinct 

descriptions of causes were presented and subjects had to select the one that appeared in the previous 

trial. A correct or incorrect response added or subtracted 50 cents from their total, respectively. 

(Subjects were informed that if they reached a negative balance, no money will be deducted off their 

payment for participation in the experiment.) Thus, subjects could earn $18 more for the experiment, if 
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they answered all memory test questions correctly. Subjects typically did well on these memory 

questions, on average erring in 2.5 out of 36 memory catch trials (7% error) and gaining an additional 

$16.75 (SD=3.19).  

ERP recording methods   

The EEG was recorded using an Active 2 system (BioSemi, the Netherlands) from 64 electrodes 

distributed based on the extended 10–20 system and connected to a cap, and seven external electrodes. 

Four of the external electrodes recorded the EOG: two located at the outer canthi of the right and left 

eyes and two above and below the center of the right eye. Two external electrodes were located on the 

mastoids, and one electrode was placed on the tip of the nose. All electrodes were referenced during 

recording to a common-mode signal (CMS) electrode between POz and PO3. The EEG was 

continuously sampled at 512 Hz and stored for offline analysis.  

ERP analysis  

ERP analysis was conducted using the “Brain Vision Analyzer” software (Brain Products, Germany) 

and in-house Mathworks Matlab scripts. Data from all channels were referenced offline to the average 

of all channels. The data were then digitally high-pass filtered at 0.1 Hz using a Finite Impulse 

Response (FIR) filter to remove slow drifts. A notch filter at 59-61 Hz was applied to the data to 

remove 60-Hz electrical noise. The signal was then cleaned of blink artifacts using Independent 

Component Analysis (ICA)64. Signal artifacts were detected as amplitudes exceeding ±100 µV, 

differences beyond 100 µV within a 200 ms interval, or activity below 0.5 mV for over 100 ms (the 

last condition was never found). Sections of EEG data that included such artifacts in any channel were 

removed (150ms prior and after the artifact), leaving an average number of 70.38 trials with a range of 

36-86 out of 90 trials per condition. Channels that consistently had artifacts were replaced using 

interpolation (4.2 channels per subject, on average). .  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2017. ; https://doi.org/10.1101/097626doi: bioRxiv preprint 

https://doi.org/10.1101/097626


	 19	

The EEG was segmented by locking the waveforms to subjects’ decision onset, starting 2s prior to the 

decision and ending 0.2s afterwards, with the segments averaged separately for each decision type 

(Deliberate/Arbitrary x Easy/Hard) and decision content (right/left). The baseline period was defined 

as the time window between -1000ms and -500ms prior to the beginning of the trial. Baseline 

adjustment included subtracting the mean amplitude of the activity during the baseline period from all 

the data points in the segment.  

Differences greater than expected by chance were assessed using two-way ANOVAs with decision 

type (deliberate, arbitrary) and decision difficulty (easy, hard), using IBM SPSS statistics, version 24. 

For both RP and LRP signals, the mean amplitude from 500 ms before to button-press onset were used 

for the ANOVAs. Greenhouse–Geisser correction was never required as sphericity was never 

violated65. 

Trend analysis on all subjects’ data (Fig. 3B) was carried out by regressing the voltage for every 

subject against time for the last 1000 ms before movement onset using first-order polynomial linear 

regression. We used every 10th time sample for the regression (i.e., the 1st, 11th, 21st, 31st samples, and 

so on) to conform with the individual-subject analysis (see below). For the individual-subject analysis, 

the voltage on all trials was regressed against time in the same manner (i.e., for the last 1000 ms before 

movement onset and using first-order polynomial linear regression). As individual-trial data is much 

noisier than the mean over all trials in each subjects, we opted for standard robust-regression using 

iteratively reweighted least squares (implemented using the robustfit() function in Mathworks Matlab). 

The iterative robust-regression procedure is time consuming. So, we used every 10th time sample 

instead of every sample to make the procedure’s run time manageable. 

