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Abstract In many contexts, the problem arises of determining which of many candidate 
mutations is the most likely to be causative for some phenotype. It is desirable to have a 
way to evaluate this probability that relies as little as possible on previous knowledge, to 
avoid bias against discovering new genes or functions.  We are isolating mutants with 
blocked cell cycle progression in Chlamydomonas, and determining mutant genome 
sequences. Due to the intensity of UV mutagenesis required for efficient mutant 
collection, the mutants contain multiple mutations altering coding sequence.  To provide 
a quantitative estimate of probability that each individual mutation in a given mutant is 
the causative one, we develop a Bayesian approach.  The approach employs four 
independent indicators: sequence conservation of the mutated coding sequence with 
Arabidopsis; severity of the mutation relative to Chlamydomonas wild type based on 
Blosum62 scores; meiotic mapping information for location of the causative mutation 
relative to known molecular markers; and, for a subset of mutants, transcriptional profile 
of the candidate wild type genes through the mitotic cell cycle.  
These indicators are statistically independent, and so can be combined quantitatively 
into a single probability calculation. We validate this calculation: recently isolated 
mutations that were not in the training set for developing the indicators, with high 
calculated probability of causality, are confirmed in every case by additional genetic data 
to indeed be causative. Analysis of best reciprocal blast relationships among 
Chlamydomonas and other eukaryotes indicate that the Ts-lethal mutants that our 
procedure recovers are highly enriched for fundamental cell-essential functions 
conserved broadly across plants and other eukaryotes, accounting for the high 
information content of sequence alignment to Arabidopsis. 
 
Introduction  
 
The use of model genetic systems to obtain insight into related organisms is well 
established; as a leading example, yeast genetics has been highly revelatory about 
fundamental cell biology in animals (Botstein and Fink 2011). Because fungi diverged 
from animals considerably after their last common ancestor diverged from the plant 
lineage (Rogozin et al., 2009), it is an open question to what extent yeast/animal 
paradigms will apply to the plant lineage.  
 
To address this question, we initiated a genetic screen for Ts-lethal mutations in the 
green alga Chlamydomonas reinhardtii, focusing on cell cycle control mutations (Tulin 
and Cross 2014). The reasoning was that facile microbial genetics and cell culture would 
facilitate isolation of informative mutants, compared to carrying out a related screen 
directly in higher plants. A specific feature likely to make such a screen easier in green 
algae than in higher plants is the high degree of gene duplication in plants, due largely to 
multiple whole-genome duplications in the plant lineage after divergence from green 
algae. Loss-of-function genetics is severely hampered by the presence of duplicated 
sequences; the Chlamydomonas genome is largely (though not entirely) single-copy for 
protein coding sequence.  
 
From the broad spectrum of Ts-lethal phenotypes, we concentrated on two classes: 
mutants that initiated some cytological features of the cell division program but failed to 
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complete division, and mutants with competence at cell growth, that were unable to 
initiate division processes. We called these mutant classes ‘DIV’ and ‘GEX’ respectively. 
Obviously cell-cycle-related genes based on annotations (e.g., DNA polymerase 
subunits) were mainly in the DIV class; GEX genes were more diverse in function based 
on annotations. Together, these classes represented a few percent of the total Ts-lethal 
spectrum (Tulin and Cross 2014).  
 
The assumption behind the project, with respect to gaining insight into higher plant 
genomes, is that evolutionary conservation will likely preserve function of essential 
genes, so that genes identified by Ts-lethal screening as essential in Chlamydomonas 
will be essential (or will be members of essential sequence families) in higher plants. 
This assumption is plausible but by no means certain. As a trivial example, yeast cell 
walls are essential, but animal cells lack walls and genes for their production. 
Additionally, replacement of important cell cycle regulators by entirely unrelated proteins 
carrying out similar functions is documented comparing yeast and animals (Cross et al., 
2011, Medina et al., 2016).  
 
In our approach, Ts-lethal mutations were induced by UV mutagenesis; identification of 
likely causative mutations was by next-generation sequencing analysis of bulked 
segregant pools, which identifies SNPs at or linked to the causative mutation (Tulin and 
Cross 2014). Two problems remain. First, the sequencing approach identifies the 
causative mutation in most but not all cases; second, the density of UV-induced 
mutagenesis needed for efficient screening (Breker et al. 2016) is such that the 
causative SNP is frequently very difficult to separate by meiotic recombination from a 
small number of linked ‘passenger’ SNPs. These problems mean that formally, in no 
case can we assert with certainty that a given SNP is causative – if it is one of a number 
of linked candidates, a priori any of them could be causative, and even if it is the only 
candidate, it is possible that it is a passenger with an unsequenced, truly causative 
mutation. 
 
To solve this problem, we followed three routes. First, complementation and linkage 
analysis can demonstrate that we have multiple independent alleles in the same gene. In 
such a case, if independent mutations altering the same gene model are found by 
sequence analysis, we assume that these mutations are causative. Second, in many 
cases we could isolate revertants by selection at high temperature. When sequence 
analysis showed that the revertants altered one of the gene models hit by the original set 
of SNPs (typically by exact reversion, or by pseudo-reversion at a nearby residue), we 
assume that this also constitutes definitive identification.  
 
Third, for mutants not covered by either method, we developed a Bayesian method, 
based on sequence characteristics of the candidate SNPs and linkage analysis. This 
method was sketched out previously (Tulin and Cross 2014). Here, we specify and 
develop the exact model. We extend the method, substantially increasing its power, by 
addition of a new indicator: transcriptional profiling of candidate genes through the cell 
cycle. Critically, we validate the method by analysis of new genetic and molecular data, 
with mutations not in the training set used to develop the indicators. Finally, we use 
bioinformatics tests, including analysis of best reciprocal Blast-defined sequence 
families, to show that essential genes in Chlamydomonas are preferentially conserved 
with respect to higher plant genomes.  
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Methods 
 
Mutant isolation and mutation detection. Temperature-sensitive-lethal (‘Ts-‘) mutants 
were isolated after UV mutagenesis, and screened for proliferation-specific defects as 
described (Tulin and Cross 2014; Breker et al., 2016). Candidate causative mutations 
were identified by bulked segregant sequence analysis, as described (Tulin and Cross 
2014), or by a new method for parallel bulked segregant sequence analysis in 
combinatorial pools (Breker et al., in preparation). Candidate causative mutations were 
those that were uniformly mutant in pools of Ts- segregants from a cross to wild type (or, 
reciprocally, uniformly wild type in pools of  Ts+ segregants.   
 
We call a candidate causative mutation ‘definitive’ (Tulin and Cross 2014) if it hits a gene 
model that is also hit in an independent isolate, and the two isolates fall in the same 
linkage/complementation group; or if we have isolated an intragenic revertant that alters 
the mutation (true or pseudorevertants).  For the present analysis, we employed 
definitive mutations defined in Tulin and Cross (2014). ‘Passenger’ mutations (UV-
induced mutations that do not cause the Ts- phenotype) were identified either as those 
present at <100% prevalence in pools of Ts- segregants from crosses of various mutants 
to wild type, or that were uniform but distinct from the true causative mutation, provided 
the latter was known ‘definitively’. In this way we collected 67 independent definitive 
causative mutation, described in Tulin and Cross (2014), and 137 passenger mutations. 
These mutations constitute the ‘training set’ for finding Bayesian discriminators. 
 
Importantly for development of the present analysis, identification of the causative and 
passenger mutations in the training set is entirely based on genetic data, and is 
independent of annotations (beyond the essential segmentation of the genome into gene 
models [Blaby et al. 2011]), mutational severity or transcriptional pattern. 
 
