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Abstract 
This paper presents a new framework for analyzing cross-frequency coupling in           

multichannel electrophysiological recordings. The generalized eigendecomposition-based      

cross-frequency coupling framework (gedCFC) is inspired by source separation algorithms          

combined with dynamics of mesoscopic neurophysiological processes. It is unaffected by           

factors that confound traditional CFC methods such as non-stationarities, non-sinusoidality,          

and non-uniform phase angle distributions—attractive properties considering that brain         

activity is neither stationary nor perfectly sinusoidal. The gedCFC framework opens new            

opportunities for conceptualizing CFC as network interactions with diverse         

spatial/topographical distributions. Five specific methods within the gedCFC framework are          

detailed, with validations in simulated data and applications in several empirical datasets.            

gedCFC accurately recovers physiologically plausible CFC patterns embedded in noise          

where traditional CFC methods perform poorly. It is also demonstrated that spike-field            

coherence in multichannel local field potential data can be analyzed using the gedCFC             

framework, with significant advantages over traditional spike-field coherence analyses.         

Null-hypothesis testing is also discussed. 
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Cross-frequency coupling (CFC) refers to the phenomenon that dynamics across two or            

more frequency bands are related. CFC has been reported in many cortical and subcortical              

brain regions in multiple species, and has inspired computational models and theories            

(Canolty and Knight, 2010; Fell and Axmacher, 2011; Lisman and Jensen, 2013)​. A core idea               

that permeates CFC theories is that the phase of a slower brain rhythm coordinates a               

temporal sequence of faster processes that represent specific items in memory or in             

sensory space. There are several manifestations of CFC ​(Canolty and Knight, 2010; Hyafil et              

al., 2015; Jensen et al., 2007; Jirsa and Müller, 2013) ​, and the most widely used CFC analysis                 

methods involve the application of Euler’s formula, phase synchronization, or distribution           

analyses, with the goal of determining whether high-frequency power values are           

non-uniformly distributed over low-frequency phase ​(Tort et al., 2010)​. 

 

However, the standard corpus of CFC measures is increasingly criticized, with valid concerns             

about spurious or biased CFC estimates resulting from non-stationarities, sharp transients,           

non-uniform phase distributions, and other issues ​(Aru et al., 2015; Kramer et al., 2008;              

Lozano-Soldevilla et al., 2016; van Driel et al., 2015) ​. These potential biases are not fatal               

flaws, and in some cases can be alleviated by using alternative methods, shuffling-based             

permutation testing, or debiasing terms ​(Cohen, 2014; Pittman-Polletta et al., 2014; van            

Driel et al., 2015; Voytek et al., 2013) ​. However, these concerns limit the ubiquitous              

applicability of standard CFC measures. 

 

The source of these potential biases comes from violating the assumption that brain             

oscillations are sinusoidal with a stable frequency. This assumption stems from the use of              

sinusoidal narrowband filters such as Morlet wavelets or narrow FIR filters. On the other              

hand, it is increasingly becoming clear that neural oscillations are not always sinusoidal             

(Jones, 2016; Mazaheri and Jensen, 2008) ​. The non-sinusoidal waveform shape of neural            

oscillations may provide important insights into underlying biophysical processes, and yet,           

for CFC analyses, the non-sinusoidal waveform shapes are potential confounds that must be             

avoided or corrected. Therefore, analysis methods that do not assume sinusoidality are            

important both for methodological reasons—to examine CFC in a wider range of            

datasets—and for theoretical reasons—to facilitate discovery of CFC regardless of          

waveform shape (or explicitly incorporating waveform shape), which is an important step            
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towards the discovery of the neurobiological origins and functional significances of neural            

oscillations. 

 

Multichannel recordings provide new opportunities for discovering physiologically        

interpretable patterns of CFC. For example, theories of CFC suggest that the low-frequency             

rhythm regulates the timing of different networks ​(Lisman and Jensen, 2013) ​, implying that             

the neural circuits that produce the low- and high-frequency rhythms should have different             

electrical projections onto multielectrode recordings. Furthermore, because volume        

conduction carries activity from a single neuroelectric source to multiple electrodes,           

incorporating weighted averages from multiple electrodes can boost signal-to-noise ratio          

and help isolate patterns of activity ​(Parra et al., 2005) ​, including in CFC analyses ​(Canolty et                

al., 2012; Soto et al., 2016) ​. This is particularly relevant for noninvasive recordings, in which               

high-frequency activity can have low power and can be contaminated by muscle artifacts.             

Finally, multichannel recordings allow the application of advanced matrix analysis methods,           

including dimensionality-reduction and source separation algorithms, which can identify         

spatiotemporal patterns of activity that might be difficult to uncover when considering            

activity from a single electrode at a time ​(Grootswagers et al., 2016; Orekhova et al., 2011) ​. 

 

The purpose of this paper is to present a new hypothesis-driven framework for             

conceptualizing and quantifying CFC in multichannel datasets. This framework is based on            

using generalized eigendecomposition (GED) of multichannel covariance matrices, and is          

therefore termed generalized eigendecomposition-based cross-frequency coupling      

(gedCFC). The backbone of gedCFC for source separation and dimensionality reduction is            

grounded in decades of mathematics and problem-solving in engineering, with applications           

in neuroscience ​(Parra et al., 2005; Särelä and Valpola, 2005)​. This paper will show that               

gedCFC has several advantages over the commonly used CFC methods, including increasing            

signal-to-noise characteristics and avoiding confounds of non-sinusoidal oscillations.        

Perhaps the most important advantages, however, are its use in hypothesis-driven network            

discovery and its increased flexibility and robustness for uncovering CFC patterns in            

nonstationary multichannel data. 

 

Five specific methods are derived from this framework (a brief overview is provided in Table               

1 for reference), with each method designed for different assumptions about underlying            
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neural processes, and different analysis goals. Each method is validated in simulated data,             

and proof-of-principle applications are shown in empirical data recorded in humans (EEG,            

MEG, ECoG) and in rodents (LFP and spike-LFP). Furthermore, it is also demonstrated that              

spike-field coherence in multichannel datasets can be conceptualized as a special case of             

CFC, permitting the application of gedCFC. Advantages, assumptions, and limitations          

underlying the different methods are discussed, along with suggestions for practical           

aspects of data analysis and inferential statistics. 

 

Generalized eigendecomposition 

This paper describes the gedCFC framework in an approachable manner to scientists with             

diverse backgrounds; deeper mathematical discussions that justify using GED to optimize           

linear spatiotemporal filters according to user-specified objectives are presented in many           

other publications ​(Blankertz et al., 2008; de Cheveigné and Parra, 2014; Nikulin et al., 2011;               

Parra et al., 2005; Tomé, 2006) ​. 

 

The goal of gedCFC is to create a component, formed from a weighted sum of all                

electrodes, that optimizes the ratio between user-specified minimization and maximization          

criteria. For example, a component might maximize the difference between high-frequency           

activity that appears during peaks of a low-frequency oscillation, versus high-frequency           

activity that is unrelated to the low-frequency oscillation. This component is created            

through a matrix decomposition procedure called eigendecomposition. 

 

Eigendecomposition (also called eigenvalue or eigenvector decomposition) involves finding         

certain vectors associated with square matrices. The basic eigenvalue equation is ​Sw = ​w ​λ,              

where ​S is a square matrix, ​w is a vector, and λ is a single number called an eigenvalue. This                    

equation means that multiplying the eigenvector ​w by matrix ​S has the same effect as               

multiplying ​w by a single number λ. In other words, matrix ​S does not change the direction                 

of ​w ​, ​S merely stretches or shrinks it. If ​S is a channel-by-channel covariance matrix formed                

by multiplying the M-by-N (channels by time points) data matrix by its transpose, then the               

eigenvector ​w points in the direction of maximal covariance. The full set of eigenvectors              

produces matrix ​W (with corresponding eigenvalues in the diagonal matrix ​Λ​) that spans             

the space of ​S using basis vectors that each account for maximal variance in ​S while                

selected to be pairwise orthogonal. This is known as a principal components analysis. 
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The eigenvalue equation is generalized to two square matrices ​R and ​S​, as ​SW = ​RWΛ​. This                 

equation can be more intuitively understood by moving ​R to the left side via multiplication               

of its inverse: (​R ​-1​S ​)​W = ​WΛ​. ​R ​-1 ​S is the matrix analog of ​S divided by ​R (think of ⅔ as being                     

equivalent to 3 ​-1 ​✕ 2). If ​S is a covariance matrix of a “signal” dataset and ​R is a covariance                    

matrix of a “reference” dataset, then GED can be understood to produce eigenvectors that              

identify directions of maximal power ratio (highest gain) in the matrix product ​R ​-1​S​, in other               

words, directions that best differentiate matrices ​S from ​R ​. The columns of ​W are called               

spatial filters (spatiotemporal filters for delay-embedded matrices) or unmixing         

coefficients, and the column with the largest associated eigenvalue is the one that             

maximally differentiates the two matrices. The filters can be applied to the data to compute               

components, and they can be visualized by inspecting the columns of ​W ​-T​, which is also               

called the forward model of the filter or the activation pattern ​(Haufe et al., 2014a)​. 

