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Single-cell histories in growing populations:
relating physiological variability to population growth

Philipp Thomas®

Department of Mathematics, Imperial College London, London SW7 2AZ, UK

Cell size and individual growth rates vary substantially across genetically identical cell populations. This
variation cannot entirely be explained by asynchronous cell division cycles, but also needs to take into account
the differences in the histories that cells experience during their lifespan. We describe a stochastic framework
to characterise cell size histories in an exponentially growing population. We show that these histories differ
from cells observed in isolation, such as observed in mother machines. Quantifying these historical fluctuations
allows us to predict the population growth rate. We highlight that the maximum attainable population growth
cannot exceed the rate at which an average cell grows, but the population doubles faster than an average

cell doubles its size.

We validate this prediction using recent single-cell data. The theory thus provides

fundamental limits on population fitness in terms of individual cell properties.

I. INTRODUCTION

Clonal populations often exhibit a high degree of vari-
ability in cellular physiology! . Analysing the sources of
these variations remains challenging because the statis-
tics of single cells observed in isolation often differ from
those observed in growing and dividing populations. In
the absence of environmental and genetic variation, two
factors determine phenotypic variability: (i) sister cells
differ in cell cycle duration, growth rate and cell size
because the intracellular processes by which these are
determined operate ultimately using finite number of
molecules®%, while (ii) distantly related cells differ be-
cause they experienced different life histories”. Dissect-
ing these effects is crucial to infer what fluctuations cells
are facing during their replicative lifespans®.

Variation between sister cells is commonly studied by
acquiring lineage trajectories that follow either one of
the sister cells in each division while discarding the in-
formation about the other sister. We will refer to such a
lineage as a forward lineage shown in Fig. I (blue). Ex-
perimentally, such observations are obtained using mi-
crofluidic traps?!9 or using computational cell tracking?®,
which have now been extensively used to inform phe-
nomenological models for the dynamics of growth and
division cycles of individual cells>!:'2, The benefit of
this approach is that the age of each cell can be deter-
mined accurately without the bias that is observed in
populations due to distributed cell ages and sizes.

Observing the variation in the histories of single cells is
more elaborate because one needs to track an ensemble
of growing and dividing cells to construct lineage trees
of whole populations™®1314  In this way, one resolves
the life histories of all individuals in the population pre-
serving their ancestral relationships. To be precise, we
here consider a cell’s history which represents a lineage
obtained from choosing an arbitrary cell in a population
and tracing it back to the common ancestor the popula-
tion originated from, see Fig. I (red line). For each cell in
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the population, there exists exactly one such path, which
we will henceforth denote as a backward lineage. It is
to be expected that the distribution of these trajectories
represent a typical cell’s history.

While most forward lineages may correspond to a pos-
sible cell history, it is unclear whether a typical history
can be predicted from a forward lineage, because it ig-
nores ancestral relationships. Intuitively one might argue
that each history contributes differentially to the overall
population growth. A typical history may diverge from
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FIG. 1. Lineages of clonal populations. A population
with distributed cell sizes arises from a pedigree with a com-
mon ancestor. Two types of lineages are used to characterise
the tree. Forward lineages start from a common ancestor, end
at an arbitrary cell in the population, and hence correspond
to possible cell fates. Backward lineages start at an arbitrar-
ily chosen cell in the population, end at a common ancestor,
and are representative of a cell’s history.
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a lineage of a single cell observed in isolation even when
environmental stresses or limitations are absent. Quanti-
fying this dependence can give valuable insights into how
single-cell parameters shape individual cell histories, how
these properties are represented in a clonal population
(Fig. T dashed box), and thus how cells keep memories of
their past!®.

Theoretical studies have mainly focussed on the for-
ward approach because it can be simulated without af-
fording to track whole populations'! and because it is of-
ten more amenable to analysis!®1%. Retrospective mod-
els of populations are more common when studying ge-
netic diversity due to rare mutations in populations with
age-structure?®2!, Few theoretical studies to-date have
given a quantitative description of cell histories due to
phenotypic fluctuations??23. These studies established
that a typical cell’s history determines the population-
growth rate but also that the strength of selection acting
on an individual can be inferred from this history®?23.
Such an analysis is limited to the study of individual dif-
ferences in cell age, which makes it difficult to reason
about variation in cellular physiology that is typically
observed in clonal populations.

