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The connections between neurons determine the computations performed by both artificial and 
biological neural networks. Recently, we have proposed SYNseq, a method for converting the 
connectivity of a biological network into a form that can exploit the tremendous efficiencies of high-
throughput DNA sequencing. In SYNseq, each neuron is tagged with a random sequence of DNA—a 
“barcode”—and synapses are represented as barcode pairs. SYNseq addresses the analysis problem, 
reducing a network into a suspension of barcode pairs. Here we formulate a novel and complementary 
synthesis problem: How can the suspension of barcode pairs be used to “clone” or copy the network 
back into an uninitialized tabula rasa network? Although this synthesis problem might be expected to be 
computationally intractable, we find that, surprisingly, this problem can be solved efficiently, using only 
neuron-local information. We present the “one barcode one cell” (OBOC) algorithm, which forces all 
barcodes of a given sequence to coalesce into the same neuron, and show that it converges in a 
number of steps that is a power law of the network size.  Rapid and reliable network cloning with single 
synapse precision is thus theoretically possible.      

The connections between neurons determine the computations performed by a neural network. In both 
biological and artificial neural networks, connections are established and tuned by experience and learning. 
Connections can thus be considered a “summary” of the statistical structure of the experience—data—on 
which the network was trained. This summary may be considerably more compact and efficient than the 
original data. For example, deep neural networks for object recognition contain tens of millions of connections 
derived from training sets consisting of hundreds of billions pixels, which results in more than 1000-fold 
compression [1, 2]. It would therefore be more efficient to copy these connections onto a new network than to 
retrain a new network from scratch.  

Most current implementations of artificial neural networks exploit digital computers and GPUs [2]. On these 
architectures, connections are stored explicitly and are therefore straightforward to extract and copy into a new 
network. In biological networks, by contrast, there is no central repository for connections, so reading out the 
connections of a network and copying them into a new network represents a difficult challenge. During neural 
development, for example, a genomic DNA sequence representing prior evolutionary experience is converted 
into the brain’s connectivity. Similar challenges may arise in future artificial or hybrid biological/artificial 
architectures. 

We have recently proposed SYNSeq, a novel approach to determining neuronal connectivity [3, 4]. The key 
idea is to convert the connections into a form that can be read out using high-throughput DNA sequencing, 
thereby benefitting from the advances in sequencing technology. Sequencing is now extremely fast and 
inexpensive—it is routine to decode billions of DNA fragments per day, and sequencing cost has dropped at a 
rate faster than Moore’s law. To convert neuronal connectivity into a sequencing problem, we induce individual 
neurons to express unique random nucleotide identifiers called “barcodes.” Pairs of pre- and postsynaptic 
barcodes represent individual synaptic connections. These barcode pairs can then be used to represent the 
connectivity of a network (Fig. 1).  

Here we formulate a different problem: Given an ensemble of connections represented by barcode pairs, can 
we copy them into a new network? In other words, can the original network be cloned? We explore a 
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Figure 1. Representation of a network by an 
ensemble of barcode pairs (SYNSeq). (A) An 
example of small network. In SYNSeq, each 
neuron is represented by a short unique 
nucleotide sequence called barcode. (B) The 
connectivity matrix corresponding to the 
network in (A). (C) Network connections are 
encoded by pairs of barcodes with a spacer 
(black arrow) representing the connections’ 
direction. (D) We represent barcodes by 
unique letters of an alphabet for brevity. 

computational model that simulates the behavior of barcodes 
introduced into a tabula rasa network with unstructured 
connectivity and test its ability to recreate target connectivity in 
such networks. We require that the underlying mechanisms be 
purely local, i.e. that the algorithm uses only information 
available to a given neuron and its synapses. Below we 
present an algorithm that allows robust copying of connectivity 
based only on local interactions.  

In our approach, connectivity is specified by unique molecular 
labels (DNA barcodes) with single-synapse precision. It is 
commonly assumed that implementing connectivity via 
individual synaptic tags is not feasible due to the absence of 
guidance mechanism that would direct barcodes to the right 
synapses [5]. One might expect that establishing desired 
connectivity using individual synaptic labels would require a 
number of steps that is exponential in network size. The 
inadequacy of unique molecular tags in instructing connectivity 
had motivated Roger Sperry to introduce the idea of molecular 
gradients [6]. Here, we find, surprisingly, that a form of 
molecular dynamics proposed by us yields convergence to the 
target connectivity in polynomial in network size number of 
steps, even though the connectivity is specified by unique 
molecular labels for each synapse. This finding implies that 
copying connectivity with single-neuron precision using our 
strategy is theoretically possible.  

Our algorithm attempts to recreate the target connectivity 
between neurons (Fig. 1A). The connectivity can be 
represented as a connection matrix Ŵ  (Fig. 1B). We assume 

that every network node (neuron) is identified by a unique barcode, i.e. by a sequence of nucleotides long 
enough to label uniquely every neuron in the network (Fig. 1A). Network connectivity is thus encoded by 
barcode pairs, where each barcode pair consists of a presynaptic barcode, a postsynaptic barcode, and a 
spacer between them indicating the connection’s direction (Fig. 1C). The number of barcode pairs is equal to 
the number of non-zero entries in the connection matrix, or to the total number of connections in the network. 
To simplify notation, we will represent each barcode by a single letter of the alphabet rather than as a string of 
nucleotides (Fig. 1D).     