 

gedCFC identifies multichannel CFC-related networks by contrasting covariance matrices         

computed from to-be-maximized data features (matrix ​S​) against to-be-minimized data          

features (matrix ​R ​). The two covariance matrices should be similar enough to suppress             

CFC-unrelated activity, while being different enough to isolate the neural networks that            

exhibit CFC. For example, one could identify a theta-band (~6 Hz) rhythm and then compute               

matrix ​S from peri-peak data and matrix ​R from peri-trough data; the GED of ​S and ​R would                  

reveal a component that maximally differentiates peak-related from trough-related activity,          

which is a manifestation of network-level phase-amplitude coupling. 

 

The spatial filter comprises values per electrode that are used to compute a weighted sum               

of activity from all electrodes. The resulting time series is the gedCFC component. Note              

that although defining the spatial filter involves two covariance matrices that might be             

computed from discrete time windows, the gedCFC component is a continuous signal to             

which time-domain, frequency-domain, or time-frequency domain analyses can be applied. 

 

In addition to being able to specify both maximization and minimization criteria, another             

important distinction between GED of two covariance matrices vs. eigendecomposition of           

one matrix is that eigenvectors are selected to form an orthogonal set only when the matrix                

S is symmetric. Although both ​S and ​R are symmetric covariance matrices, ​R ​-1 ​S is not               
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symmetric. In other words, the eigenvectors are independent but not orthogonal. This is an              

important advantage over principal components analysis, which often performs poorly          

when used as a source separation method ​(Delorme et al., 2012) (see also Figure 1 -                

supplement 1). 

 

Using GED to identify the low-frequency rhythm 

The GED framework is not limited to CFC; it is also recommended to use GED to define a                  

spatial filter that maximizes power at the lower frequency ​(Blankertz et al., 2008; Nikulin et               

al., 2011; Parra and Sajda, 2003; Särelä and Valpola, 2005) ​. There are several ways to define                

the ​S and ​R covariance matrices (see ​Cohen, 2016 ​, for comparisons); the approach taken              

here is to compute ​S from narrow-band filtered data and ​R from the broadband data ​(de                

Cheveigné and Arzounian, 2015) ​. The eigenvector with the largest eigenvalue is taken as a              

spatial filter optimized for activity in that frequency band. The advantages of GED for              

source separation of narrowband activity include increased signal-to-noise ratio, more          

accurate recovery of source time course dynamics, and eliminated necessity of electrode            

selection. 

 

MATLAB code to simulate data and implement the five methods presented here are             

available online (mikexcohen.com/data). Readers are encouraged to reproduce the findings,          

modify the code to evaluate success and failure scenarios, and adapt and extend the code               

to specific data analysis applications. 

 

 

Results 

 

Method 1: gedCFC on trough-locked covariance vs. entire time series covariance 

Method 1 is designed for a situation in which activity of one network fluctuates as a                

function of the phase of a lower-frequency network. To implement Method 1, a component              

(or single electrode) from which to compute the lower-frequency rhythm is first defined             

and then the troughs are identified (or peaks, or rising slopes, or any theoretically relevant               

phase position). The ​S covariance matrix is computed from data surrounding each trough,             

and the ​R covariance matrix is computed from the entire time series. Figure 1 - supplement                

2 provides a graphical overview of Method 1. 
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Simulated EEG data to illustrate this method were constructed by generating activity in             

three dipoles in occipital cortex: one to provide a theta rhythm, and two to provide gamma                

oscillations. The topographical projections of these dipoles were overlapping but not           

identical (Figure 1a). The theta rhythm (peak frequency of 6 Hz) contained amplitude and              

frequency non-stationarities, one gamma dipole had a peak frequency at 40 Hz and an              

amplitude modulated by theta phase, and the other gamma dipole had a peak frequency at               

50 Hz and an amplitude that was modulated independently of theta phase. This second              

dipole served as a “distractor” to test whether it would produce an artifact. These dipole               

time series, along with random correlated 1/f noise at 2001 additional brain dipoles, were              

projected to 64 scalp EEG channels (see Materials and Methods for additional details about              

simulations). 

 

GED was used to extract a component that maximized power in the theta band. The               

forward model of the filter closely matched the dipole projection (Figure 1a), indicating             

accurate reconstruction of the source activity. The ​S covariance matrix was formed using             

broadband data from ¼ of a theta-frequency cycle surrounding each theta trough (⅛ of a               

cycle before and ⅛ after the trough), and the ​R covariance matrix was formed using the                

entire broadband time series. MATLAB code to obtain the weights is           

[V,D]=eig(covTrough,covTot) ​. The eigenvector in matrix ​V with the largest         

eigenvalue (diagonals of matrix ​D ​) is the spatial filter that can be used to obtain the “trough                 

component.” This component is a weighted average of all electrodes that maximally            

differentiates activity during theta troughs from activity during all theta phases. 

 

Method 1 accurately reconstructed both the topographical map and the relationship           

between gamma power and theta phase (Figure 1). It is noteworthy that the channel data               

were not bandpass filtered; the 40 Hz gamma component was identified because of the              

separability of the covariance matrices. It is also noteworthy that the 50 Hz gamma              

component had twice the power as the 40 Hz gamma component (Figure 1b) and yet was                

fully suppressed by the spatial filter. This occurred because its dynamics were uncorrelated             

with theta phase, meaning activity from the 50 Hz dipole contributed equally to both ​S and                

R ​ covariance matrices. 
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CFC strength can be quantified in a number of ways. One approach is to apply narrowband                

temporal filters to the theta-trough component and compute the average peak minus            

trough amplitude differences. This procedure revealed a maximum at 40 Hz and smaller             

peaks at 40±6 Hz, corresponding to the nonstationarities induced from the theta            

rhythmicity of the 40 Hz amplitude modulations (Figure 1b). Other quantitative methods,            

including computing time-frequency power spectra surrounding troughs, R ​2 fits between          

the low-frequency time series and the CFC component power time series, and phase             

synchronization between the two components, will be illustrated in later sections. Time            

courses of the reconstructed theta component and power time series of the theta-trough             

component revealed strong co-rhythmicity, as was constructed in the simulation (Figure           

1b). 

 

A traditional phase-amplitude coupling analysis based on Euler’s formula from POz (the            

electrode with maximum power) failed to capture the simulated pattern of CFC.            

Furthermore, the identical temporal filters applied to electrode POz showed little           

suggestion of CFC (Figure 1c). Together, these results show that even in simple simulations,              

gedCFC can accurately identify CFC while traditional CFC methods can produce uninspiring            

results. 

 

To demonstrate that gedCFC is robust to topographical distribution, this simulation was            

repeated by having several different electrodes (not dipoles projected to electrodes) that            

formed a network of theta phase-coupled gamma oscillators. The neurophysiological          

interpretation of this simulation is that a single theta generator regulates the timing of a               

spatially distributed synchronous gamma-oscillating network. The results remained robust,         

as seen in Figure 1 - supplement 3. Although this is a useful demonstration, it is not                 

surprising, considering that gedCFC makes no assumptions about topographical         

characteristics or spatial smoothing. 

 

Non-sinusoidal oscillations produce spurious phase-amplitude coupling, either due to         

non-uniform distribution of phase angles or to fast derivatives causing high-frequency           

spikes at certain phases ​(Kramer et al., 2008; van Driel et al., 2015) ​. Therefore, this               

simulation was repeated, replacing the theta sine wave with repeated Gaussians or van der              

Pol oscillators at theta frequency (these two waveforms are known to produce spurious             
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phase-amplitude coupling). gedCFC was completely robust to these non-sinusoidal time          

series, in that (1) the simulated pattern of CFC was accurately recovered regardless of              

non-stationarities or a non-sinusoidal shape of the lower frequency rhythm, and (2) when             

gamma oscillations were not amplitude-modulated by the lower frequency rhythm, no           

spurious CFC was identified. The latter is illustrated in Figure 1b, and additional simulations              

are shown in the online MATLAB code. 