While cellular division times are highly variable, divi-
sion timing is not entirely determined by cell age, but
also by cell growth and size. Cell division in bacteria, for
instance, follows after elongation by a stochastic amount
of cell length'7-24  while other microbes more closely
resemble sizer or timer controls?®. The fact that each
cell inherits a certain fraction of the mother’s cell size,
leading to correlated division times, complicates analy-
sis of these effects. It, therefore, remains an open ques-
tion what is the effect of stochasticity in cell physiology
on individual cell histories in a growing population, and
what part of this cell-to-cell variability contributes to the
population-growth rate that is commonly associated with
the fitness of a population.

In this article, we compare the lineage statistics ob-
tained from an exponentially growing population whose
individuals control division timings based on cell size.
First, we briefly introduce our model assumptions and
discuss the concepts of forward and backward lineages.
We show that the population-growth rate is constrained
by the distributions of birth-size and growth histories
while relegating technical details to the Methods sec-
tion. We then use these result to study how differences
between sister cells affect typical cell histories. Specifi-
cally, in Sec. II A we study a population of cells whose
individuals divide into two perfectly identical sister cells
inheriting equal proportions of the mother’s size. For
these cases, the statistics of forward and backward lin-
eages agree but it is not possible to maintain a stable size
distribution despite the stochasticity in division times.
In Sec. IIB we investigate the consequences of imper-
fect division due to division errors. The cell-growth rate
limits population-growth rate and is independent of the
size control. The implications for asymmetrically divid-
ing cell populations and the contributions of individuals

2

to the overall population growth are discussed. Finally,
in Sec. I C we investigate the effects of sister cell varia-
tions in the cell-growth rate. Using individual cell histo-
ries we show that growth rate fluctuations are subject to
negative selection and provide bounds on the maximum
attainable population-growth. We also investigate the
effect of asymmetric sister cell growth. We finish with
a discussion where we elaborate on applications of our
findings in the context of recent single cell techniques.
Our analysis highlights that cell histories in a population
are strongly affected by differences between sister cells
arising from the cell division process.

Il. RESULTS

We assume that each individual cell undergoes expo-
nential growth, a dependence that has been reported for
E. coli®, C. crescentus®*, B. subtilis®> and S. cerevisiae'?.
The size of a cell of age 7 follows the deterministic rela-

tion
s(1) = s0e7, (1)

where sq is the size at birth and « is the exponential cell-
growth rate. We account for three sources of variability:
fluctuations in the birth size sg and division size sg4, as
well as variations in the cell-growth rate a between divi-
sion cycles. Such growth variations have been observed
in bacteria whose increase in length follows a single ex-
ponential between birth and division®%9:26,

Assuming that cell division occurs at a rate y(7, s, a), it
follows that the division time 74 is distributed according
to

()0(7-d|$07 O[) — V(Tda Soeo”—d’ 04)67 fOTd dT’Y(Tvsoeo‘T7a). (2)

Changing variables from division time 7,4 to division size
sq using Eq. (1), we find

4,0(3(1|50,Oé) :7(5(1,50’0[)6*];‘1 ds"/(s,so,a)7 (3)

where we set v(7q4, S4, ) = asy(sq, So, ). Stochasticity
in the division times can therefore be directly related to
fluctuations in the division size, and vice versa. The di-
vision size representation is convenient because it can be
used to model cell size control, which has been reported
to vary with growth media but is relatively independent
of cell-growth rate?. We adopt this independence as-
sumption from here on.