For the ‘test set’, we employed the 20 mutants isolated in Tulin and Cross (2014) as 
single members of their complementation groups. All of these mutants were mapped to a 
chromosomal location relative to physical markers (generally to within 1-2 Mb), and all 
had varying numbers of candidate mutations for causality within the mapped region. For 
seven of these mutants, additional mutant screening (Breker et al., 2016) yielded new 
alleles based on linkage and complementation testing, and genome sequences were 
obtained for these new mutants as well.   
 
Linkage mapping. We carried out meiotic mapping of Ts-lethal mainly employing two 
methods. We develop allele-discriminatory PCR probes (using the competitive approach 
described by Onishi et al. 2016) that allow determination of WT or mutant in a single 
reaction, and test multiple meiotic segregants (Ts- or Ts+) for marker status. This 
procedure has the benefit of anchoring the mapping at exactly the site of interest, but the 
disadvantage that it is hard to test large numbers of progeny. Ts- segregants lacking the 
mutant marker, or Ts+ segregants with the marker are counted as recombinant 
chromosomes. A second method is tetrad analysis of a mutant against a tester ts-lethal 
with a known physical location. We have developed a ‘micro-tetrad’ approach in which 
hundreds of tetrads can be rapidly dissected and analyzed on a single plate, by 
dissecting over an area of ~1 mm and transferring the plate to restrictive temperature 
only when meiotic products have just germinated and formed microcolonies. It is then 
simple to count the number of Ts+ segregants per tetrad to determine PD, NPD and T 
tetrad classes.  
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For analysis, we combine mapping data obtained with independent alleles of the same 
gene, defined by non-complementation and lack of recombination in meiosis, since the 
latter property, using our current recombination assay (Breker et al., 2016) implies no 
recombination in hundreds or thousands of meiosis, thus very close linkage. 
 
The computation of probability requires specification of a physical region that is assumed 
to contain the causative mutation. For simplicity, we use as boundaries positions 2 Mb 
away from the leftmost or rightmost SNPs detected as uniformly mutant in bulked-
segregant sequence analysis.  
 
‘Best Reciprocal Blast’ analysis. If two sequences, one from each of two genomes, 
find each other as their best BLAST hit in cross-genome comparisons, this provides the 
basis of forming a potential ‘orthologous’ family, containing these two sequences as well 
as potential recent gene duplicates from within each genome (‘in-paralogs’) (Remm et 
al., 2001). We wrote MATLAB code to carry out essentially this procedure (code 
provided in S.I.). Here we report analysis of such orthologous families ‘seeded’ by 
search with each Chlamydomonas protein as query against seven genomes: 
Arabidopsis, Brachypodium, Physcomitrella (dicot, monocot, and moss from the land 
plants); Homo and Drosphila (two animals); Saccharomyces and Aspergillus (two fungi). 
Reference proteomes were downloaded from public-access databases Phytozome, 
UniProt, SGDB and ADB. 
  
Results 
 
The training set. To determine useful Bayesian indicators, it is necessary to have a 
training set of positive and negative examples. To obtain these, we made the 
assumption that causative mutations were ‘definitively’ (i.e., ground-truth) detected in a 
specific gene model in the following cases: (1) where multiple alleles in the same gene, 
defined by failure of genetic complementation and recombination, were shown to have 
mutational lesions altering coding sequence in the same gene model; (2) where at least 
a subset of selected revertants of the mutant were found to have reverted the original 
lesion in the gene model (either exact or pseudo-revertants). In almost all cases, these 
assignments were also supported by meiotic mapping. These constitute positive 
examples of causative mutations. The bulked-segregant sequence analysis to determine 
candidate causative mutations (Tulin and Cross 2014) also yields sequence of non-
causative mutations induced by UV (‘passengers’). We consider such mutations to be 
definitive passengers either if they are either linked to but distinct from a definitive 
causative mutation, or if they are on a different chromosome from the causative 
mutation. (Note that we usually can definitively identify the chromosome bearing the 
causative mutation even when the causative mutation itself is not definitively identified, 
based on uniform detection in the region of mutations [frequently passengers] linked to 
the causative mutation). This analysis resulted in a training set of 69 causative and 137 
passenger mutations. 
 
The training set is only useful if it is an unbiased sample. In this case, bias appears 
unlikely. Identification of the causative mutations is based entirely on formal genetic 
criteria, and is independent of any annotation information (e.g., alignment, previous 
information about the gene or its relatives).   
 
BLAST-detected conservation with Arabidopsis. The DIV/GEX ts-lethal mutations 
identify essential functions, and genes required for essential functions might be more 
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conserved across evolution than non-essential genes.  The land plant Arabidopsis and 
Chlamydomonas diverged ~1 billion years ago (Yoon et al 2004), and their common 
ancestor diverged from other eukaryotes including animals and yeast about 1.6 billion 
years ago. Only 40% of Chlamydomonas genes have detectable BLAST homology over 
any part of their sequence with Arabidopsis, and this number drops to 30% with a 
requirement for a BLAST bit-score of at least 100 (data not shown). Thus conservation 
with Arabidopsis is a strict criterion, but one that likely allows detection of core 
machinery conserved in the Viridiplantae lineage.  
 
Retaining protein function through evolution generally requires much greater 
conservation in some protein regions (e.g., active sites) than others (e.g., protein loops, 
N- and C-termini). The scheme used here (Figure 1) subdivides the relationship of 
mutational position to BLAST results as follows:  
 

Class A: mutation falls within a segment of BLAST alignment (high-scoring pair 
or HSP), and the mutation alters a conserved residue within this segment. [‘Conserved’ 
is defined operationally as follows: the Blosum62 score (Henikoff and Henikoff 1993) 
between Arabidopsis and Chlamydomonas at the position is greater than 0 (meaning 
that conservation is observed more often than would be expected by chance).]  
 

Class B: mutation falls within an overall conserved region, but alters an 
unconserved residue; is BLAST-aligned across a small deletion in the Arabidopsis 
sequence in the HSP; or is found between two distinct HSPs. (These three distinct 
possibilities are joined into one category to prevent excessive slicing of the training set, 
and because in all cases the mutation is to an unconserved residue but is surrounded by 
regions of conservation). 

 
Class C: mutation is N-terminal or C-terminal to all detected HSPs.  

 
Class D: no Arabidopsis Blast hit.  

 
The order A>B>C>D seems plausible for likely disruption of conserved protein 
structure/function.  While finer-grained classifications are possible, it is important to keep 
the number small enough that the training set can provide reasonable occupancy of the 
bins. 
 
The distributions of causative and passenger mutations from the training sets among 
these classes showed sharp differentiation (Figure 2, top left).  Most notable was the 
extreme enrichment of classes A and B among causative mutations, indicating a strong 
correlation between essential functional regions of key proteins, and conserved 
alignment through evolution.  
 
‘Best Reciprocal Blast’ analysis. Blast alignments can reflect a range of degree of 
relationship.  High, end-to-end similarity might reflect orthologous function.  However, 
many alignments are due solely to conservation of a common small protein domain (e.g., 
WD40-repeats). One way to discriminate among Blast hits is detection of  ‘best 
reciprocal Blast’ (‘BRB’) hits: when protein X from genome A finds protein Y from 
genome B as one of the best hits, and reciprocally, protein Y from genome B has protein 
X from genome A as one of the best hits (Remm et al., 2001). Frequently there are other 
sequences in genome A, more similar to X than is protein Y from genome B; these may 
be derived from duplication of X after separation of lineage A from lineage B (Figure S1). 
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We have carried out reciprocal Blast analysis along these lines (Matlab code in S.I.) 
between Chlamydomonas and a range of other eukaryotes: three representative land 
plants: Arabidopsis, a dicot; Brachypodium, a monocot; Physcomitrella, a moss; two 
animals, humans and Drosophila; two fungi, Aspergillus and Saccharomyces. 
 