The barcode pairs are introduced into synapses of a tabula rasa network that is, initially, fully connected (Fig. 
2B). Since connectivity in our model is directional, we assume that, between every two cells, synapses are 
formed initially in both directions. The full connectivity assumption is made here to simplify the description of 
network dynamics, and is reminiscent of the overproduction of synaptic connections that occurs during 
development  [7, 8] and the full potential cortical connectivity [9]. The number of neurons in the tabula rasa 
network is assumed to be equal to the number of nodes in the desired network, i.e. equal to the number of 
barcodes.  
 
The barcodes are initially introduced into synapses randomly. The barcodes are then rearranged in the 
network via three types of moves. First, each barcode can be reinserted in the synapse between the same pair 
of cells in different orientation (“flips”; Fig. 2C). Second, the barcodes can jump from one synapse to another 
synapse of the same cell (“jumps”; Fig. 2D). Finally, two barcodes located in the same neuron can trade places 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 5, 2017. ; https://doi.org/10.1101/098343doi: bioRxiv preprint 

https://doi.org/10.1101/098343


3 
 

(“swaps”; Fig. 2E). To practically implement these three moves, we select two synapses of the same neuron at 
random, ensure that at least one of them contains a barcode pair, and swap the pairs, even if source and 
destination are the same or one of them is empty. In implementing these moves we keep track of the direction 
of barcode pairs and synapses, i.e. barcode pairs are introduced into synapses of the correct orientation. We 
ensure that the described moves are local in that the barcode pairs are only relocated between synapses of 
the same neuron.  

Using this set of moves, we rearrange barcode pairs in the network attempting to implement the “one barcode 
– one cell” (OBOC) solution. In the OBOC solution all barcodes in the synapses of the same cell, facing this 
cell, are the same (Fig. 2G). Thus, in Fig. 2G, all barcodes in the rightmost cell are described by letter Y (V, X, 
Y, Z is a short-hand notation for much longer nucleotide sequences). Similarly, all barcodes in the leftmost cell 
are labeled by letter Z. We reasoned that if the logic of the interaction of cells and barcodes favors OBOC 
solution, cells will discover their identity as encoded by barcodes. Because every cell in the tabula rasa 
network has a potential to become any cell as defined by the barcodes, a specific arrangement of barcode 
pairs respecting OBOC rule is associated with a symmetry breaking, whereby the network selects one possible 

 

Figure 2. The “one barcode one cell” (OBOC) rule yields target connectivity. (A) The set of barcode pairs 
representing the original network from Fig. 1. Individual barcode sequences are shown as letters for brevity. Barcode 
pairs represent individual synapses. (B) An all-to-all connected tabula rasa network that receives the ensemble of 
barcode pairs. We show connections as undirected synapses for simplicity. (C) The barcode pairs are initially 
arranged randomly. (D-F) Barcode pairs can move through the network by jumping from synapse to synapse using 
three moves as illustrated: jumps (1), flips (2), and swaps (3). The moves minimize the cost function defined by 
equation (1). (F) Minimization of the cost-function forces all barcodes facing every neuron to be the same. This 
arrangement is called OBOC. Once OBOC solution is achieved, we eliminate all synapses that contain no barcode 
pairs, such as the synapse between cells “X” and “V”.  (G) OBOC solution yields the copying of the original 
connection matrix.   
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Figure 3. The OMOC rule allows copying desired network 
connectivity matrix. Results of a single MMC simulated 
annealing run for 20x20 (A-C) and 100x100 (D-F) networks. 
Red/green channels show target/actual connection 
matrices. Yellow matrices at the end of the simulation run 
(C and F) indicate a perfect copy. (G) OBOC rule yields 
target connectivity in a number of steps given by a power 
law of network size. Number of steps required for 
convergence as a function of a combination of network 
parameters ( N , the size of the network, and f , the 
fraction of non-zero connections). Dashed line is the best 
linear fit corresponding to the number of steps 

4 1.17
steps ( )N fN .   

assignment of barcodes into cells out of !N  combinations ( N  is the number of neurons in the network, and is 
equal to the number of barcodes). We also reasoned that if we then eliminate all synapses that are not 
occupied by a barcode pair, the remaining synapses will implement the target connectivity.  