Forward lineages.  The lineage approach is agnostic
about population growth because it follows only of the
two daughter cells. It is therefore not difficult to write
an equation for the distribution of birth sizes and growth
rates in a forward lineage'®!® (Methods 1), ¢y (so, @),
which is

wfw(s(h Oé) =

oo

/dd/dsd /dsNOIC(SO,odsd)go(sd\sb)i/)fw(sb,d). (4)
0 0 0
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The division kernel K(sg, ar|sq) is the distribution of birth
size and growth rate of the progenies of a mother cell with
size sq. When division produces two daughters the it is
given by a mixture

K(s0,alsq) = %K1(50|sd)ul(a) + %K2(50|sd)1/2(04), (5)

where K1 2(so|sq) denotes the distribution of birth size
after cell division and v 2(«) the distribution of growth
rates, which we assume to be independent?2”. We do not
consider inheritance of growth rates because experiments
in bacteria showed that correlations in growth rates are
negligible across generations*?.

Cell histories.  Determining the statistics of cell his-
tories is more elaborate because we need to account for
the growth of the whole cell population. To this end we
consider the density n(r, s, a,t) that counts the number
of cells with age 7, size s, and cell-growth rate . The
total number of cells is given by

:/ ds/ dT/ dan(r, s, a,t). (6)
0 0 0

Since the probability for a cell to divide at age T and size
s is given by (7, s, «)drdsda, the cell density follows the

evolution equation
0 0 0
L’?t + 9 + asas} n(t, s, a,t) = —y(1, 8, a)n(t, s, a, t),
(7a)

Assuming further that the cell-growth rate o changes
only at cell division, the density obeys the boundary con-
dition

n(0, s, a,t) =

2/d /dsd/d7'lC(s,cv|sd)7(7'7 Sd, @)n(T, 4, &, t).
0 0 0
(7b)

The condition ensures that the number of newborn
cells in the population must equal twice the number
of dividing cells. Similar approaches have been used
to characterise distributions of age and size-structured
populations?8-34,

Egs. (7) are difficult to solve in practise because of the
simultaneous dependence of the division rate on age and
size. To make analytical progress, we restrict ourselves to
the long-term behaviour in which the total cell number
grows exponentially

N(t) ~ Noet. (8)
Also the total mass of the population grows at the same
rate. We show (Methods 2) that the distribution of birth
size and cell-growth rates in backward lineages is ob-

3

tained from the solution of Eqs. (7) as follows

¢bw(507a) =
SA/a
2/dd/dsd/d50/€ 80, @|Sq)p (sd|s~0)§\—/& Yy (S0, ).

0 5d
(9)

Solving for the backward lineage distribution )y, allows
us to predict the distributions measured across a growing
population (Methods 2, Eq. (37a)).

The population-growth rate A, however, is a priori un-
known. It can be shown that it is given by the maximum
value of A for which 1), can be normalised (Methods 2),
and hence the backward lineage contains the full informa-
tion about the population growth. We note that if there
is a unique A with dominant real part, the fraction of cells
with a certain age and size is constant in a growing popu-
lation, i.e. it settles to a stable size distribution. We will
show how solutions to this equation are obtained in bi-
ologically relevant cases. We begin by studying stochas-
ticity in the cell size control (Sec. ITA), and then include
variations in inherited cell size (Sec. II B) and cell-growth
rates (Sec. I1C).

A. Populations of perfectly dividing cells

As a first example we investigate an idealised situation
in which each mother cell divides exactly into two identi-
cal daughter cells, which entails that both sizes and both
cell-growth rates must be identical for the two daughter
cells. This shows that albeit stochasticity in size control
may lead to a stable age distribution, it cannot achieve
a stable size distribution in a population.

No stable size distribution for perfectly dividing cells

Letting K(so, a|sq) = d(so — sa/2)d(a — ap) in Eq. (9)
reduces the equation to the integral

(s0) = ga7ar | g Coolss) vn(si). (10)

We obtain the characteristic equation for A\ by integrating
over sg and using the fact that ¢ is normalised. This
leads to 2 = 2%/ which has the roots A, = ag(l +
nﬁg) for n =0,1,.... Since there exists no single value
with dominant real part, the size distribution of perfectly
dividing cells oscillates indefinitely. While this result is
well known for cells that divide at a critical size3®, we

find that it holds for arbitrary cell size controls.