To validate the BRB search, we note that Chlamydomonas should be approximately 
equally diverged from Arabidopsis, a dicot, Brachypodium, a monocot; Physcomitrella, a 
moss; since these are all in the higher land plant lineage with a single divergence time 
from Chlamydomonas. Consistent with this idea, a Venn diagram shows very strong 
overlap between Chlamydomonas proteins identified as BRB family members using 
these three genomes as targets (Figure 3, top left). This set of 2818 orthologous families 
may be broadly distributed among Viridiplantae. 
 
In the Chlamydomonas vs. Arabidopsis search, most candidate ortholog families contain 
single members in Chlamydomonas, but frequently contain multiple members in 
Arabidopsis (Figure 4). This may be due to ancient gene or genome duplications in the 
land plant lineage (Adams and Wendel 2005), after the split from green algae. Similar 
results for gene family sizes were obtained in comparisons of Chlamydomonas to 
Brachypodium and Physcomitrella (data not shown). 
  
809 Chlamydomonas genes were in orthologous families with family members in all 
seven genomes tested (three plant, two animal, two fungal); these may be near 
universal among eukaryotes. 
 
DIV/GEX gene enrichment in the BRB gene sets. In carrying out this mutant hunt 
(Tulin and Cross 2014), the phenotypic sorting of mutants, and concentration on the 
‘DIV/GEX’ class, was based on the idea that genes with these mutant phenotypes might 
specifically identify core conserved cellular functions. Confirming this idea, while only 
26% of Chlamydomonas genes are in a BRB-defined orthologous family with any of the 
seven genomes tested, 79% of DIV and GEX genes are in a BRB family with a gene 
from at least one of the test genomes. This enrichment is even greater in the Plant-
orthologous families (76% vs. 16%), and is especially strong in the Plant-Animal-Fungi 
orthologous families: (44% vs. 5%) (Figure 3). This finding strongly suggests that the 
DIV/GEX class is strongly enriched for deeply conserved functions, dating back to the 
LCA of plants and Opisthokonts (thus near to the eukaryotic LCA [Rogozin et al., 2009]). 
 
Mutational severity. Amino acid substitutions vary in their potential to disrupt protein 
function. To measure the likely severity of effect of substitutions caused by UV-induced 
mutations, we use the Blosum62 score (Henikoff and Henikoff 1993). Blosum scores 
have been shown to perform well compared to most other measures for determination of 
mutational severity (Yampolsky and Stoltzfus 2005).  Distributions of this score for 
causative and passenger mutations are broad, but there is a clear shift of the causative 
mutations to more negative (more severe) Blosum62 scores. Empirically, a cutoff of 
score <-1 gives a good separator between most causative and most passenger 
mutations (Figure 2, top right).   
 
‘Blast/Blosum’ combined index. To make a simple discriminator, the Blast classes A-
D were combined with the severity index (mutation has Blosum <-1, or >=-1) to make 
eight classes. Notably, the occupancy of these classes by causative and passenger 
mutations was almost exactly that expected from multiplication of the marginals – that is, 
the Blast criterion and the mutational severity criterion were almost entirely independent 
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(compare Figure 2 lower left and lower right). The overall discriminatory power of this 
index is high, with log10-likelihood ratios ranging from 0.9 for category 1 to -1.4 for 
category 8 – that is, up to a 200-fold differential. 
 
The distribution of passenger mutations among these categories was similar to that of 
mutations randomly generated in silico (data not shown), suggesting that the passenger 
training set is largely reflective of the initially generated mutational spectrum, with little 
effective selection operating against most mutations over the short term of these 
experiments. 
 
Construction of a formal Bayesian model.  The full presentation is in the Appendix. 
Briefly, suppose there are N candidate SNPs.  We assume the causative mutation is a 
single-gene lesion (since a large majority of Ts-lethals segregate 2:2 in tetrad analysis). 
Note that in the present experimental context, N is generally not large, since the bulked 
segregant sequencing approach (Tulin and Cross 2014) will rule out most of the 
mutations in the original mutant since the WT and mutant alleles will both be detected 
(typically around 50% each) in sequence from a pool of ~10 ts segregants from a cross 
to WT. This reduces N from hundreds to single digits.  
 
Bulked segregant sequencing fails to detect any candidate causative SNP in a minority 
of cases (Tulin and Cross 2014) (discussed further below). The reason for this is 
presently unknown; a simple explanation would if the mutated gene is not present in the 
assembled genome (which is known to have gaps), but this is unlikely to be the 
complete explanation (Tulin and Cross 2016). Call U the probability (which we estimate 
at ~~25% [Tulin and Cross, 2014]) that the causative mutation escaped detection by 
sequencing and therefore is none of the N candidates. If the causative mutation was 
detected by sequencing, we assume it is exactly one of the N SNPs. 
 
From Figure 2, define Bi as the likelihood ratio for SNPi: the probability that a causative 
mutation is in the Blast/Blosum class of the SNP, divided by the probability that 
passenger mutation is in this class.  Define Q as the likelihood ratio of unsequenceability 
U/(1-U). 
 
Then the probability that one specific SNPi is causative, given the Blast/Blosum 
characteristics of the collection of N SNPs, by Bayes’ theorem (see S.I. for detailed 
derivation), is: 
 
P(SNPi is causative) = Bi / [Σk(Bk ) + NQ ] 
 
The probability that the causative mutation escaped detection by sequencing is: 
 
P(causative SNP unsequenced) = NQ / [Σk(Bk ) + NQ ] 
 
Mutations with high Bi (such as severe mutations in conserved residues) are more likely 
to be causative. Increasing numbers of candidate mutations (higher N) decreases 
likelihood that any individual one is causative. Conversely, the likelihood that the 
causative mutation escaped detection by sequencing decreases with increasing 
numbers of SNPs with high Bi.  
 
Mapping information. In principle, meiotic mapping could reduce the interval carrying 
the causative mutation to arbitrarily small size. However, meiotic distances are in 
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centiMorgans (cM). Conversion to physical distance (needed for causative SNP 
identification) requires knowing the cM/megabase (Mb) conversion ratio. This is known 
on average to be ~10 cM/Mb (Merchant 2007; Tulin and Cross 2014), but it is well 
known in many organisms that this ratio is variable across the genome due to hot- and 
cold-spots for recombination. We have found one region of ~0.5 Mb across which there 
is no detectable recombination (no recombinants in at least 1000 meioses; unpublished 
results); this is an extreme case, but surely not the sole such interval. 
 
However, in case where candidate mutations are separated by 1 Mb or greater, meiotic 
mapping can provide discriminatory power, using the mapping strategies described in 
Methods. It is useful to translate such mapping results into estimated probabilities for 
physical location of the causative mutation. The full development of these estimates is 
described in Supplementary Information. Briefly, we assume a normal-like distribution of 
probable location of the causative mutation, with the mean at the best estimate 
(measured cM from the known marker * 0.1 Mb/cM), and standard deviation 0.5 Mb 
(based on the maximum non-recombining interval detected, and on apparent measured 
error (deviation from the 0.1 Mb/cM average) in many such mapping experiments [Tulin 
and Cross, 2014]). Passenger mutations have probability density that is uniform across 
the known possible region (typically a chromosome or chromosome arm). Then if Li is 
the location of SNPi, g(Li) is a scaled relative probability density at this position, and Q is 
the likelihood ratio that the causative mutation was not sequenced (that is, if U is the 
probability of unsequenceability, Q=(U/(1-U) ), then the probability that of N SNPs, SNPi 
is causative is:  
 
P(SNPi is causative) = g(Li) /[ Σk(g(Lk) )+ NQ ] 
 
! where Li is the location of SNPi, and g is an appropriately scaled probability density 

function intended to conservatively represent plausible locations of the causative 
SNP.  
 