 

As a proof-of-principle application, Method 1 was applied to resting-state MEG data taken             

from the Human Connectome Project ​(Van Essen et al., 2013) ​. The first step was to identify                

an alpha component by comparing covariance matrices from data filtered in the alpha range              

(peak: 11 Hz, FWHM: 5 Hz; these parameters were selected based on visual inspection of               

power spectra from posterior sensors). There were several physiologically plausible alpha           

components, as expected ​(Haegens et al., 2014; van der Meij et al., 2016; Walsh, 1958)​. The                

alpha component with the largest eigenvalue was selected for subsequent analyses; it is             

possible that additional cross-frequency coupling dynamics would emerge when examining          

other alpha components. A covariance matrix of broadband data was constructed around            

alpha peaks (only peaks corresponding to >1 standard deviation above the mean alpha peak              

amplitudes were included; this limits the analysis to periods of high alpha power) and              

compared against the broadband covariance from the entire resting period. The three            

gedCFC components with the largest eigenvalues were selected for analysis and           

visualization. Results show that in this dataset, bursts of broadband and high-frequency            

activity were time-locked to alpha phase, ranging up to 150 Hz for components 2 and 3                

(Figure 2), which appears consistent with previous reports ​(Osipova et al., 2008) ​. Note that              

the different topographies of the alpha and alpha-peak components rule out the possibility             

that the cross-frequency coupling resulted from an artifact of the non-sinusoidal shape of             

alpha. 

 

The primary assumptions of Method 1 are that there is only one high-frequency network of               

interest, and that its spatiotemporal characteristics (and therefore its covariance matrix)           

are consistent across each trough. The lower-frequency rhythm is assumed to be            

sufficiently rhythmic to be able to identify peaks and troughs, although frequency            

stationarity is not required; it would be valid to use, for example, empirical mode              

decomposition (a time-frequency method that can estimate non-sinusoidal oscillations) to          
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obtain the lower-frequency rhythm. The primary limitation of Method 1 is that it is valid               

only if the single-network assumption is valid. 

 

Method 2: gedCFC on covariances of peri-peak vs. peri-trough 

Method 2 is an extension of Method 1, and is designed for a situation in which a                 

low-frequency rhythm regulates the timing of ​two different networks that are activated at             

distinct low-frequency phases. This might be the case, for example, if theta phase controls              

the timing of different populations of neurons that represent different items held in             

memory ​(Heusser et al., 2016; Zheng et al., 2016) ​. 

 

The implementation is similar to that of Method 1, except that the two covariance matrices               

are formed from data around the trough and around the peak (or any other two phase                

regions). The MATLAB code is ​[V,D]=eig(covTrough,covPeak) ​. The eigenvector in         

matrix ​V with the largest eigenvalue (diagonals of matrix ​D ​) is the spatial filter to obtain the                 

“trough component,” while the eigenvector with the smallest eigenvalue is the spatial filter             

to obtain the “peak component.” Figure 3 - supplement 1 provides a graphical overview of               

Method 2. 

 

EEG data were simulated in a similar way as for Method 1, except that activity from one                 

dipole had a peak frequency at 40 Hz and an amplitude modulated by theta phase, while                

activity from the second dipole had a peak frequency at 45 Hz and an amplitude modulated                

by the inverse of theta phase. However, different frequencies are not necessary, and the              

two dipoles could oscillate at the same frequency. The key to their separability is              

topographical projections that produce differentiable covariance matrices, and different         

amplitude time courses with respect to the lower-frequency phase. 

 

gedCFC recovered the cross-frequency dynamics of the network, accurately identifying the           

topographical distributions, frequency ranges, and time courses (Figure 3). Time-frequency          

power spectra time-locked to the theta troughs and peaks accurately captured the            

simulated dynamics. Note that this result emerged despite the absence of visually            

prominent gamma peaks in the channel power spectra. In other words, consistent            

spatiotemporal patterns that allow component extraction and CFC identification do not           

necessarily require visually compelling spectral peaks, as has been suggested by ​Aru et al.,              
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(2015 ​; see ​He et al., 2010​, for another counter-example). This is because the power              

spectrum computed from an extended period of time can fail to reveal oscillatory activity              

that is temporally brief or that contains frequency non-stationarities. 

 

The standard phase-amplitude coupling measure via Euler’s formula failed to identify the            

pattern of cross-frequency coupling. The difficulty in this case was the source-level mixing             

in combination with weak gamma power relative to the noise spectrum. This simulation             

therefore also demonstrates how gedCFC can increase signal-to-noise characteristics, which          

is particularly important for non-invasive measurements such as EEG. 

 

As a proof-of-principle illustration, Method 2 was applied to human EEG data taken from a               

previously published study ​(Cohen and van Gaal, 2012a) ​, in which we reported that             

theta-alpha phase-amplitude coupling was modulated by error adaptation. In the present           

re-analysis, GED was applied to define a spatial filter that maximized theta-band power             

(peak 4 Hz, FWHM 4 Hz, based on the empirical peak theta frequency from channel FCz),                

which was then used to identify theta peaks and troughs. Next, the 64-channel data were               

filtered in the alpha band (peak 10.5 Hz, FWHM 4 Hz, based on the empirical alpha peak                 

frequency from channel POz), and covariance matrices were computed using data           

surrounding ¼ of a theta cycle centered on peaks and troughs of the theta component               

(data were bandpass filtered here because of a priori hypotheses about theta-alpha            

coupling). The two components with the largest and smallest eigenvalues were selected as             

spatial filters. The power of those components was computed as a function of 30 theta               

phase bins, and the distributions are shown in Figure 4c. The relationship between alpha              

power and theta phase bin was shuffled 1000 times to produce a null-hypothesis             

distribution. The 95% of this distribution is shown as a gray patch in Figure 4c. Data values                 

outside this range can be considered unlikely to occur by chance. Additional possibilities for              

statistical evaluation include fitting a sine wave to the alpha power distribution, or             

performing a test against a null hypothesis of a uniform distribution (e.g., a             

Kolmogorov-Smirnov test). 

 

The main assumption underlying Method 2 is that the neural populations activated during             

peaks and troughs of the low-frequency rhythm produce field potential fluctuations that            

have separable projections onto multichannel recordings. Other assumptions are similar to           
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those of Method 1: consistent spatiotemporal characteristics of each network, and a lower             

frequency dynamic that is rhythmic enough to be able to define peaks and troughs. 

 

The main limitation of Method 2 is that the assumption of topographically separable             

networks according to different low-frequency phases is critical. Method 2 applied to a             

single network that varies only in amplitude according to lower-frequency phase would            

produce two identical (plus noise) covariance matrices. gedCFC would then return           

uninterpretable results (Method 1 would be appropriate in this case). 

 

Method 3: Low-frequency waveform shape as a bias filter on sphered data 

Methods 1 and 2 are robust to low-frequency non-sinusoidal oscillations precisely because            

the waveform shape is ignored, except to identify specific time points for time-locking the              

covariance matrices. On the other hand, very different waveform shapes could produce            

peaks at the same times. Given that waveform shape is the result of biophysical processes,               

one may wish to incorporate the lower-frequency waveform shape into the analysis. In this              

case, Methods 1 and 2 are inappropriate. Therefore, the goal of Method 3 is to use the                 

lower-frequency time series as a continuous regressor without necessitating ​a priori           

specification of the relevant phase regions. 

 

In Method 3, a low-frequency time series is used as a “bias filter” that is applied to the                  

multichannel data in order to determine the linear combination of electrodes that best             

matches the bias filter. The multichannel data are first sphered (a.k.a. whitened; after             

sphering, the covariance matrix is diagonal, meaning that inter-channel covariances are           

zero), which allows the filter to highlight only the spatiotemporal patterns that covary with              

the bias filter without influence from endogenous oscillatory activity. 

 

The mechanics of Method 3 closely follow the “joint decorrelation” method presented in de              

Cheveigné and Parra (2014). A brief overview is provided here and depicted in Figure 5 -                

supplement 1; interested readers are directed to the 2014 paper for more details. The first               

step is to extract the time series of a low-frequency component, as was done in Methods 1                 

and 2, to be used as a bias filter. The next step is to narrowband filter the multichannel data                   

and extract the amplitude envelope (e.g., from filter-Hilbert or from Morlet wavelet            

convolution). This is an important step: The goal is to identify ​power fluctuations that vary               
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according to the lower-frequency phase; therefore, it is the high-frequency power time            

series, not the bandpass filtered signal, that is of primary interest. The next step is to                

sphere the multichannel power fluctuations, which is implemented by scaling their           

eigenvalues: If the channels-by-time power time series data ​X has eigenvectors and            

eigenvalues ​V and ​D ​, then the sphered data are defined as ​Y ​=​X ​T ​VD ​-½​, where ​T indicates the                

matrix transpose and ​-½ indicates the square root of the matrix inverse. Next, the bias filter                

is expanded into a Toeplitz matrix (​B ​) that left-multiplies the data as ​BY ​. The              

eigendecomposition of the covariance matrix of ​BY provides a new set of eigenvectors ​W ​,              

which are used to rotate the original eigenspace of the data as ​VD ​-½​W ​. The spatial filter                

with the largest eigenvalue is applied to the non-sphered narrow-band multichannel power            

time series data to obtain the component. This procedure is repeated over a range of higher                

frequencies, using the same ​B ​ matrix for all frequencies. 