Ideal cell histories

Although a stable size distribution does not exist, we
investigate the distribution corresponding to the popu-
lation growing at rate A = «. This distribution can be
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FIG. 2. Division errors increase cell size in backward lineages. (a) The distribution of daughter to mother-size ratios
is compared for the two lineage types. Because each mother produces two offspring, the distribution of the forward lineage is
symmetric. In the backward lineages the same quantity is significantly skewed towards larger daughter cells. (b) The average
birth size increases with increasing division error CV[p]. This amplification is smaller for the sizer model than for adder and
timer-like models (see main text for model details). The coeflicient of variation is shown in the inset. (c) We compare forward
and backward lineage traces (left) collected from a clonal population implementing the adder size control. We observe that
cells are larger in backward than in forward lineages. We quantify this dependence using the distributions of birth sizes in these
lineages (right) obtained from theoretical predictions, numerical solution of Eq. (14) (solid red line) and Eq. (4) (solid black),
and stochastic simulations (shaded areas). (d) For the sizer mechanism (left) both lineage types show comparable ranges of
cell sizes but cells in backward lineages divided more frequently and at larger sizes. Our theoretical prediction (right) confirms
this dependence showing that larger cells are more frequently observed in backward lineages than in forward ones. Theory and
simulations assumed division errors to follow a symmetric Beta distribution with a coefficient of variation of about 66% while
the error in size control was modelled using a Gamma distribution with coefficient of variation of 10%.

considered as the limiting backward lineage distribution
for small but non-zero division errors or cell-growth rate
variability, which satisfies

wbw(sﬂ) = 2Aw d§090(280|§0)1/}bw(§0). (1].)

The equation is same as Eq. (4) for t¢,, and there-
fore cell histories and forward lineages are identically
distributed. The integral can be carried out if ¢ is in-
dependent of 3y for which ., (s0) = 2¢(2sg). How-
ever, more generally the lineage distribution cannot be
obtained without knowing the explicit form of the size
control ¢.

B. Populations of imperfectly dividing cells

Although cell division is a tightly controlled process it
is hard to imagine that a mother cell can divide into two
identically sized daughters. Even in symmetrically divid-
ing organisms as F. coli the inherited size differs between
daughter cells®6 38, In this situation, the division kernel

K(so,alsq) in Eq. (5) can be written as

1
K (50, @ls4) = 6(cx — ) / dpr(p)3(so — psa),  (12)

where p denotes the ratio of daughter to mother cell size.

Cell-growth rate sets population-growth rate

To characterise the population growth, we derive a
characteristic equation for A. Inserting Eq. (12) into
Eq. (9) and integrating over sq yields

1
1= 2/0 dpw(p)p%o. (13)

The inherited size fraction obeys w(p) = m(1 — p) be-
cause of size conservation. This implies that the daugh-
ter cells inherited half the mother size on average, i.e.
fol dpm(p)p = %, and thus the real solution to this equa-
tion is A = ag. For cell populations producing daughters
of different sizes, it follows that the elongation rate alone
determines the population-growth rate.
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FIG. 3. Asymmetric division increases the frequency of mother cells. A model population of budding yeast cells is
described in which daughter cells inherit 1/3 of the mother size on average. (a) In forward lineages the relative division size
indicates equal likelihoods for mother and daughter cells (dashed line). In contrast, our theory predicts that cells with inherited
size fractions smaller than 1/2 (red dot) are under-represented while cells with larger ratios are over-represented in backward
lineages (blue line). The enrichment (red line) represents the ratio of cells in backward and forward lineages, Eq. (15). (b) Cell
size increases due to the increased likelihood of mother cells, which is well explained by their relative size proportions at cell
division, Eq. (19). (c) A qualitative comparison of the adder mechanism in forward (top, left) and backward lineages (bottom,
left) confirms that mother cells (red) are more frequent than daughter cells (black). This dependence gives rise to a broad
distribution of birth sizes in backward lineages (right). (d) For the sizer control, asymmetric division leads to distinct sizes for
mother and daughter cells that is qualitatively predicted by their inherited size-fraction (a). Simulations and theory assume
Beta-distributed size-fractions with mean 1/3 and coefficient of variation of 20% for daughter cells with the rest attributed to
mother cells.