Model and Simulations  

All simulations were performed using Mathworks Matlab 2014b. The model was devised off the one 

proposed by Schurger and colleagues25. They built a drift-diffusion model66,67 for arbitrary decisions 
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only, which included a leaky stochastic accumulator (with a threshold on its output) and a time-

locking/epoching procedure. Their model amounted to iterative numerical integration of the 

differential equation 

 

where I is the drift rate, k is the leak (exponential decay in x), ξ is Gaussian noise, and c is a noise-

scaling factor (we used c = 0.05). Δt is the discrete time step used in the simulation (we used Δt = 

0.001, similar to our EEG sampling rate). Here I represents a constant urgency to respond that is 

inherent in the demand characteristics of the task, evidenced by the fact that no subject took more than 

20 s to decide on any trial. The leak term, k, ensures that the model would not be too linear; i.e., it 

prevents the urgency from setting up a linear trajectory for the accumulator toward the threshold. 

Hence, due to the leak term, doubling the magnitude of the threshold would make the accumulator 

rarely reach the threshold, instead of reaching it in roughly twice the amount of time (up to the noise 

term) without a leak term.  

Our model accounted for both arbitrary and deliberate decisions and was built to fit our empirical 

results, based on with two Schurger-like components. The first one accumulated activity that drove 

arbitrary decisions (i.e., random fluctuations25). The second component drove deliberate decisions 

based on subjects’ values associated with the decision alternatives. Henceforth we term these Noise 

and Value components for ease of description. Our model used its Noise component for arbitrary 

decisions and its Value one for deliberate decisions. 

Schurger and colleagues modeled only the decision when to move. But our subjects decided both when 

and which hand to move. So, we had to extend the Schurger model in that respect as well. We did this 

using a race-to-threshold mechanism between the two decision alternatives. In our paradigm, the 

difference in rating was either 1 (hard decisions) or 4-6 (easy decisions; see “Procedure & 

menter sat outside of the shielded room and communicated with the subject
via an intercom.

Each session began with a 5-min resting-state recording (part of a separate
experiment). After this recording the subject performed 50 trials of the
classic Libet task and then 150 trials of the interruptus task (three rounds of
50 trials each), in that order. Instructions for the interruptus task were
explained to the subject only after the classic Libet task had been completed.
The only difference between the two tasks was the possibility of inter-
ruptions in the latter task (a nonaversive auditory “pip” played through an
EEG-compatible earphone). In all other respects the trial sequence was the
same for the two tasks.

Classic Libet Task. Each trial beganwith the appearance of thefixation cross at
the center of the screen. The experimenter would press a key on the stimulus
computer keyboard, causing the clock face to appear. The subject would then
initiate the trial by pressing the button, at which point the dot would appear
and begin (starting at the top of the clock) to circle the clock face. Subjects
were instructed to wait for one full cycle on the clock and then, at any time
after that, to press the button. Subjects were instructed to maintain the
thumb relaxed and in contact with the button throughout the entire trial (i.e.,
to not lift the thumb just before pressing the button) and to make one single
abrupt flexion of the thumb at an unspecified time. Subjects were told to try
not to decide or plan in advance when to press the button, but to make the
event as spontaneous and capricious as possible. Subjects were reminded
that, after the first cycle of the dot around the clock face, the movement
could be made at any time. Despite this, no subject ever waited longer than
30 s to produce a movement.

After the subject pressed the button, the dot would continue to circle the
clock for 1 s and then the screen would go blank. The subject would then
indicate, verbally, the approximate position of the dot at the time that she or
he was first aware of the urge to press the button (subjects were reminded
that this is not the same as indicating the time of the movement itself, and
we made sure that they understood the difference). [Libet’s method for
measuring the onset of felt urges has been criticized (61), but is irrelevant to
this experiment, which concerns only the initiation of movement. We nev-
ertheless report these data, for completeness.] The experimenter would
then verbally repeat the number back to the subject for verification and
note the time alongside the trial number in a log book (these were later
entered manually onto a computer spreadsheet, alongside the trial in-
formation exported from E-Prime). The experimenter would then press a key
to initiate the next trial.

Libetus Interruptus Task. The instructions for the interruptus task were given
only after the subject completed the classic task. Subjects were told that they
were to repeat the same task as before and were given the following ad-
ditional instructions (in French): “At any time during a trial you might hear
a brief click. If you hear the click, then you should press the button imme-
diately, as quickly as possible. The trial ends when you either make a spon-
taneous movement or are interrupted by a click, whichever happens first.”
Subjects were reminded to make the movement as spontaneous as possible
and were also reminded that the task is not a race to press the button before
the click—the experimenter has no preference for “click trials” or “sponta-
neous-movement trials” (cf. ref. 7).