 

Data for Method 3 were simulated in a similar way as for Method 1. Figure 5 shows the fit of                    

the filtered component to the simulated dipole gamma power time series (R ​2 ​). Fits were              

equivalently good (up to .5) when using correlations and phase synchronization measures,            

and were poor (<.1) when using data from the gamma-maximum electrode instead of the              

component. The theta peak-locked power spectra from the component showed a precise            

spectral-temporal localization consistent with how the data were simulated. 

 

Empirical data for a proof-of-principle demonstration were taken from recordings in a            

human epilepsy patient. Eleven channels were simultaneously recorded, 10 along the           

medial temporal lobe axis (including the amygdala and hippocampus, locally-average          

reference) and one from surface channel Cz (on the vertex on the scalp, referenced to               

mastoids). Low-frequency midline cortical activity (peak frequency 4 Hz, FWHM 3 Hz) was             

extracted from Cz and was used as the bias filter in the Toeplitz matrix ​B ​. To reduce                 

computational load and increase signal-to-noise characteristics, the continuous data were          

cut into 50 equally sized epochs of 4 seconds each, and the covariance matrix of ​BY was                 

computed separately per epoch and then averaged together. 

 

The gedCFC was applied iteratively using power time series from the medial temporal lobe              

in 70 frequencies ranging from 10 to 120 Hz. CFC was quantified using R​2 fit between the                 

component power time series and the Cz low-frequency rhythm, and as phase            
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synchronization (which ignores the amplitude fluctuations). Figure 6a reveals a peak in this             

coupling at around 65 Hz. Inspection of time-frequency power spectra time-locked to theta             

peaks (Figure 6b) indicates that high-frequency power built up prior to the Cz theta peak.               

This component was more strongly driven by anterior channels (Figure 6c). Statistical            

evaluation of the coupling-by-frequency analysis was implemented by shifting the          

low-frequency time series by a random amount relative to the power time series, and              

recomputing the correlation and phase synchronization coupling measures. This procedure          

was repeated 1000 times to generate a null hypothesis distribution. The 99% values of              

these distributions are shown as dotted lines in Figure 6a. 

 

Interactions between the medial temporal lobe (and hippocampus in particular) and           

prefrontal cortex are widely implicated in memory formation ​(Preston and Eichenbaum,           

2013) ​. A multivariate technique like gedCFC might be useful in providing insights into how              

different hippocampal-prefrontal networks are involved in different aspects of memory          

(Shin and Jadhav, 2016) ​. Incorporating the waveform shape into the filter might also prove              

insightful considering that rat hippocampal theta is non-sinusoidal ​(Belluscio et al., 2012)​. 

 

The key assumption of Method 3 is that the lower-frequency waveform shape is important              

(as opposed to being used simply to identify peaks and troughs). The main limitation is that                

this method relies crucially on proper specification of the bias filter. The bias filter could be                

misspecified if its spatial and spectral characteristics are not known or are suboptimally             

estimated. Thus, Method 3 should be used only when there is a strong a priori motivation to                 

justify using an appropriate bias filter. 

 

Method 4: gedCFC using time-delay embedded matrices 

In Methods 1-3, the higher-frequency components are computed using covariance matrices,           

but their temporal and spectral characteristics are computed using sinusoid-based filters,           

which impose sinusoidality and temporal symmetry on the results, particularly when using            

narrowband filters. Therefore, the purpose of Method 4 is to empirically compute the             

higher-frequency waveform shape, as well as its spatial distribution, directly from the data,             

without relying on narrowband filters. This allows identification of CFC-related activity that            

is not necessarily sinusoidal or even rhythmic. And if the activity is sinusoidal, the              
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spatiotemporal filter will empirically identify the sinusoidality without the confound of           

using a sinusoidal filter. 

 

Method 4 is accomplished through time-delay embedding, which means that additional           

rows are added to the data matrix that correspond to time-shifted versions of the channel               

time series. For example, a first-order time-delay embedded matrix of 64 electrodes would             

have 128 rows; the first 64 rows are taken from the 64 electrodes and time points 1 to                  

end-1, while the next 64 rows are taken from the same 64 electrodes and time points 2 to                  

end. Importantly, because GED doesn’t “know” that the data come from time-delayed            

versions of the same electrodes, the weights assigned to time-delayed rows act as temporal              

weights from which a temporal filter is empirically computed ​(de Cheveigné, 2010)​. For             

example, a filter that finds the temporal derivative would have weights of 1 and -1 for the                 

original and time-delayed rows. In practice, more than one delay embedding is useful.             

Time-delay embedding was developed in dynamical systems analysis, and has been           

successfully applied to psychometric and neural data ​(Brunton et al., 2016; de Cheveigné             

and Simon, 2007; Lainscsek and Sejnowski, 2015; Tome et al., 2004; von Oertzen and Boker,               

2010) ​. After creating this time-delay embedded data matrix, Method 4 proceeds similarly as             

Method 1: Two covariance matrices are computed, one from data surrounding troughs and             

one from the entire time series, and GED is applied to those two matrices. The eigenvector                

with the largest eigenvalue is a spatiotemporal filter of size 1✕MN, where M is the number                

of channels and N is the number of embeddings. To interpret this filter, its forward model                

can be reshaped to M✕N and visualized as a time-by-channels matrix. 

 

The number and spacing of delay embeds are parameters of the time-delay-embedded            

matrix. If one wishes to use the Fourier transform to determine the filter’s frequency              

characteristics, the delays should be linear (that is, embedding 1, 2, 3, 4, instead of 1, 2, 4, 8),                   

and the number of delay embeds determines the frequency resolution. Here, a 60 ​th order              

matrix was used, meaning the data matrix contains 3840 rows (60 embeddings times 64              

channels). At 1024 Hz, this provided a frequency resolution of 17 Hz, which was then               

zero-padded to a frequency resolution of 2 Hz. There are other methods to determine the               

embedding dimension ​(Cao, 1997; Maus and Sprott, 2011) ​; it is beyond the scope of this               

paper to include an exhaustive discussion of these methods. 
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Data were simulated by adding a burst of 75 Hz activity to one dipole at each trough of                  

theta from another dipole (Figure 7a), then adding 1/f noise and projecting to 64 EEG               

electrodes. The gamma power bursts were time-locked to the troughs, but the phase of the               

gamma burst varied randomly across bursts, thus producing a non-phase-locked (a.k.a.           

“induced”) response. A high-pass temporal filter (lower edge: 20 Hz) was applied to the data               

to prevent the component from simply reflecting the shape of the lower-frequency time             

series around the peak. 

 

Figure 7 shows that the theta and gamma components were accurately recovered. This             

result can be compared with the GED results to the trough-triggered averages (this is this               

event-related potential, where the “event” is the trough), which failed to detect the             

simulated cross-frequency coupling. This occurred even without adding noise to the data,            

and is attributable to the non-phase-locked nature of the gamma bursts. Note that, as with               

previous simulations, the gamma bursts were generally too small and transient to be             

visually detected in the channel power spectrum, even at the electrode with the maximal              

theta-trough-component projection (Figure 7D). 

 

Method 4 was applied to empirical data taken from the rat hippocampus (data downloaded              

from crcns.org; ​Diba and Buzsáki, 2008; Mizuseki et al., 2013 ​; dataset ec013.156). A theta              

component was obtained by comparing covariance matrices between 8 Hz and the average             

of 4 Hz and 12 Hz (a broadband reference was not used because it was dominated by theta).                  

As with the simulation, the data were high-pass filtered at 20 Hz to prevent the largest                

components from reflecting theta phase. Peri-peak covariance matrices were computed,          

and compared against the total covariance. The eigenvector with the largest eigenvalue            

identified a component with a spectral peak in the gamma band and that had a similar                

spatial projection onto all channels (Figure 8). In contrast, the peak-locked average had a              

complex waveform shape without a clear spectral concentration. 

 

As implemented here, Method 4 assumes a single network that varies according to             

low-frequency phase. The method could be adapted to identify two networks, as with             

Method 2. Parameterizing the matrix is also important, as insufficient delay embeds will             

reduce the temporal precision and frequency resolution. 
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The primary limitation is that working with delay-embedded matrices requires sufficient           

computing resources. For example, two minutes of 256 channels at 1 kHz and a 40-fold               

embedding would produce a matrix of size 10,240-by-120,000. Matrix operations can be            

slow and can produce numerical inaccuracies. Two potential solutions are to temporally            

downsample the data or use a data reduction technique such as principal components             

analysis to reduce the data to, e.g., 40 dimensions, and perform analyses in the              

40-dimensional subspace. 