(Derivation of g (S.I.) essentially assumes that a given mapping result is equivalent to an 
approximately normal distribution for probability of true location, with mean the best 
estimated location, and standard deviation based on mapping error).  
 
Chromosomal location is almost surely independent of Blast/Blosum values, since like 
most eukaryotes, Chlamydomonas exhibits broad dispersal of functionally related genes 
across chromosomes. Independent probabilities multiply; therefore, Blast/Blosum 
information can be integrated with mapping information to produce a single probability of 
causality for each candidate SNP:  
 
P(SNPi is causative) = g(Li) * Bi / [Σk(g(Lk) * Bk ) + NQ ] 
 
Transcriptional regulation. Chlamydomonas exhibits very strong differential 
transcription through its mitotic cycle. In particular, many genes, including many that are 
probably specifically required for DNA replication and cell division, are induced by huge 
factors (>100-fold) in S/M-phase cells compared to newborn G1 cells (Tulin and Cross, 
2015; Zones et al., 2015). The mutations we isolated previously as blocking cell cycle 
progression (Tulin and Cross 2014) were separated into two broad phenotypic 
categories: ‘div’ mutations, that showed evidence of entry into the replicative cycle 
followed by arrest, and ‘gex’ mutants, that showed no signs of even initial 
replication/division processes. It was noted (Tulin and Cross, 2015; Zones et al., 2015) 
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that DIV genes, but not GEX genes, were highly likely to exhibit the transcriptional 
pattern noted above, of huge induction in S/M phase. Since this induction is observed 
with only a small proportion of genes overall, this provides another plausible Bayesian 
discriminator, specifically for the DIV class of genes. 
 
To set up such a discriminator, we made use of cell-cycle transcriptome derived from 
RNAseq of two replicates of a light-dark-synchronized cell cycle (Zones et al., 2015). We 
converted data for every gene into two numbers: peak-to-trough ratio (PTR) and time of 
peak (T) (Figure 5A). Almost 80% of genes are at least 2-fold differentially regulated 
through the timecourse, as reported (Zones et al., 2015). It is also notable that peak 
times are mostly in three clusters: early (around 6 hrs, before commitment to a 
replicative cell cycle [Zones et al., 2015), middle (around 13 hrs, in the middle of the S/M 
cycles); and late (20-24 hrs, as newborn cells mature and hatch). DIV genes identified in 
Tulin and Cross (2014) are marked on the figure. Most DIV genes are expressed in the 
S/M period, at very high PTR, clearly separated from the large majority of other genes 
(Zones et al., 2015, Tulin and Cross 2015).  
 
The number of definitively identified DIV genes is not large, so the data will not at 
present support a fine-grained analysis.  ~70% of DIV genes have T between 12 and 
13.5 hrs, and PTR>=2, while this category includes only 13% of the total genes. We 
used this criterion as a binary discriminator to detect a ‘DIV-like’ pattern (Figure 5B). 
Importantly, this criterion was established using only the ‘definitively’ identified DIV 
genes from Tulin and Cross (2014), although it is evident that the broader class of 
probable DIV genes follows the same pattern (Figure 5A). This criterion provides another 
Bayesian test. Call ‘Ti’ the transcriptional likelihood ratio (DIV/all genes) for the gene in 
which SNPi is found (two classes, ‘DIV-like’ or not): 
 
P(SNPi is causative) = Ti / [ Σk(Tk) + NQ ] 
 
Cell-cycle transcriptional pattern is largely independent of BLAST homology to 
Arabidopsis (Figure S3), and is surely independent of mutational Blosum scores for 
individual SNPs. Absence of functional clustering implies transcriptional pattern is likely 
also independent of map position. Therefore, the test for transcriptional category can be 
combined multiplicatively with Blast/Blosum scores and mapping information to yield an 
integrated probability that a given SNP is causative for a mutation in the div phenotypic 
class:  
 
P(SNPi is causative) = g(Li) * Bi * Ti / [ Σk(g(Lk) * Bk * Tk) + NQ ] 
 
The transcriptional regulation test is more preliminary than the Blast/Blosum and 
mapping tests, because it is based on only a small training set, and is restricted to a 
single phenotypic class. This will doubtless improve as more mutants are defined, 
growing the training sets for div and for other phenotypic classes. Initial analysis 
supported some subclustering among the gex phenotypic class of genes, for example 
(Zones et al. 2015).  
 
MATLAB code is provided in S.I., which requires as input for each mutant only the vector 
of Blast/Blosum classes for all SNPs in a mutant, and the likelihood table for 
Blast/Blosum classes; mapping experiments, consisting of number of recombinant and 
non-recombinant chromosomes observed relative to a marker, and the physical location 
of the marker; transcriptional category and the associated likelihood table; and the 
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probability of ‘unsequenceability’ or failure to detect a Ts-lethal lesion by sequencing, 
which we estimate at ~25% (Tulin and Cross, 2014). Output is the probability of causality 
for each SNP, as well as probability that the causative mutation escaped detection by 
sequencing. This code performs well against simulated data: reported probabilities that a 
SNP is causative are quite accurate, and thresholds can be set with quite high TPR and 
low FPR (e.g., 95% TPR at 10% FPR; Figure S4).  
 
Validation of the approach. In Table 1, we report the calculated Bayesian probabilities 
for causality for candidate SNPs found in genome sequences of mutants in 20 
complementation groups.  These complementation groups were identified in Tulin and 
Cross (2014) by single mutant alleles, therefore causative mutation identification was not 
considered ‘definitive’. Importantly, for this reason none of the mutants or SNPs in Table 
2 were used for the training set for Blast/Blosum values or transcriptional pattern. 
 
Tests in Table 1 used the Blast/Blosum score, linkage, or transcriptional pattern, alone 
or in all combinations, using the equations above (source data in S.I.). Note that while 
the initial mutants contained large numbers (tens to hundreds) of coding-sequence-
changing mutations, the bulked segregant sequencing strategy (Tulin and Cross 2014), 
and in some cases additional mapping crosses, whittles these down to a much smaller 
number, based on the principle that temperature-sensitive segregants WITHOUT some 
SNP, or temperature-resistant segregants WITH some SNP, eliminate that SNP from 
consideration for causality (we take this as ‘ground truth’). For each mutant background, 
all remaining candidate SNPs are tested in the Table. The calculation is carried out by 
Matlab code with input for each SNP: Blast/Blosum category 1-8, transcriptional 
category (‘DIV-like’ or not), and linkage data (marker location and numbers of 
recombinant/non-recombinant progeny).  
 
In ~85% of cases, a single SNP is identified as a strongly preferred candidate from each 
mutant background (calculated probability 0.96 +/- 0.05). In mutants with multiple 
‘competing’ SNPs, probability distributions are in general strongly bimodal: one high-
probability SNP (usually P>0.9), with other SNPs assigned probabilities of 0.00-0.10. 
These two clusters most likely represent causative mutations and passengers.  
 
The three criteria (Blast/Blosum, linkage, transcriptional pattern) interact. For the 
presumed causative mutations (high probability), the single, double and triple tests gave 
probability estimates of 0.75 +/- 0.24; 0.88 +/- 0.16; 0.96 +/- 0.05 (mean +/- standard 
deviation); thus combining tests increased the probability estimates. For the presumed 
passenger mutations, the estimates for single, double and triple tests were 0.15 +/- 0.16; 
0.07 +/- 0.13; 0.02 +/- 0.03: combining tests decreased the probability estimates. This is 
expected if the presumed causative mutations are likely to share all three attributes, 
while random passenger mutations might fortuitously score high for one but probably not 
for another one. Thus, the multiple tests interacted to drive divergence in probability 
estimates between the presumed causative mutations and passengers, resulting in more 
reliable specific detection. For gex mutations, the transcription test is not applicable; 
nevertheless, the Blast/Blosum and linkage tests interacted in the same way to give high 
probability identification in most cases. 
 