Cells are bigger in backward lineages division timing. Intermediate values would behave ei-
ther sizer- or timer-like?. Using the latter dependence

Next, we study the distribution of birth sizes in back- we study the case of large division errors corresponding
ward lineages. Using the result of the previous paragraph to an almost uniform distribution 7 (p) shown in Fig. 2a
together with Eq. (12) we find (solid black line). We can compare this distribution to

7w (p) which yields the daughter-mother ratio in back-

1 o0 ward lineages (solid red line). The stochastic simulations

Yow(s0) = 2/ dp w(p)/ d§0@(%|§0)¢bw(§0)- (14) (shaded blue area) are in excellent agreement with the
0 0 theoretical predictions.

We note that this distribution is different than the one of A general solution of Eq. (14) is, however, difficult to
a forward lineage. Specifically, comparison with Eq. (4) obtain. We therefore characterise the distribution by its
shows that the ratio of daughter to mother size in a back-  moments. The first moment, for example, can be ob-
ward lineage is distributed as tained exactly for linear models, Eq. (16), through mul-
tiplying Eq. (14) by so, integrating and solving the ex-

Tow (p) = 2p 7 (p), (15)  pression for the expectation value of s9. The mean birth

size is obtained as
rather than 7(p) as in the forward lineage. The equation )
shows that the observed daughter-mother ratio is skewed By [50] _ (2-a)(CV7[p] +1) (17)
towards bigger daughters. Intuitively, this bias can be Etw[s0] 2—a(CV3[p|+1)’
understood by the fact that bigger cells grow faster, di-
vide quicker, and thus are overrepresented in backward ~ Where CV[p] denotes the “division error” given by the
lineages. coefficient of variation of 7(p) . Interestingly, we find

To investigate this effect using stochastic simulations  that, while in forwgr(.i lineages, the mean birth size is in-
we use a linear model relating division size to the size at dependent of the division error, birth size increases with

birth of single cells. Many experimental studies employed ~ division errors .in backvxlfardllineages.. When these erTors
such a linear regression to quantify division control'1:23, are small, the increase in birth size is solely determined
To this end we set (s, so) = v(s — aso), or equivalently by the division error and independent of the mechanism

of size control. For higher division errors, we find that

©(s4]50) = @(s54 — aso) (16) birth size increases with a (Fig. 2b). Hence an adder

mechanism leads to larger cells than the sizer mecha-

from which the division sizes can be sampled. The pa- nism. Likewise a timer-like mechanism (e = 1.5) pro-
rameter a denotes different models of cell size control. duces larger cells than the adder control.

For a = 0 division size varies irrespectively of birth size, To demonstrate this counter-intuitive phenomenon in

often called the sizer mechanism. For a = 1 the size more detail, we performed stochastic simulations. Three
added from birth to division varies independently of birth representative lineages, shown for the adder (c, left) and
size, an adder mechanism that is commonly observed in  sizer mechanisms (d, left), demonstrate that cells ob-
bacteria?!7:24, For a = 2 division size is proportional served in backward lineages are typically bigger than in
to birth size, which resembles cell-size control based on forward lineages. The histograms of birth sizes, obtained


https://doi.org/10.1101/100495
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/100495; this version posted January 15, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

from simulations and by numerically solving Eq. (14),
confirm that cells are generally bigger in backward lin-
eages than in forward lineages, while the distribution ob-
tained using the adder (c, right) is significantly wider
than the one obtained using the sizer control (d, right).