To practically implement OBOC solution, we defined a cost-function, H , that is minimized by the barcode 
dynamics. The cost function depends on the synapse-barcode connection index (SBCI), ,ijx  , which 

determines which barcode pair is present in what synapse. This variable is equal to 1 or 0 if a barcode pair 
connecting two barcodes     is present or absent in a synapse from cell j   to i   (  ,   , i   and j   are 
unique indexes enumerating barcodes and cells). The constraint on SBCI is that after summing it over all 
synapses, we should obtain the original barcode 
connectivity matrix shown in Fig. 1B: ,ij v v
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Here sums are assumed over the neuronal index 
n  ranging from 1 to N , the total number of 
neurons, and the barcode index  , ranging from 1 
to B , the total number of barcodes.    and   are 
the parameters of the cost-function. To implement 
the OBOC rule, the parameter  must exceed unity. 
In the present work we used 2  , in which case 
the first term of the cost-function can be viewed as 
a measure of the sparseness of barcode 
distribution nc   [10, 11]. Minimizing a measure 

determined by barcode sparseness will converge to 
a single barcode dominating each cell, i.e. to the 
desired OBOC solution. The second term in the 
cost-function defines the penalty for placing a non-
dominant barcode in each cell. This penalty is 
controlled by an independent parameter,  , which 
we set to 10   here. For 2  , the cost function 

can be written as 
1

ˆ
N

T
n n
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, where nc  is the 

vector of barcode abundances in neuron number n
, and  ˆ ˆ ˆ(1 )U I Y     . Here Ŷ  is the matrix of 

all ones.  Because the diagonal part of matrix Û  (~

Î ) is negative, it favors solutions in which there is 
a single barcode type per cell, while the off-
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diagonal part ( ˆ~ Y ) penalizes multiple barcode types in a cell. Both of these components help achieve OBOC 
solution. Importantly the cost function has a property of locality, i.e. the contribution for each neuron depends 
on the variables available to this neuron nc  , i.e. the number of barcodes of type  .  

The approach based on minimizing a cost-function is one of the ways to quantitatively describe biological 
processes and has been used successfully to describe establishing connectivity, especially when competition 
or interdependence between cells is important [12, 13]. To minimize the cost function we use Metropolis Monte 
Carlo (MMC) simulated annealing procedure [12, 13] and three types of barcode moves as described above. 
After the cost function is minimized, at the end of MMC procedure, we remove synapses that carry no 
barcodes. Overall, we hypothesized that, when OBOC solution is reached and empty synapses are eliminated, 
the final connectivity between cells will reproduce the connectivity between barcodes.  

Our results show that, indeed, OBOC rule yields desired connectivity after several MMC steps (Fig. 3). We 
tested the convergence on a set of randomly generated asymmetric sparse networks, with the fraction of non-
zero connections determined by parameter f . We find that, even for substantially large connection matrices 
(Fig. 3D-F), the target connectivity can be reached in relatively small number of steps in 100% of cases. To 
quantify the speed of convergence, for each MMC simulation, we computed the number of attempts to move 
barcodes before a perfect OBOC solution was achieved, stepsN  . We find that this parameter is well 

approximated by a power-law function  

 4
steps ( )N fN    (2) 

Here N  is the number of cells in the network (the size of the connection matrix), 1.17   is the scaling 
exponent. This finding means that OBOC rule yields target connectivity in 4.68~ N  steps, i.e. a power law 
function of the network size. This result suggests that even for large networks, the original connectivity can be 
reached in a finite, i.e. non-exponential, number of steps. Overall our results show that copying the target 
connectivity to the new network is possible with OBOC rule, and that the convergence of this rule is relatively 
fast.  

If one assumes that the scaling exponent 1.17   is approximately equal to one, the number of steps to 

convergence can be represented as 2
stepsN BN , where 2B fN  is the total number of barcodes (synapses) 

in the network. The number of steps that each barcode has to make is given by 2
steps /N B N . Thus, to a first 

approximation, each barcode has to explore 2~ N  potential positions before OBOC solution is achieved, the 
number that is independent on other barcodes. This may explain why the rate of convergence is given by a 
power law function and is not exponential in the number of neurons.  

Here we addressed the question whether connectivity can be copied from one neural network to another. We 
assumed that the connections are represented by an ensemble of DNA barcodes [3, 4]. We analyzed the 
dynamics of barcodes introduced into a clean slate tabula rasa network. The particular form of dynamics that 
we considered is described by one barcode one cell rule (OBOC), which favors positioning of a single type of 
barcodes in a single neuron. We showed that OBOC dynamics leads to fast and reliable recreation of desired 
connectivity in the new network. The formation of new connectivity is achieved in a number of steps given by a 
power law of the network size. Thus, copying connectivity from one neural network to another using DNA 
barcodes is theoretically possible.  
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Methods 

To minimize the cost function (1), we used simulated annealing [12, 13]. We started from a random distribution 
of barcodes in synapses of a fully connected directed network. Barcodes were relocated between synapses as 
described, according to Monte Carlo statistical rules. The temperature was gradually lowered from 210  to 610  
of the initial value. The number of steps in the algorithm was chosen to be 10 times the value given by 
equation (2). The probabilities of three operations, jumps, swaps, and flips, were 1 f , 1 /f N , and 1 / N  
respectively. During each of the operations, barcodes were inserted in a random orientation. To compare to the 
target connectivity, we used a greedy procedure that finds dominant barcodes for each cell.  
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