Critically, new mutant isolation (Breker et al., 2016; Breker et al., in preparation) has 
resulted in ‘definitive’ determination of 13 causative mutations falling in six genes (div43, 
div45, div46, div48, div50, div72) (Table 1). This determination is based on the criterion 
(Tulin and Cross, 2014; see above) that lesions in the same gene model, found in 
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multiple independent isolates in the same complementation group, definitively identify 
the causative target gene. We also consider the assignment of DIV68 to the sole profilin 
homolog in Chlamydomonas to be definitive, since the div68-1 mutation results in almost 
complete loss of profilin detectable by Western blotting, and also has multiple 
phenotypes consistent with loss of actin function, as expected for profilin inactivation (M. 
Onishi, pers. comm.). Thus, 14 mutations, newly determined to be causative, have high 
calculated Bayesian probabilities (0.93 +/- 0.14).  
 
These results contrast with those for DIV40. div40-1 contains a single candidate coding-
sequence-changing SNP; however, it is a very weak candidate (similar in probability 
estimates to the collection of known passenger mutations).  We now have isolated a 
second independent allele div40-2 (defined as allelic since div40-1 and div40-2 fail to 
complement in trans-heterozygous diploids, are both located on the left arm of 
chromosome 17, and fail to recombine with each other in hundreds of meioses.) 
However, bulked segregant sequencing of div40-2 revealed no coding sequence-
changing mutation that was uniformly present in Ts- segregants (data not shown), and 
no mutation at all within hundreds of kilobases of the div40-1 candidate. Therefore, we 
suspect that both the div40-1 and div40-2 causative mutations escaped detection by 
sequencing, and the single candidate for div40-1 is indeed a passenger.   
 
This phenomenon, in which multiple independent alleles in a well-defined 
complementation group fail to share lesions in any one gene model (or have no 
candidate lesions at all) was observed previously, and was examined with care in the 
cases of div14 and div16 (Tulin and Cross 2014). Four alleles of div14 were mapped in 
multiple crosses and by complementation testing to the same position on chromosome 4 
(~4 Mb on the physical map), and five alleles of div16 to chromosome 10 at ~6.5 Mb 
(data not shown).  Bulked segregant sequencing to high coverage (>200X in the cases 
of one allele each of div14 and div16, and at least 50X coverage of the other seven 
independent alleles) failed to reveal the causative mutations. We call this phenomenon 
‘unsequenceability’, and we estimated previously that ~~25% of temperature-sensitive 
lethal mutations fall into ‘unsequenceable’ genes (Tulin and Cross 2014). We do not 
know the explanation for this problem, but it is taken into account in the Bayesian 
calculation (Appendix). The results on div40 suggest it may be in this class. This 
interpretation also supports the value of the Bayesian calculation, since a possible 
candidate for causation of div40-1 had a low calculated probability, and was 
subsequently found to be likely a passenger to an unsequenced true causative mutation. 
 
div53-1 and div60-1 mutants are intermediate cases: they contain stronger candidates 
for causality than div40-1, but the candidates are outliers relative to the larger population 
of presumed causative mutations.  The causative mutation in these strains may be 
atypical with respect to the ‘rules’ followed by the training set.  These intermediate cases 
quantitatively identify mutants for which identification is not strong, and further data are 
required before relying on the identification for additional experiments. 
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 Tests   
 B L T BL BT LT BLT Assigned gene model Confirmed  

causality 
          
div34-1 0.90 0.91 0.84 0.98 0.98 0.98 1.00 Cre07.g341700/MPS1  
 0.01 0.00 0.05 0.00 0.00 0.00 0.00   
          
div40-1 0.22 0.09 0.94 0.01 0.59 0.33 0.04 (Cre17.g704950)  
          
div40-2 NA NA NA NA NA NA NA No candidate SNP  
          
div41-1 0.39 0.82 0.84 0.68 0.78 0.96 0.92 Cre06.g292850/CDC6  
 0.06 0.00 0.05 0.00 0.01 0.00 0.00   
          
div42-1 0.86  0.18 0.84 0.76 0.98 0.73 0.97 Cre12.g513600/SGT1A  
 0.05 0.70 0.05 0.17 0.00 0.18 0.01   
          
div43-1 0.80  0.82 0.94 0.86 0.95 0.96 0.97 Cre04.g220700/Aurora B YES 
          
div43-2 0.80 0.75 0.94 0.80 0.95 0.94 0.95 Cre04.g220700/Aurora B YES 
          
div45-1 0.86  0.59 0.84 0.94  0.98 0.93 0.99 Cre01.g015250/PolD-cat YES 
 0.05  0.28 0.05 0.03 0.00 0.03 0.00   
          
div45-2 0.84 0.25 0.44 0.84 0.96 0.44 0.97 Cre01.g015250/ PolD-cat YES 
 0.01  0.25 0.03 0.01 0.00 0.03 0.00   
 0.01  0.25 0.44 0.01 0.01 0.44 0.01   
          
div46-1 0.06  0.44 0.84 0.07 0.47 0.90 0.50 (Cre01.g017450/PolA2) YES 
 0.84  0.46 0.05 0.90 0.41 0.06 0.45 (Cre01.g012950/MLTK)  
          
div46-2 0.95 0.75 0.94 0.95 0.99 0.94 0.99 Cre01.g017450/PolA2 YES 
          
          
div47-1 0.90  0.29 0.84 0.79 0.98 0.73 0.95 Cre01.g055200/GIF3  
 0.01  0.25  0.05  0.01  0.00 0.04 0.00   
          
div48-1 0.95  0.89 0.94 0.98 0.99 0.98 1.00 Cre08.g372550/CDKB YES 
          
div48-2 0.80 0.75 0.94 0.80 0.95 0.94  0.95 Cre08.g372550/CDKB YES 
          
div48-3 0.80 0.75 0.94 0.80 0.95 0.94 0.95 Cre08.g372550/CDKB YES 
          
div49-1 0.95  0.83 0.94 0.97 0.99 0.96 0.99 Cre12.g525500/GCP2  
          
div50-1 0.45        0.22     0.44    0.36 0.86    0.35     0.81 Cre12.g521200/RFC1 YES 
 0.03 0.37 0.44 0.04 0.06 0.59 0.10   
 0.45        0.34 0.03     0.57    0.06     0.04     0.08   
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div50-2 0.90 0.38 0.84 0.90 0.98 0.84 0.98 Cre12.g521200/RFC1 YES 
 0.01  0.38  0.05  0.01 0.00 0.05 0.00   
          
div51-1 0.95  0.67 0.94 0.93 0.99 0.91 0.99 Cre15.g636300/TFC-B  
          
div52-1 0.95 0.75 0.94 0.95 0.99 0.94 0.99 Cre17.g715900/THY2  
          
div53-1 0.18 0.82 0.94 0.26 0.54 0.96 0.64 (Cre17.g744247)  
          
div57-1 0.58 0.90 0.94 0.98 0.99 0.98 0.96 Cre06.g278950/Aug4  
          
div60-1 0.95 0.52 0.51 0.87 0.87 0.27 0.71 (Cre01.g039350/P450 

reductase) 
 