 

Method 5: gedCFC for spike-field coherence 

Spike-field coherence refers to local field potential (LFP) correlates of single-cell spiking. It             

is often quantified either through spike-triggered averages, in which the LFP traces are             

averaged around each spike (similar to an event-related potential, where the event is the              

spike), or through phase-clustering-based methods, in which the phase angles are extracted            

from frequency-specific analytic time series (e.g., from complex wavelet convolution). 

 

Although spike-field coherence is not typically conceptualized as a manifestation of CFC, in             

the gedCFC framework, spike-field coherence is simply a special case in which multichannel             

data are time-locked to the action potential instead of a low-frequency trough. In this              

sense, any of the methods presented above (or combinations therefore) can be adapted to              

work for multichannel spike-field coherence. In this section, an adaptation of Method 4 is              

demonstrated. Method 4 is highlighted here because it allows unconstrained empirical           

discovery of asymmetric spike-related LFP activity, e.g., if the LFP waveform shape differs             

before vs. after the spike. 

 

Simulated data were modeled after a 16-channel linear probe that is often used to study               

laminar dynamics in the cortex. Spikes were generated at random times, and bursts of 70 Hz                

gamma were centered on each spike, with a “rugged” laminar profile (this was done, similar               

to Figure 1 - supplement 3, to illustrate that gedCFC makes no assumptions about spatial               

smoothness) (Figure 9a). In addition, a 75 Hz gamma rhythm that was uncorrelated with              

spike timing was added as a “distractor.” Random 1/f noise was also added. 

 

As expected, Method 5 recovered the simulated spatiotemporal LFP pattern (Figure 9c-d).            

With few spikes (N=40), only a small amount of noise will prevent the spike-triggered              
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average from revealing the true effect. Even when no noise was added, the spike-triggered              

average failed to capture the true effect if the gamma burst was time-locked but not               

phase-locked to the spike. 

 

Method 5 was applied to an empirical dataset from recordings of rat medial prefrontal              

cortex and hippocampus (data downloaded from CRCNS.org; ​Fujisawa et al., 2015, 2008 ​;            

dataset EE.042). Data were recorded from 64 channels in the medial prefrontal cortex and              

32 channels in the hippocampus. Spiking data were taken from a single neuron in the               

prefrontal cortex. The first several components appeared to capture a spike artifact in the              

LFP (Figure 10a). Two later components were selected based on visual inspection. Neither             

component appeared to suffer from spike artifacts, and both revealed rhythmic LFP            

dynamics surrounding the spike with phase offsets between the prefrontal and           

hippocampal electrodes. Temporal and spectral plots of the filter forward model, as well as              

the spike-triggered average component time series (Figure 10b), revealed that these two            

spike-field networks had different characteristic frequencies and temporal dynamics. Note          

the temporal asymmetries (before vs. after the spike) and nonstationarities in the            

component time series; these are readily visible because no filters were applied that would              

artificially impose sinusoidality or acausality on the data; instead, the filter kernel was             

empirically estimated based on broadband data. 

 

Components that capture spike artifacts can be identified by visual inspection or by             

examining the power spectrum of the filter forward model: Artifacts have higher energy in              

a broad high-frequency range relative to lower frequencies, while true effects should have             

higher energy below ~200 Hz compared to above. Non-artifact components can be            

individually selected based on prespecified criteria such as frequency band, or can be             

summarized using principal components analysis. 

 

Figure 10 shows one example of how to apply the gedCFC framework to investigate              

multichannel spike-field coherence. There are several other possibilities. One could identify           

the spike artifact components and reconstruct the data with the artifact removed ​(de             

Cheveigné, 2010) in order to apply traditional spike-field coherence analyses. Another           

possibility is to adapt Method 2 to identify LFP components corresponding to different             
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temporal patterns of spiking, such as singlets vs. trains of action potentials. An example of               

this approach is presented in Figure 10 - supplement 1. 

 

Over-fitting and null-hypothesis testing 

Components analyses that are guided by minimization/maximization criteria (such as GED)           

entail a risk of overfitting. Essentially, one is searching through a high-dimensional space for              

a particular feature; even in pure noise, the components will identify some pattern that              

best fits the criteria. There are at least three appropriate statistical methods for evaluating              

results of gedCFC. 

 

One approach is to compare the resulting components against a null-hypothesis           

distribution. This null-hypothesis distribution can be derived by applying the method but            

using randomly selecting time points to be “troughs” (the total number of randomized             

“troughs” should be the same as the number of real troughs). When repeated, e.g., 1000               

times with different sets of random “troughs,” the spatiotemporal characteristics, including           

time courses and power spectra, of the true components can be compared against the              

empirical null hypothesis distribution. This procedure follows the non-parametric         

permutation framework that is widely used in neuroimaging and electrophysiology ​(Cohen,           

2014; Maris and Oostenveld, 2007) ​. A difficulty with this approach is that the resulting              

components may capture the low-frequency component. One could apply a high-pass filter            

or ignore any coupling close to the frequency used to extract the low-frequency             

component. 

 

A second approach is to apply gedCFC to data pooled across all experiment conditions, and               

then apply statistical comparisons of component time series or power spectra across            

different conditions. In this case, although the component-fitting procedure itself may           

include overfitting, differences across conditions are not biased because the filter was            

defined orthogonal to condition differences. A related approach is to apply the method to a               

range of frequencies and then test whether the coupling strength at different frequencies             

is statistically significant, as illustrated in Figure 6. 

 

A third approach is to compute the gedCFC filter from independent data and then apply the                

filter to the experimental data. Independent data could be drawn from different trials from              
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the main experiment (as in cross-validation) or from an independent dataset such as a              

localizer. In the case of cross-validation, confidence intervals can be computed. 

 

 

Discussion 

There is spatiotemporal structure in the mesoscale electrical activity of the brain, which             

reflects the dynamic interactions within and across populations of neurons. Because this            

spatiotemporally structured activity is larger than a single electrode, single-electrode          

analyses will miss or underestimate these patterns. Therefore, as the number of            

simultaneous electrodes used in neural recordings increases ​(Stevenson and Kording, 2011) ​,           

so does the need to consider methods for extracting the neural patterns that underlie              

those recordings. Component-extraction and dimensionality-reduction methods have       

proven useful in neuroscience, both in terms of managing large-scale data sets and in terms               

of providing insights into neural mechanics that are difficult to obtain only from visualizing              

topographical maps ​(Cunningham and Yu, 2014; Onton et al., 2006) ​. 

 

Cross-frequency coupling in neural time series data 

CFC is a fascinating observation that has garnered interest amongst empiricists, modelers,            

theoreticians, and mathematicians. It has also been the subject of considerable debate, as             

there seems to be a growing number of publications criticizing CFC methods ​(Aru et al.,               

2015; Hyafil, 2015; Lozano-Soldevilla et al., 2016) ​. Many of these methodological concerns            

affect only one framework for analyzing CFC in individual electrodes via narrow bandpass             

filtering and applying Euler’s formula, phase synchronization, or other distribution analyses.           

These methods provide accurate results under the assumption of uniform phase angle            

distribution; CFC biases result from violations of this assumption (van Driel et al. 2015). The               

framework introduced here evades several of these problems. This new framework does            

not invalidate or antiquate existing CFC measures; traditional CFC methods are well-suited            

for situations in which the lower and higher frequency dynamics are sinusoidal and are              

produced by neural circuits that have the same spatial projections to multichannel            

recordings. 

 

The advantages of gedCFC go beyond evading potential biases in traditional CFC measures.             

This multivariate framework allows detection of diverse spatiotemporal manifestations of          
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CFC, some of which may be difficult to detect with other methods. The inspiration for this                

framework came from considering the physics of M/EEG and LFP field propagation, by             

theoretical predictions that the low-frequency rhythm should regulate anatomically diverse          

neural populations, and by developments in spatial filtering methods used in source            

separation and dimensionality reduction analyses. 

 

Advantages of gedCFC 

Several specific advantages were highlighted in the Results subsections; a few general            

remarks are made here. One advantage of the gedCFC framework is that there are no               

assumptions about underlying generative models that may have produced the data (other            

than the plausible assumption that electromagnetic fields propagate simultaneously and          

linearly to multiple channels). It is not necessary to assume, e.g., Gaussian or Poisson              

processes, nor is it necessary to employ complicated statistical or biophysical models.            