For the interruptus task, random interruptions were scheduled (by the
computer software) forevery trial. In sometrials the subjectmadea self-initiated
movement before the scheduled interruption, and in some trials the subject
was interrupted before making a self-initiated movement. The time of inter-
ruptions was selected randomly from a uniform distribution with the range
being selected to encompass the subject’s waiting-time distribution from the
preceding session. The lowendof the rangewas never earlier than100ms (“10”
on the clock) after the first clock cycle, to avoid extremely early interruptions.
The precise range over which interruption times were randomly selected was
recorded for each round for each subject, and these ranges were used for the
fitting of each subject’s waiting-time distribution and to derive the predicted
waiting-time distribution for the interruptus task (Fig. 3B). The use of a Poisson
distribution would have ensured that subjects could not use elapsed time to
predict the probability of an interruption. However, this method would also
have resulted in a preponderance of early interruptions and may have been
more likely to incite subjects to rush their responses to beat the clock. Also
this method would have resulted in the time of interruptions being biased to-
ward the early part of the trial. Thus, we opted for a uniform distribution.

EEG Recording. EEG signals were recorded inside a shielded chamber at
a sampling rate of 1,000 Hz (Elekta NeuroMag EEG/MEG system), while the
subject performed the tasks. The subject wore a 60-channel EEG cap (Elekta

NeuroMag ) and sat in a reclined position. To shorten the EEG preparation
time, we used a subset of the 60 electrodes, encompassing the standard 10–20
montage, with the addition of C1, C2, FC1, and FC2. We endeavored to keep
impedances below 10 kOhm, while being mindful of any reported discom-
fort during the preparation. Electrooculograms (EOG) (horizontal and ver-
tical) and electromyograms (EMG) (flexor pollicis longus muscle) were also
recorded, using pairs of electrodes connected to bipolar recording channels.
Time locking to the rectified, high-pass–filtered EMG signal did not notice-
ably change the results, but only shifted them ∼50 ms forward in time. Be-
cause EMG data were unavailable for three subjects (due to excess hair on
the arm or an electrode coming loose) and were unreliable for a fourth, we
chose to time lock to the button press.

EEG Data Analysis. Data analysis was performed using MatLab (MathWorks)
with the help of the FieldTrip toolbox for MatLab (http://fieldtrip.fcdonders.
nl/). A dedicated trigger channel was used to insert temporal markers in the
data, corresponding to trial onset, button press, and auditory interruptions.
Data epochs were time locked to the first button press after trial onset
(whether spontaneous or in response to an interruption) and epochs cov-
ered the time window from −3.5 s to +1.0 s relative to that event. For time
locking to interruptions, the trigger pulse corresponding to the auditory pip
was located within the epoch, and the whole epoch was realigned to this
sample. Independent component analysis (ICA) was used to remove ocular
artifacts from the data (62). Ocular ICA components were identified by visual
inspection and comparison with the EOG signals. Trials with artifacts
remaining after this procedure were excluded by visual inspection. Because
we were interested in slow fluctuations, no detrending, baseline correction,
or hi-pass filtering was performed. Data were downsampled to 250 Hz
during preprocessing, before data analysis.

Due to anatomical differences between subjects, variation in the posi-
tioning of the electrode cap, and the fact that our EEG caps came in three
discrete sizes, it is unlikely that any given electrode will be optimally placed to
record the RP in all subjects. Most subjects exhibited an RP at electrode Cz and
one or more adjacent electrodes, especially contralateral to the dominant
hand (used to perform the task), but the center of the spatial distribution
varied from subject to subject. Therefore, for each subject we selected an
electrode fromCz, C1, or FC1 (Cz, C2, or FC2 if left handed) on the basis of data
from the classic task, showing the highest-amplitude RP. This same electrode
was then used for analysis of the data from the interruptus task (so the choice
of electrode used in Fig. 3 was independent of the data presented in Fig. 3).
Limiting the choice to C1 (C2) or FC1 (FC2) did not change the outcome.