          
div65-1 0.95  0.86 0.94 0.97 0.99 0.97 1.00 Cre06.g270250/CDC45  
          
div68-1 0.82  0.26  0.76  0.85  0.97  0.78  0.98 Cre10.g427250/Profilin YES 
 0.01  0.33 0.05 0.02 0.00 0.07 0.00   
 0.05  0.23 0.05 0.04 0.00 0.05 0.00   
          
div70-1 0.81 0.34 0.17 0.90 0.65 0.28 0.83 Cre09.g398650/Cactin  
 0.01 0.32 0.17 0.01 0.01 0.27 0.01   
 0.06 0.22 0.17 0.04 0.05 0.18 0.04   
          
div72-1 0.80 0.95 0.94 0.96 0.95 0.99 0.99 Cre07.g312350/PolA3,4 YES 
          
div72-2 0.95 0.75 0.94 0.95 0.99 0.94 0.99 Cre07.g312350/PolA3,4 YES 
          

Table 2. Bayesian testing with mutations in 20 genes not in the training set. All 20 
DIV genes reported in Tulin and Cross (2014) as single alleles not confirmed by 
reversion testing were analyzed to determine Bayesian probabilities that 
candidate SNPs in each mutant (full table in S.I.) are causative, based on 
equations 1a, 2a, 4, and combined tests; triple ‘BLT’ test from equation 5. Tests 
based on: B: Blast/Blosum values; L: linkage; T: transcriptional pattern; double 
and triple letters indicate combined tests. In the cases of div45, div46, div48, 
div50, and div72, new alleles (‘-2’, ‘-3’) have been isolated in recent mutant 
screening (Breker, in preparation).  Assigned gene model: most likely carrier of 
causative mutations (annotation information for orthologous Arabidopsis gene 
also provided). Confirmed causality: YES indicates isolation of an independent 
allele (non-complementing, non-recombining) with a lesion in the same gene 
model. In the case of div68-1, we assume the assignment of DIV68 as a profilin 
homolog is definitive, even in the absence of a second allele, since div68-1 
mutants have almost no detectable profilin protein by Western blotting (M. 
Onishi, pers. comm.).  

 
These results constitute strong validation, since the approach developed with the initial 
training set of definitive causative mutation generalizes to mutants not in the training set, 
and in most cases yields a strong preferential identification of a single highly likely 
causative mutation, even in backgrounds also carrying multiple passenger mutations. 
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The ‘BL’ column shows the power of the Blast/Blosum and linkage tests alone. These 
tests are sufficient to identify a most-likely candidate in most cases, but it is clear that the 
orthogonal transcriptional information provides considerable additional resolving power. 
 
Discussion 
 
Identification of causative mutations in an unbiased screen. Untargeted mutagenic 
screens are unbiased, requiring no hypotheses as to which genes might be involved in a 
given system; this is a clear advantage over targeted approaches such as genome 
editing. However, to attain reasonable efficiency of isolation of informative mutations, it is 
necessary to ‘pack’ a large number of mutations into each clone – because most point 
mutations have little or no phenotypic effect. This means that although high-throughput 
sequencing can identify (nearly) all mutations in a mutant strain of interest, the problem 
remains of determining which mutation is causative, among hundreds or thousands of 
candidates. For any individual mutant, there are methods that will allow absolute 
certainty as to the causative SNP: high-resolution genetic mapping; sufficient screening 
to identify multiple independent alleles; isolation of intragenic revertants; rescue by 
transformation. However, these approaches are impractical for large numbers of 
mutants. 
 
The Bayesian method converts diverse types of data to the ‘common currency’ of 
probability. This then allows statement of a quantitative degree of certainty that our 
identifications are correct. This then provides a rational basis for evaluating the need for 
further work to confirm the identifications. 
 
Annotation-independent identification of causative mutations. The problem of 
identifying causative mutations from a set of candidates is a common one; for example 
in analyzing cancer genomes, or in population genetics when a QTL is known to be 
located somewhere in a highly polymorphic haplotype block. In those contexts, it is very 
difficult to proceed without relying on annotation-based information (e.g., a height QTL 
with a SNP in a growth-hormone-related gene within the haplotype block). In the 
experimental context discussed in this paper, genetic methods are sufficiently powerful 
that annotation-based information can be dispensed with altogether. This is fortunate 
since first, restriction to annotations largely restricts discovery to things that are already 
at least partially known; and second, it is not obvious how to assign a quantitative 
probability value to annotation-based information. The approach above is a uniform 
Bayesian calculation, which should integrate diverse sorts of information on a 
quantitatively equal basis.  
 
It is important to note, though, that the power of meiotic mapping to eliminate most SNPs 
from consideration is essential for success in the present case; the Bayesian 
discriminators are strong enough to detect one likely positive out of a small number of 
candidates, but cannot do so from a larger field. This aspect is less applicable in the 
haplotype block case, and obviously completely unavailable in the cancer genome case.  
In these situations, additional discriminators are clearly essential. 
 
One class of annotation-based information is required in our approach: parsing of the 
raw genome sequence into gene models (exons and coding sequence especially). 
Fortunately, this has been done quite carefully and effectively in the Chlamydomonas 
case (Merchant et al. 2007, Blaby et al., 2014); our detailed examinations of specific 
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issues with the annotation (Cross 2016, Tulin and Cross 2016) have revealed problems 
with only a small minority of genes. 
 
Conservation, divergence, gene duplication, and essentiality. A central aspect of 
this computation is based on the observation that essential genes, identified by ts-lethal 
single-gene mutations blocking cell proliferation, are much more likely than the 
Chlamydomonas gene set overall to lie in proteins and specific residues conserved in 
higher plants, and frequently across yeast and animals as well.  In contrast, a substantial 
majority of Chlamydomonas genes have either no Arabidopsis Blast hit, or only a hit 
suggestive of a small protein domain. Most of these genes have unknown, possibly 
algal-specific functions; our results suggest that few of these functions are essential for 
cell viability, or at the least very seldom are specifically essential for cell cycle 
progression. Evolution of cell-essential processes is slow.  
 
Isolation of single-gene ts-lethals implies that there is no effective backup in the genome 
– in particular no gene duplicate retaining substantial functional overlap (since otherwise 
the lethal phenotype should require at least a double hit). Gene families with presumed 
orthologous members in Chlamydomonas and Arabidopsis tend to be single copy in 
Chlamydomonas. In Arabidopsis, multiple gene family members are common (Figure 4), 
a well-known observation substantially due to multiple whole-genome duplications in the 
higher land plant lineage (Adams and Wendel 2005). It is a commonplace observation in 
Arabidopsis genetics that strong phenotypes frequently require disruption of multiple 
gene family members. Gene duplication has been proposed to provide genetic 
‘robustness’ (Gu et al 2003).  In general, the Chlamydomonas genome lacks this 
robustness mechanism: in most cases, mutation of the single Chlamydomonas family 
member has the potential to immediately expose the maximum phenotype (Figure 4). 
Our results suggest that Chlamydomonas has an essential gene set substantially 
conserved with higher plants, and nearly free of duplicates, supporting its utility as a 
genetic and cell biological model for the crucially important plant kingdom. 
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Figure Legends 
 
Figure 1. Relationship of mutation to BLAST alignments of Chlamydomonas gene model 
to Arabidopsis. A: mutation falls within a conserved segment; B: mutation falls between 
conserved segments; C: mutation is N- or C-terminal to a conserved segment; D: no 
conserved segment detected by BLAST. Note that for empirical classification, a mutation 
in an unconserved residue, in an unaligned residue within a high-scoring pair (conserved 
segment), or a mutation falling between two conserved segments are all assigned to 
class B. Rules for truncating mutations (stop codons, splice donor/acceptor mutations; 
found in a small minority of the causative Ts-lethal mutations): if upstream of the C-
terminal-most conserved segment, class A; otherwise class B. 
 