Instead, the components are extracted directly from the empirical data. 

 

A second advantage is flexibility. From the single equation ​SW=RWΛ​, five applications            

were derived. By carefully selecting parameters, frequency ranges, experiment conditions,          

time windows, and so on, this framework is easily extended and tailored to specific              

hypotheses. One should be cognizant that components-based and        

dimensionality-reduction-based analyses will perform well when there are clean data and           

when the researcher has clear and physiologically motivated objectives ​(van Ede and Maris,             

2016) ​. Excessively noisy data or poorly specified analysis goals (i.e., from poorly specific             

hypotheses) may produce misleading or uninterpretable results. 

 

A third advantage is increased signal-to-noise characteristics (and therefore, increased          

sensitivity to detecting CFC), which comes from analyzing a weighted combination of all             

electrodes instead of a single electrode. The key is to create those weights appropriately              

and in an hypothesis-driven manner. The presence of a visually robust peak in the              

FFT-derived power spectrum is not a hard constraint on the success of gedCFC (as              

illustrated in Figures 3 and 5). An oscillation may exist in a dataset and yet have a small peak                   

in a static power spectrum due to non-stationarities in power and phase characteristics. 
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A fourth advantage is computation time. Many traditional CFC analyses can be prohibitively             

time-consuming. gedCFC is fast because software programs like MATLAB use efficient           

libraries for estimating eigenvalues. On most computers and for most covariance matrices,            

the MATLAB ​eig function takes a few milliseconds. The exception is Method 4, which can               

be processor-intensive for very large matrices (the Results section provided a few            

suggestions for improving computation time, including temporal downsampling and         

dimensionality reduction). Bandpass filtering, when used, is also fast, and the narrowband            

filter used here involves only one FFT and one IFFT. 

 

Limitations of gedCFC 

Specific limitations were discussed in each Results subsection; a few additional remarks are             

made here. First, sign-flipping of components produces uncertainty of peak vs. trough in             

the low-frequency component. The signing strategy used here is discussed in the Methods             

section. Relatedly, bursts of high-frequency activity might be locked to the rising slope or              

falling slope of the low-frequency rhythm instead of the peak or trough ​(Fujisawa and              

Buzsáki, 2011) ​. Careful data examination and ​a priori theoretical guidance should be used to              

determine the appropriate phase values for time-locking. 

 

A second limitation is that the component with the largest eigenvalue is not necessarily the               

only theoretically relevant component (as illustrated in Figure 10, the largest eigenvalued            

component may contain artifacts). It is possible that the first few components define a              

subspace of physiological CFC dynamics. In other words, a single component does not             

necessarily correspond to a single brain dynamic ​(de Cheveigné and Parra, 2014)​. It is              

advisable to inspect several components for physiological interpretability and modulation          

by experiment conditions, as was done in Figures 2 and 10. 

 

Third, the gedCFC framework is designed for two covariance matrices. To identify more             

than two networks, one could iteratively apply, e.g., Method 1 to six different phase bins.               

The six spatial filters could be applied the data to reconstruct six different component time               

courses. This approach is valid if there really are six distinct networks; otherwise, the same               

spatial filter might be recreated multiple times, with apparent differences attributable to            

over-fitting noise. 
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Finally, gedCFC should not be treated as a “black-box” analysis procedure in which results              

are interpreted without careful inspection of the data, analysis procedures, and parameters.            

Misleading or uninterpretable results can occur if excessively noisy data or inappropriate            

parameters are applied. Instead, gedCFC is best conceptualized as an analysis strategy that             

mixes physiologically-inspired hypothesis testing (e.g., when defining the lower-frequency         

dynamic) with blind network discovery. The discovery aspect stems from not needing to             

specify which topographical regions or frequency bands will manifest CFC. 

 

Nonstationarities and condition differences 

The intrinsic nonstationarities of the brain can be problematic for analyses that rely on              

stationarity over long periods of time, and are also problematic for traditional CFC analyses.              

Sinusoidal stationarity is not assumed in the gedCFC framework. gedCFC is also not             

affected by phase lags across different electrodes, as long as the lags are consistent. The               

core assumption is that the neural patterns maintain a consistent spatiotemporal signature,            

e.g., that each trough-locked covariance matrix is a representative sample. If narrowband            

filtering is applied to the higher-frequency activity, then an additional assumption is that             

the activity can be reasonably approximated by sinusoidal basis functions (this is generally a              

reasonable assumption at the scale of hundreds of ms). 

 

Task-related experiments often have multiple conditions. This leads to the decision to            

compute covariance matrices separately per condition, or from condition-pooled data and           

then apply the spatial filter to each condition separately. If the covariance structure is              

expected to be qualitatively different across conditions, separate covariance matrices          

should be preferred. On the other hand, if the network structure is expected to be the same                 

and only the strength of the modulations are expected to vary, it is preferable to pool data                 

across all conditions when computing the GED. 

 

The quality of gedCFC components is related to the quality of the covariance matrices, and               

a sufficient amount of clean data ensures high-quality covariance matrices. Determining the            

quality of a covariance matrix can be difficult. One metric is the condition number, which is                

the ratio between the largest and smallest singular values of the matrix. However, there is               

no hard threshold for considering a matrix to be ill-conditioned, and GED can be              

successfully applied to singular matrices (which have a condition number of infinity). When             
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working with a small amount of data, using alternative methods of estimating covariance,             

such as shrinkage estimators, may be helpful ​(Daniels and Kass, 2001)​. 

 

gedCFC for spike-field coherence provides new insights and avoids potential artifacts 

One of the main confounds in spike-field coherence analyses is that the brief             

large-amplitude spike can cause an artifact in the low-pass filtered LFP ​(Ray, 2015; Zanos et               

al., 2011) ​. This is a well-known phenomenon in signal processing that is often called an edge                

artifact. 

 

Spike-field coherence here was investigated by adapting Method 4 (Figures 9 and 10) to              

Method 5 (Figure 10 - supplement 1), but other situations might call for different              

approaches. For example, Method 2 could be further adapted to identifying multivariate            

components that differentiate spike-field coherence patterns between two        

cognitive/behavioral states (e.g., attend vs. ignore, or rest vs. run). A primary advantage of              

using gedCFC for spike-field coherence is that traditional spike-field coherence analyses can            

detect only phase-locked activity; gedCFC will additionally detect non-phase-locked         

responses, such as a spike-locked burst of non-phase-locked gamma. 

 

Further advances 

GED is a powerful technique, but it is not the only source separation method. Many other                

components-based and dimensionality-reduction-based methods exist, including iterative       

and nonlinear algorithms ​(Jutten and Karhunen, 2004) ​. For example, phase-amplitude          

coupling can be identified using parallel factor analysis or tensor decomposition ​(van der             

Meij et al., 2012) ​. A primary difference between gedCFC and such techniques is that gedCFC               

is a hypothesis-driven approach while other techniques are blind decomposition methods           

that are well-suited for exploratory analyses. Another important advantage of gedCFC is            

that it is straight-forward both conceptually and in implementation, and therefore will            

facilitate analyses for researchers with diverse backgrounds and expertises in mathematics           

and programming. Furthermore, linear methods tend to produce robust and easily           

interpretable results ​(Parra et al., 2005) ​. Nonetheless, the goal of this paper was not to               

argue that gedCFC is the only source separation algorithm applicable to CFC. Instead, the              

goal was to highlight that significant insights into the neural mechanisms and implications             

of CFC can be gained by expanding the repertoire of data analyses, as well as theoretical                
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conceptualizations, from a single-electrode-sinusoid-based framework to a       

multivariate-components-based framework. 

 

 

Materials and Methods 

Simulated EEG data 

Simulated EEG data were created by generating time series in 2,004 dipoles in the brain               

according to different assumptions of CFC dynamics as described in the Results, and then              

projecting those activities to virtual scalp electrodes. Random data were generated by            

taking the inverse Fourier transform of random complex numbers sampled from a uniform             

distribution. A 1/f shape was imposed by tapering the spectrum by a sigmoidal curve and               

concatenating a mirrored version of the tapered spectrum to produce the negative            

frequencies. This procedure was done separately for each voxel, thus producing 2,004            

uncorrelated dipoles. 

 

Next, cross-voxel correlations were imposed across all dipoles by creating a random            

dipole-to-dipole correlation matrix with a maximum correlation of .8, and computing the            

new data as ​Y = X ​T​VD ​½​, where ​V and ​D are matrices of eigenvectors and eigenvalues of the                  

correlation matrix, ​½ indicates the square root, and ​X is the data matrix. Finally, time series                

data from selected dipoles were replaced with sinusoid-like time series in the theta or              

gamma bands, as described in the Results section. 