Model and Simulations. All simulations were performed using MatLab
(MathWorks). The model includes two components: a leaky stochastic accu-
mulator (with a threshold on its output) and a time-locking/epoching pro-
cedure. We used a well-known accumulator model (DDM) (27), which is an
extension of an earlier model developed by Ratcliff (23). Simulation of the
model amounts to iterative numerical integration of the differential equation

δxi ¼ ðI−kxiÞΔt þ cξi
ffiffiffiffiffiffi
Δt

p
; [1]

where I is drift rate, k is leak (exponential decay in x), ξ is Gaussian noise, and
c is a noise-scaling factor (we used c = 0.1). Δt is the discrete time step used in
the simulation (we used Δt = 0.001). In the context of our model, I corre-
sponds to a general (and we assume constant) urgency to respond that is
inherent in the demand characteristics of the task. A small amount of ur-
gency is necessary in the model to account for the fact that subjects rarely if
ever wait longer than ∼20 s to produce a movement in any given trial. Be-
cause of the leak term, the urgency does not set up a linear trajectory to-
ward the threshold (i.e., if we were to increase the threshold that we used by
a factor of 2, the output of the accumulator would essentially never reach
it), but simply moves the baseline level of activity closer to the threshold so
that a crossing is very likely to happen soon (Fig. 1, Inset).

Thus, the model has three free parameters, urgency (I), leak (k), and
threshold (β). The threshold was expressed as a percentile of the output
amplitude over a set of 1,000 simulated trials (50,000 time steps each). These
three parameters were chosen on the basis of the best fit of the first
crossing-time distribution to the empirical waiting-time distribution from the
classic Libet task (we use the term “waiting time” instead of “reaction time”).
The parameters were then fixed at these values for all other simulations and
analyses, including the fitting of the RP. The three parameter values assigned
were k = 0.5, I = 0.11, and β = 0.298 (corresponding to the 80th percentile).
We modeled the classic task by simply identifying the time point of the first
threshold crossing in each simulated trial and then extracting the time series
(the output of the accumulator) from 5,000 time steps before the threshold
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Experimental Design” in Methods), so there was always an alternative that was ranked higher than the 

other. Choosing the higher or lower alternative was termed a congruent or incongruent choice with the 

initial ratings, respectively. 

Using a parameter sweep, we found the values of the thresholds, urgency, and leak that best fit our 

average empirical reaction times for {easy, hard} x {deliberate, arbitrary} decisions as well as our 

empirical consistency ratios for those 4 decision types. The model’s reaction time was defined as the 

overall time (where each step took Δt = 0.001 s) that it took until the first threshold crossing in the 

race-to-threshold pair. We used the same threshold value of 0.15 and leak value of k=0.5 for all model 

types. The only parameter that was modulated across {deliberate, arbitrary} x {easy, hard} decisions x 

{congruent, incongruent} decision alternatives was the urgency, I (Table 1). These parameters were 

then fixed when fitting the simulated Cz activity across all conditions. 

Urgency (I) 

values 

Congruent Incongruent 

Easy Hard Easy Hard 

Deliberate 0.0400 0.1010 0.0228 0.0000 

Arbitrary 0.1650 0.1648 0.1650 0.1566 

Table 1: Values of the urgency parameter, I, in our model across {deliberate, arbitrary} x {easy, 

hard} decisions x {congruent, incongruent} decision alternatives. 

Each simulation consisted of either 120 runs of the model, the same as the number of empirical trials 

per condition (Fig. 4C), or 10000 runs of the model for a smoother reaction-time distribution for the 

model (Fig. 4B). For each run of the model, we identified the first threshold crossing point and 

extracted the last second (1000 steps) before the crossing in each run. If the first crossing was earlier 

than sample no. 1,000 by n > 0 samples, we padded the beginning of the epoch with n null values 

(NaN or “not-a-number” in Matlab). These values did not contribute to the average across simulated 
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trials, so the simulated average RP became noisier at earlier time points in the epoch. Our model was 

therefore similarly limited to the Schurger model in its inability to account for activity earlier than the 

beginning of the trial. (Fig. 3C). 
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