Figure 2. Constructing Bayesian classifiers. Mutational Blosum scores, BLAST category,  
and Blast/Blosum category distribution (top left, top right, bottom left) for definitive  
DIV/GEX vs. coding-sequence-changing passenger mutations (the training set). Lower 
right: Blast/Blosum categories computed by multiplication of individual Blosum and Blast 
probabilities. Near identity of the two lower graphs indicates independence of these 
measures. 
 
Figure 3. Best-reciprocal BLAST analysis was carried out with the Chlamydomonas 
proteome as query, against Arabidopsis thaliana, Brachypodium distachyon, 
Physcomitrella patens, Homo sapiens, Drosophila melanogaster, Saccharomyces 
cerevisiae, Aspergillus niger genomes (three plants, 2 animals, 2 fungi). Top left: overlap 
of identity of Chlamydomonas genes in BRB-orthologous families with the three plant 
genomes. 2818 Chlamydomonas genes are in such families with proteins from all three 
plant proteomes. Top right: overlap of Chlamydomonas genes in BRB-orthologous 
families with all three plant proteomes, both animal and both fungal genomes. Below: 
proportion of total Chlamydomonas genes (blue) and definitive DIV/GEX genes (red; 
Tulin and Cross 2014) in the overlap classes shown at top.  
 
Figure 4. Gene duplicates in BRB-defined orthologous families. Orthologous families 
containing Chlamydomonas (Cre) and Arabidopsis (Ath) members were sorted by which 
proteome contributed more members to the family (top). Left: Cre>At; middle: same 
numbers from each; right: At>Cre. Bottom: mean and SEM number of family members 
from each proteome, in each case.   
 
Figure 5. The DIV-like transcriptional pattern. A. Cell cycle transcriptional data of Zones 
et al. (2015) was analyzed: two timecourses were averaged, and a three-timepoint  
running average calculated. Two values were extracted: peak time (time 
point at which the plot was maximal), x-axis; and peak-to-trough ratio (highest level 
divided by lowest level), y-axis. The heat map (scale at right) shows the complete gene 
set. Placement of  ‘definitive’ and ‘non-definitive’ DIV genes on the plot is indicated by 
green and blue circles. B: proportion of DIV genes and of all genes in two bins of 
PTR/peak expression time, the ‘S/M’-like pattern (PTR≥4, peak time 12-14 hrs; Zones et 
al., 2015), and all other patterns. 
  
Figure S1. Diagram illustrating how best-reciprocal blast analysis will likely pick out 
sequences in different genomes originating from a single gene ancestor at the time of 
the species split. 
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Figure S2. A: Construction of a theoretical probability distribution for location of a 
causative mutation, based on combining two genetic mapping experiments (top two 
graphs) in which the ts-lethal mutation was mapped relative to known molecular markers 
(green arrows). B: if two candidate SNPs are present in this interval, which is known to 
contain the causative mutation, then the relative probabilities support SNP2 greatly over 
the alternatives that SNP1 is causative, or that neither SNP is causative. 
 
Figure S3. Transcriptional pattern of Chlamydomonas genes, segregated by BLAST 
scores vs. Arabidopsis. Overall graphing scheme as in Figure 5, for subsets of genes: 
Top left: no BLAST hit; 1011/8814 (.11) in DIV-like class; top right: BLAST scores 1- 
100; 493/3621 (.14); bottom left: BLAST scores 101-300; 545/3564 (0.15); bottom right: 
BLAST scores >300, 303/1738 (0.17). Overall, transcriptional pattern is largely 
independent of Arabidopsis homology. 
 
Figure S4. Test of computation with synthetic data. Generated by MATLAB script 
testMutationDetection.m.  20,000 mutants generated with variable numbers of SNP 
candidates and a defined position of the causative mutation (which was one of the SNP 
candidates with probability 0.75; see text). Linkage data was generated explicitly by a 
simple model assuming strong crossover interference (as observed), and with 
moderately variable cM/Mb ratios for different mutants.  For each SNP the calculated 
probability that it was causative was recorded, as was the fact of whether it was indeed 
causative. Distributions of SNPs into Blast/Blosum and Transcription categories followed 
observed data for passengers and causative mutations. Each set of four graphs: top left: 
Reported Bayesian probability vs. cumulative proportion of causative (blue) and 
passenger (green) mutations. Top right: Accuracy: proportion of mutations given some 
probability of being causative that were in fact causative. The red x=y line is the result 
for perfect accuracy. Bottom left: false positive rate and true positive rate for different 
threshold cutoffs. Bottom right: FPR vs. TPR for the data at lower left. Results are shown 
for the three individual tests (Blast/Blosum, linkage, transcription) and the combined test 
at lower right.  
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Appendix: detailed development of Bayesian models for Blast/Blosum, linkage, 
transcription, and combination models 
 
Blast/Blosum model 
 
Assume there are N SNPs. Each SNP falls into one of the 8 Blast/Blosum classes. 
Associated with each class k (k=1:8), there are two likelihoods: Caus(k), the probability 
that a causative mutation is in class k, and Pass(k), the probability that a passenger 
mutation is in class k. These values are exactly those plotted in Fig. 2, lower right, 
derived from the training set. 
 
Then the set of N SNPs is associated with two 1xN vectors C and P:  
 
Ci =Caus(class of SNPi) (i=1,….,N) 
Bi =Pass(class of SNPi)  
 
Call U the probability that the causative mutation is none of the N candidates (this 
corresponds to ‘unsequenceability’).  (We estimate U at ~25%; Tulin and Cross, 2014). 
 
We assume that either the mutation is unsequenceable (probability U), in which case all 
of the N SNPs are passengers; or exactly one of the N SNPs is causative; therefore the 
remaining N-1 are passengers. Call model Mi the model that SNPi is causative. The prior 
probability of Mi is (1-U)/N, and the probability of MU (unsequenceability) is U. These 
models are mutually exclusive and exhaustive. 
 
Then the relative probability of S=( S1,S2…Sn) (the set of N SNPs) given Mi is: 
 
 P(S | Mi)  = P1*P2*…Pi-1*Ci*Pi+1*…Pn= Πj (Pj) * Ci/Pi 
 
  -  because in this model, all SNPs are passengers except for SNPi. (Πj (Pj)  denotes the 
product of the Pj’s, j=1 to N) 
 
The relative probability of S given MU (unsequenceable) is: 
 
P(S | MU) = P1*P2*…Pi-1*Pi*Pi+1*…Pn= Πj(Pj) 
 
! because in this model, all SNPs are passengers. 

 
These terms are in relative probability units because no probability estimate is provided 
for having exactly the N SNPs found in S. This probability if expressed would multiply 
every term and therefore divides out. 
 
Call Q the unsequenceability likelihood ratio U/(1-U). 
 
Bayes’ theorem, given the assumption that exactly one of [M1, M2,..Mn, MU] must be true, 
gives: 
 
P(Mi | S) =      P(S | Mi) * P(Mi) / { Σk [P(S | Mk) * P(Mk)] + P(S| MU)*P(U) }  
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- (where Σk denotes the sum over k=1 to N) 
 
Substituting: 
 
P(Mi  | S) =                            [  Πj (Pj) * Ci/Pi * (1-U) / N ]   
 
                               ____________________________________   
 
                           {  Σk [ Πj (Pj) * Ck/Pk * (1-U) / N ] + Πj (Pj) * U  } 
 
Dividing top and bottom by Πj (Pj), multiplying top and bottom by N/(1-U), and 
substituting Q for U/(1-U) gives: 
 
 
P(Mi  | S) =            (Ci/Pi) / [Σk(Ck/Pk) + NQ ] 
 
P(MU | S) =               NQ / [Σk (Ck/Pk) + NQ ] 
 
 
Call Bi the likelihood ratio Ci/Pi (the relative prior probability that SNPi is causative 
relative to the probability that it is a passenger); then 
 
P(Mi | S) =                       Bi / [Σk(Bk) + NQ ] 
 
P(MU | S) =                   NQ / [Σk(Bk) + NQ ] 
 
P(Mi | S) is the probability that SNPi is causative, given the Blast/Blosum classes of all N 
candidate SNPs, and the probability U that the causative mutation escaped detection by 
sequencing. 
 