 

Dipole locations were based on a standard MRI brain, and the forward model to project               

three cardinal directions at each dipole location to the scalp EEG channels was created              

using algorithms developed by openmeeg ​(Gramfort et al., 2010) and implemented in the             

Brainstorm toolbox in MATLAB ​(Tadel et al., 2011) ​. MATLAB code to generate the             

simulations, and to apply all five methods, can be found online (mikexcohen.com/data). 

 

Empirical datasets 

The following text is copied verbatim from the Human Connectome Project, as requested:             

MEG data in Figure 2 “were provided by the Human Connectome Project, WU-Minn             

Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657)          

funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for              
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Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at           

Washington University.” The dataset used here was resting-state data from subject           

104012_MEG, session 3. 

 

EEG data in Figure 4 was a single subject randomly selected from Cohen and van Gaal                

(Cohen and van Gaal, 2012b) ​. The human intracranial EEG data in Figure 6 were taken from                

200 seconds of resting-state data recorded in a patient with epilepsy, who had electrodes              

implanted as part of presurgical mapping. Data were acquired from the Department of             

Epileptology at the University Hospital of Bonn, and informed consent was acquired for the              

recording. 

 

Rodent LFP and single-unit recording data were downloaded from crcns.org. The           

appropriate references and dataset identifiers are cited in the Results section. 

 

Visualizing gedCFC  components 

The topographical projections of the components were obtained from columns of the            

inverse of the transpose of the eigenvectors matrix ​(Haufe et al., 2014b)​. For the MEG data,                

projections to the brain were computed using a procedure described in Hild and Srinivasan              

(Hild and Nagarajan, 2007) ​, and adapted by Cohen and Gulbinaite (2016). The forward             

model for this subject was computed using the Brainstorm toolbox. Brain voxels with values              

lower than the median value across all 15,002 voxels were not colored. 

 

Sign-flipping of components and phase shifts from the Hilbert transform 

One issue that arises in eigenvector-based components analysis is that the sign of a vector               

is often not meaningful—the eigenvector points along a dimension, and stretching,           

compressing, or flipping the sign of the vector does not change the dimension. When              

extracting power, the sign of the time-domain signal is irrelevant. For topographical            

projections, the sign also doesn’t matter, although for visual clarity, the sign was adjusted              

so that the electrode with the largest magnitude was forced to be positive (this is a                

common procedure in principal components analysis). 

 

However, identifying “peaks” vs. “troughs” clearly requires the correct sign. The solution            

used here was to correlate the low-frequency GED-based component with the bandpass            
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filtered data at the electrode with the maximal topographical projection. If the correlation             

coefficient had a negative sign, the sign of the low-frequency component was flipped. This              

solution is not guaranteed to produce the correct answer, particularly with noisy data. If the               

interpretation of “peak” vs. “trough” is crucial, it is advisable to run gedCFC separately for               

peaks and for troughs. 

 

Narrowband temporal filtering 

Temporal filtering was done via circular convolution. The Fourier transform of the data was              

computed using the MATLAB function ​fft ​, and was pointwise multiplied by a            

frequency-domain Gaussian, defined as ​exp(-.5[x/s]​ 2​ )​ , where ​exp indicates the natural          

exponential, ​x is a vector of frequencies shifted such that the desired peak frequency of the                

filter corresponds to 0, and ​s is ​σ (2ⲡ -1)/(4ⲡ )​ , where ​σ is the full width at half maximum of                  

the filter, specified in Hz. This filter is advantageous over equivalently narrow FIR or IIR               

filters because it contains fewer parameters and has no sharp edges in the frequency              

domain, and therefore does not require careful inspection of the filter kernel’s temporal             

and spectral response profiles. The inverse Fourier transform was then applied to the             

tapered frequency domain signal to get back to the time domain. When power time series               

were required, the Hilbert transform was applied and its magnitude was taken. MATLAB             

code to implement this filter is provided with the online code. 
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Table 1. Overview of methods. 
 

 Description Analysis goal Key assumption 

Method 1 
S​ defined by 
peri-LF-peak; ​R​ defined 
by all data 

Identify a single 
phase-amplitude coupled 
network. 

One HF network with 
power proportional to 
LF phase 

Method 2 
S​ defined by 
peri-LF-peak; ​R​ defined 
by peri-LF-trough 

Identify two networks 
that alternate according 
to LF phase. 

Two different HF 
networks that have 
power peaks at 
different LF phases 

Method 3 LF activity bias-filters 
sphered data 

Use (possibly 
nonstationary) LF 
waveform shape to 
Identify a HF component. 

Well-defined LF 
waveform 

Method 4 
Delay-embedded matrix, 
S​ and ​R​ defined as in 
Methods 1 or 2 

Empirically determine a 
CFC-related 
spatiotemporal filter 

Appropriate 
delay-embedded 
order 

Method 5 
Similar to Method 4 but 
data are taken 
peri-action potential 

Empirically determine a 
spatiotemporal LFP filter 
surrounding action 
potentials 

Sufficient 
delay-embedding 
order; one peri-spike 
network 

Notes​ . LF = low frequency; HF = high frequency. All methods make the assumption that the                
spatiotemporal characteristics of the HF activity are stable over repeated time windows from             
which covariance matrices are computed. 
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Figure 1 ​. gedCFC method 1 applied to       

simulated data. Data were generated     

in three dipoles in the brain and       

projected to the scalp (top row of       

panel A) along with correlated 1/f      

noise at 2001 other dipoles. The theta       

component (~6 Hz) was recovered by      

GED (bottom row of panel A). The 40        

Hz component was recovered using     

gedCFC on broadband data. Panel B      

shows the power spectrum of the      

theta and theta-trough components    

(B1), the strength of CFC (B2), and       

illustrative time courses (B3). The blue      

line in B2 corresponds to a van der Pol         

oscillator (vdP), which causes spurious     

high-frequency CFC in traditional    

analyses. Panel C1 shows the power      

spectrum of electrode POz, which is      

the spatial maximum of the EEG data       

power. Note that the 50 Hz gamma       

(γ2) has larger power than the 40 Hz        

(γ1). C2 illustrates that traditional     

phase-amplitude coupling with   

permutation testing (PACz) applied to     

channel POz failed to recover the      

simulated CFC patterns. C3 shows the      

poor reconstruction of the dynamics     

when using data from POz (compare      

with B3). 
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Figure 2 ​. Method 1 applied to empirical MEG resting-state data. An alpha component was              

computed using GED; its topographical projection and power spectrum are shown in A1-2.             

Covariance matrices from broadband data surrounding high-power alpha peaks were          

computed, and entered into gedCFC using a covariance matrix from the broadband signal             

from the entire time series as reference. The first three components (topographical            

projections and projections onto the cortical surface in B1) along with their time-frequency             

power spectra locked to alpha peaks (B2) are shown. 
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Figure 3 ​. Method 2 applied to simulated data. Gamma power (40 and 45 Hz) in two brain                 

dipoles was modulated by a theta wave from a third dipole. Activity from these three               

dipoles was projected, along with correlated 1/f noise from 2001 other dipoles, to 64 scalp               

EEG channels (top row of panel A shows the signal-dipole projections). gedCFC was able to               

recover these three components (panel A, bottom row) by comparing broadband           
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covariance matrices between theta peaks and troughs. Panel B shows the time-frequency            

power spectra of the components time series time-locked to theta peaks and theta troughs.              

Panel C shows power spectra of the three component time series. For comparison, the              

power spectrum from POz (the channel with maximum power) is shown. Panel D shows CFC               

modulation defined as the average peak-trough distances per frequency. Panel E shows a             

2-second snippet of data from the theta component and the power time courses from the               

theta-peak and theta-trough components. The lower panel shows data from POz bandpass            

filtered around theta, 40 Hz, and 45 Hz. Note that the continuous gamma power time series                

closely matched the theta wave from which they were simulated, although the covariance             

matrices were taken only from peaks and troughs. 
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Figure 4 ​. Illustration of Method 2 applied to real EEG data. The human volunteer (one               

subject selected from Cohen and van Gaal, 2012) performed a speeded reaction time task in               

which response errors frequently occurred. Panel A shows topographical projections of the            

three components (theta power, theta trough, theta peak). Panel B shows power time             

courses relative to stimulus onset (time=0) from those components, separately for correct            

and error trials (power was extracted via the filter-Hilbert method). Panel C shows how              

alpha power in the two alpha components fluctuated as a function of theta phase. Note               

that gedCFC was based on data from all trials pooled; the two experiment conditions were               

separated only when plotting. The gray bars in panel C show 95% confidence intervals              

based on 1000 permutations in which the assignment between theta phase and alpha             

power was shuffled. 
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Figure 5 ​. Results from simulation for Method 3. Data were simulated in the same dipoles               

used in Method 1. Panel A shows an example of the dipole time series, illustrating the theta                 

wave and the gamma modulation (scaled for visibility). Power time series were extracted             

from all channels, and the low-frequency time series was used as a bias filter against the                

multichannel power time series matrix. Panel B shows the power spectrum from channel             

POz (left panel). Note the absence of a prominent 45 Hz peak. The right panel shows the                 

power spectrum of the 45 Hz power time series from the gedCFC component. The peak at 6                 

Hz reflects the modulation of 45 Hz power by the theta rhythm. Panel C shows the fit                 

(correlation or phase synchronization) between the gedCFC component per frequency and           

the simulated power time series. For comparison, the correlation result was also performed             

at channel POz. Panel E shows the time-frequency power spectrum locked to theta peaks. 
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Figure 6 ​. Method 3 applied to empirical data from a human epilepsy patient, with 10               

channels in the medial temporal lobe (MTL) and Cz, a scalp electrode that measures midline               

frontal activity. Covariance matrices of MTL channels were created locked to peaks from Cz              

filtered at 4 Hz. Panel A shows the coupling strengths, measured both as correlations (r)               

and as phase synchronization (ps) over a range of frequencies (notch-filtered data at 50 Hz               

and 100 Hz are omitted). Correlation values were squared to avoid sign issues, and phase               

synchronization values were squared for comparability. The dotted lines indicate the 99%            

confidence intervals based on 1000 permuted shufflings. Panel B shows the time-frequency            

power spectrum of the MTL component time-locked to Cz theta peaks. The right plot shows               

the time course of activity averaged around 65 Hz (frequencies selected based on visual              

inspection of panel A). Panel C illustrates the component weighting across the 10 MTL              

electrodes from two neighboring frequencies (see black and gray filled squares in panel A;              

smaller numbers are anterior).  
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Figure 7 ​. Method 4 applied to simulated EEG data. Bursts of 75 Hz gamma in one dipole                 

were locked to theta troughs in a different dipole (panel A). Activity in these two dipoles,                

along with a “distractor” gamma signal at 50 Hz and correlated 1/f noise at all other dipoles,                 

were projected to scalp EEG channels. Panel B shows the dipole projections and their              
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reconstructions from gedCFC on delay-embedded matrices. Panel C shows the          

trough-locked average (TLA) over time and electrode (electrodes are sorted according to            

spatial location, with anterior electrodes on top and posterior electrodes on the bottom)             

and the spatiotemporal component (STC) extracted via gedCFC on the right. Panel D shows              

the time series of the filter kernel from electrode POz (left), the filter kernel power               

spectrum (middle), and the power spectrum of POz activity (right; note the absence of a               

pronounced peak at 75 Hz). Even with only minimal noise, the non-phase-locked nature of              

the gamma burst prevented the trough-locked average from revealing any meaningful           

relationship (phase-locking does not affect the single-trial covariance matrices). Amplitudes          

are normalized to facilitate direct comparisons. 
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Figure 8 ​. Illustration of Method 4 applied to empirical data from rodent hippocampus. GED              

was used to identify a theta component (peak frequency 8 Hz), and peak times were               

identified. Panel A illustrates the peak-triggered LFP trace over 32 channels (high-pass            

filtered at 20 Hz), and the forward model of the first gedCFC component. Panel B illustrates                

the peak-locked average and the component model, averaged over all channels, in the time              

domain (left panel) and in the frequency domain (right panel). Amplitudes were scaled and              

y-axis-shifted for comparability. 
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Figure 9 ​. Illustration of using the gedCFC framework for detecting spike-field coherence in             

multichannel data. LFPs were simulated in 16 channels, modeled after a silicon probe often              

used to measure cortical laminar activity. 40 random spike times were generated, and             

complex spatiotemporal patterns were time-locked to each spike time. Panel A illustrates            

the basic pattern, which was phase-randomized on each spike. Panel B illustrates a few              

single-spike LFP traces from one channel, and the spike-triggered average over time and             

space (compare with the template in panel A). Panel C shows the forward model from the                

largest gedCFC component reshaped to a 2D matrix. Panel D shows the power spectrum of               

the component and the spike-triggered average (power spectra averaged across channels). 
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Figure 10 ​. Method 5 applied to rodent hippocampal-prefrontal single-cell and LFP           

recordings. Panel A shows the spike-triggered average across all channels (MFC = medial             

frontal cortex; Hip. = hippocampus). Panel B illustrates the forward models of several             

gedCFC components. The first few components captured the spike artifact, as shown in             

panel B1. Later components reflected different aspects of physiological activity, two of            

which are illustrated here (panels B2 and B3). The power spectra of the spike-triggered              
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average and the two physiological components are shown in panel C (the component             

spectra have the same y-axis scale; the spike-triggered average was scaled down for             

comparability; STC = spatiotemporal component). Panel D shows the spike-triggered          

average of the two components (shifted on the y-axis for comparability). Note that the              

components are temporally asymmetric and nonsinusoidal; their waveform shapes are          

defined empirically without imposition of a sinusoidal filter. 
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SUPPLEMENTAL FIGURES 

 

 

Figure 1 - supplement 1 ​. 2D example of using generalized eigendecomposition (GED) to             

separate sources. Two data streams were created (red and blue dots). Principal components             

analysis (PCA) rotated the entire data set, while GED separated the two components. This              

was done using the equation ​SW = ​RWΛ​, where ​S and ​R were covariance matrices from the                 

red and blue data streams. This illustration is modeled after figure 6 of Blankertz et al.,                

2008. 
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Figure 1 - supplement 2. ​Graphical overview of Method 1. A low-frequency component is              

identified (“Theta comp.”), and covariance matrices are computed based on the           

multichannel data surrounding each trough, and based on all data (respectively, ​S and ​R              

matrices). A generalized eigendecomposition of these matrices provides a set of           

eigenvectors (matrix ​W ​). The eigenvector with the largest eigenvalue (diagonal of matrix ​𝚲​)             

is used as weights to linearly combine data from all channels, which produces the              

component that best differentiates trough-related from non-trough-related activity. 
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Figure 1 - supplement 3 ​. This      

figure is similar to Figure 1, except       

that the gamma modulation was     

simulated in a collection of     

electrodes instead of a dipole     

projected to the scalp. This shows      

that gedCFC makes no assumptions     

regarding spatial smoothness or    

autocorrelation. The electrodes   

with black/white circles show    

where the gamma bursts were     

simulated, and the electrode with     

the white star shows the electrode      

selected for analyses in panel C. 
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Figure 3 - supplement 1. ​This figure shows a graphical overview of Method 2. It is similar to                  

Method 1 (see Figure 1 - supplement 2) except that the ​R matrix is computed from data                 

surrounding low-frequency peaks instead of the entire time series. 
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Figure 5 - supplement 1. ​Graphical overview of the procedure for applying joint             

decorrelation adapted to Method 3. (1) The bias filter is a low-frequency dynamic to be used                

as the time series “seed” for identifying CFC. It is expanded to a matrix using the Toeplitz                 

operation. (2) The analytic envelope from each data channel is extracted and            

mean-centered to form a new data matrix, ​X ​. (3) The data are sphered to remove intrinsic                

covariance patterns, forming a new data matrix ​Y ​; sphering turns the covariance matrix into              

a diagonal matrix. (4) The bias filter multiplies ​Y ​, which computes the dot product between               

temporally shifted versions of the bias filter and the sphered data. (5) The covariance              

matrix of ​BY has eigenvectors ​W that rotate the eigenspace of ​X (its eigenvectors are in ​V                 

and eigenvalues are in ​D ​) as matrix ​F​. The largest-valued eigenvector in ​F defines the               

multivariate component that best matches the bias filter. 
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Figure 10 - supplement 1​. This figure shows another possible application of the gedCFC              

framework for multivariate spike-field coherence, using the same dataset as used in Figure             

10. Action potentials from a single neuron (different from the one used in Figure 10) in the                 

prefrontal cortex were categorized as “singlets” (no action potentials 100 ms earlier or 100              
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ms later; N=58) or as “train-starters” (no action potentials 100 ms earlier, and at least one                

action potential within 20 ms after; N=151). LFP covariance matrices were then formed             

around these two action potential categories and compared using Method 2. The            

component with the largest and smallest eigenvalues were extracted and treated as            

“singlet” and “train-starter” components. This figure shows the time courses of those            

components relative to the spikes, as well as the spike-triggered average LFP traces (STA).              

The “train-starter” component was dominated by hippocampal activity. The jagged          

appearance of the weights is consistent with the electrode layout, which had eight             

electrodes per shank and four shanks. 
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