These probabilities have natural and expected properties. Mutations with high Bi (such 
as severe mutations in conserved residues) have greater probability of being causative 
(high P(Mi | S)). Increasing numbers of candidate mutations (higher N) decreases P(Mi | 
S) – which makes sense since there are many possible candidates to choose from. MU 
decreases in probability given the presence of one or more SNPs with high Bi. This 
makes sense, since high Bi is unlikely; so seeing such a SNP in the collection leads to 
high likelihood that it is causative. In contrast, if all SNPs have negligible Bi, the 
probability of MU approaches 1. 
 
Linkage model 
 
In the main text we summarized two methods for meiotic mapping of a Ts-lethal: co-
segregation with a SNP marker (in most cases, the SNP suspected of being causative), 
or segregation compared to a second Ts-lethal with known (or strongly supported) 
physical map location. These mapping results yield number of 
recombinant/nonrecombinant chromosomes between a physical marker (the candidate 
SNP, or the known location of the second Ts-lethal) and the Ts-lethal of interest. The 
aim is to translate this information into probabilities for physical location of the causative 
mutation, since then this information can be used as above to discriminate the different 
models [M1, M2,..Mn, MU].  
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To do this, we employed the following quantitative approach. We assume that the 
physical location of one marker is known (the PCR-detected SNP for the first approach, 
or the location of the known second mutation in the second approach).  We assume an 
average 10 cM/Mb ratio (Merchant et al 2007, Tulin and Cross 2014), and further 
assume that the minimum error on the mapping is 5 cM~=0.5 Mb, based on the largest 
coldspot we have detected, as well as apparent mapping errors over a large number of 
such experiments (Tulin and Cross 2014).  In almost all experiments, sufficient meioses 
are tested that this uncertainty (rather than sampling error) is the main source of error.  
 
We then suppose that the probability density for mutant location is approximately 
normal, with mean at the exact estimated location. The standard deviation is estimated 
by finding 95% confidence limits for the true recombination rate, given the observed 
numbers of recombinants and nonrecombinants. For a normal distribution, these 95% 
confidence limits will be separated by ~4 standard deviations. The theoretical standard 
deviation is then set as the minimum of this distance/4, and 0.5 Mb (to account for 
uncertainty about the uniformity of the 10 cM/Mb genomic average; see above). Mapping 
is bidirectional (e.g. 10 cM from a marker could be 10 cM to the left or the right), so we 
construct both normals, sum them and renormalize to make the area 1. In cases where 
the distribution is terminated (the end of the chromosome, or a the end of a region of 
uniformity in bulked segregant sequencing analysis), we truncate the distribution and 
renormalize. This also means that probability of causality on unlinked chromosomes is 
set to zero.  Note that presence of the causative mutation on this limited region is set as 
‘ground truth’ in this approach. This is reasonable, since linkage to a chromosome is 
generally established already to extremely high probability. 
 
If there are multiple such mapping experiments, the probability densities are multiplied at 
each point and renormalized to make a single model. Thus, for example, a bimodal 
distribution of likely locations is converted by this multiplication to an essentially 
unimodal one, by finding cosegregation of Ts-lethality with a SNP near the center of one 
of the bimodal peaks.  
 
An illustration of generation of such a probability density function is shown in Fig. S2A, 
assuming one experiment showing 25/100 recombinants of a marker at 3.0 Mb with Ts-, 
and another showing 10/100 recombinants of a marker at 5.0 Mb with Ts-.  The two 
mapping experiments (top and middle) are bimodal because distance is approximately 
known (using 10 cM/Mb conversion) but direction is not. The two combined (bottom) 
strongly favor a location of the Ts- lesion at ~5.5 to be consistent with both mapping 
experiments. All curves have total area 1. Call this function f, where 
f(location)=probability of the causative mutation being at the location.  
 
f is in units of (probability/basepair), and is nonzero only over the interval known (as 
ground-truth) to contain the Ts-lethal mutation.  
 
Thus, the probability density for location of the causative SNP should be just f.  
 
In contrast, the probability density for a passenger SNP should be uniform over the 
‘ground-truth’ interval, zero elsewhere, because presence somewhere in this interval is 
required for it to be in consideration. Thus this probability is identically 1/(length of 
ground-truth interval) for all candidates (all positions equally likely). Call the length of this 
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interval G; so probability for passengers at each basepair in the interval is 1/G (units of 
probability/basepair, the same units as for f). 
 
Call Li the location of SNPi (L is the vector over the N SNPs). Then:  
 
p(L | Mi) =(1/G)^(N-1) * f(Li) 
 
p(L | MU) ==(1/G)^N 
 
Rescale probability density for passenger and causative SNPs by multiplying by G; then 
the relative pdf of each passenger is 1, and that of the causative SNP is G*f. Call G*f 
function g. 
 
Then:  
 
p(L | Mi) = G* f(Li) = g(Li) 
 
p(L | MU) =1 
 
 - where p is proportional to probability density. 
 
Prior probabilities of Mi’s and MU are as before.  
 
Then Bayes’ theorem yields: 
 
P(Mi | L) = g(Li) /[Σk(g(Lk)) + NQ ] 
 
P(MU| L)= NQ /[Σk(g(Lk)) + NQ ] 
 
(Scaled probability density above is converted to probability here, because all terms are 
in the same units of relative probability density).  
 
Figure S2B shows placement of two SNPs on the probability curves according to models 
[M1, M2, MU] (only two candidate SNPs in this example). In this case M2 is most likely 
(product of probabilities for the two SNPs is highest for this model). 
 
Combined model 
 
Note that clearly, location of a SNP on the chromosome is independent of the 
Blast/Blosum characteristics of the SNP. This means that probabilities multiply. So: 
 
P(Mi | L,S) = g(Li) * Bi / [Σk(g(Lk) * Bk) + NQ ] 
 
P(MU| L,S) = NQ / [Σk(g(Lk) * Bk) + NQ ] 
 
 
Transcription 
 
For the DIV subclass, we can also integrate the probability that SNPi is causative, based 
on whether its containing gene follows the transcriptional pattern of most of these genes 
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(since transcriptional pattern is essentially independent of the other classifications). 
Using the set of strongly identified DIVs, we have a simple 2X2 classification table: DIV 
gene vs. all genes, S/M transcription pattern vs. different pattern (Figure 5). If Ti is the 
likelihood ratio for the gene model containing SNPi relative to transcription pattern, 
based on the training set of definitive DIVs vs. all genes (Figure 5), we can integrate this 
information into the calculation: 
 
P(Mi | L,S,T) = g(Li) * Bi * Ti / [Σk(g(Lk) * Bk * Tk) + NQ ] 
 
P(MU| L,S,T) = NQ / [Σk(g(Lk) * Bk * Tk) + NQ ] 
 
To confirm that the model is correctly generated and the code calculating probabilities 
accurately, we generated 20,000 ‘mutants’ in silico (Figure S4), aiming for a reasonable 
simulation of the observed distributions, and number and scale of typical linkage 
experiments. High accuracy, sensitivity and selectivity were observed, verifying the 
correctness of the calculations. 
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