Histories of asymmetrically dividing cells have more mother
than daughters

Albeit two daughter cells are never truly identical, for
many species cell division is naturally asymmetric. In
budding yeast, for instance, cell division distinguishes a
smaller daughter from a mother cell. In this paragraph,
we refer to the bigger cell as a mother, and to the smaller
cell as a daughter and specify this dependence in the di-
vision size distributions. In forward lineages, mother (m)
and daughter cells (d) can only occur in equal proportions

7(p) = 57a(p) + 57m(p). (18)
Because total size is conserved in the division process,
these distributions obey 7y (p) = ma(1 — p). The distri-
bution of division size ratios is bimodal (Fig. 3a, dashed
grey line). From the definition of my,,, Eq. (15), it fol-
lows that the proportion of size inherited by either cell
type determines the fraction of mother cells observed in
backward lineages as follows

Pr(w) = 1=Pr(@) = [ dppma(e). (19)

Assuming size proportions of 1/3 for daughter cells and
assigning the rest mother cells, we verify via stochastic
simulations using the adder model that the proportion of
daughter cells in backward lineage is indeed 1/3 (Fig. 3b).
A qualitative comparison of simulated forward (Fig. 3c,
top left) and backward lineages (c, bottom left) confirms
this dependence, which gives rise to a broad distribution
of birth sizes (c, right). For the sizer model (Fig. 3d)
mother and daughter cells have well-separated size dis-
tributions, as expected.

C. Populations of cells with varying cell-growth rates

We finally consider the case in which cells divide into
daughters of equal sizes but differing cell-growth rates.
The form of the division kernel describing this situation
is

K(s0,alsq) = 0(so — sa/2)v(a), (20)
where v(a) is the distribution of cell-growth rates in

a forward lineage. In order to separate the contribu-
tions of size and cell-growth rate, we make the ansatz
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FIG. 4. Measurements of E. coli cells validate lim-
its on population growth. (a) Microfluidic experiments®
(red dots) confirm that the population-rate is smaller than
the mean elongation rate of single cells (dashed black line).
Strains and growth conditions are ranked by growth rate
gain and error bars denote maximum error from the reported
95% bootstrap confidence intervals. Lower bounds are es-
timated using mean division times and elongation rates as
in Ref.® (dashed red line). (b) Time-lapse observations of
microcolonies®® provide an independent experimental valida-
tion of the growth bounds.

Upw (S0, @) ~ gb(so)sg‘/au(a), such that the backward lin-
eage equation (9) simplifies to

S0

o(s0) = 470150 ]odaso@smsw (M)A/& V(@)(50).
0 0 o)

It is now clear that cell size in backward lineages depends
on cell-growth rate. Integrating the above equation, one
obtains an equation for A that shows an intricate coupling
between population growth, cell-growth rate and birth
size that makes it difficult to analyse analytically.

Growth rate fluctuations are detrimental to population
fitness

Although Eq. (21) needs to be solved numerically, up-
per and lower bounds of the population-growth rate can
be obtained (Methods 3). Specifically, we find that the
population-growth rate cannot exceed the mean growth
rate of a single cell but the population doubling time is
shorter than the time in which a single cell doubles its
size, that is

1
Epul2]

Eppla] 2 A > (22)

The underlying biological assumption for this result to
hold is that cells cannot grow infinitely fast and it re-
mains valid for asymmetrically dividing cell populations
(Methods 3). Because the upper bound is sharp only
for deterministic growth, it follows that fluctuations in
cell-growth rate must decrease population growth.
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FIG. 5. Cell-growth rate fluctuations affect population fitness. (a) Gain in population-growth rate A/ E[a] obtained
from stochastic simulations of sizer (blue a = 0), adder (red @ = 1), and timer-like size controls (green dots a = 1.5). For
small errors in the size control, all of these data collapse onto a single line (solid black) given by the solution of Eq. (23). The
approximation valid in the limit of small fluctuations, Eq. (24), captures the behaviour in the physiological regime (0 — 0.5).

For comparison, we show theoretical bounds (dashed grey).

(inset) Variations in size control, shown for the adder model

with increments A, can slightly increase population growth above the estimate A* of Eq. (23), but require the presence of
cell-growth rate fluctuations. (b) The expected cell-growth rate in backward lineages increases with the size of growth rate

fluctuations relative to forward lineages. The solutions to Eq.

(25) (solid red) is verified against simulations using an adder

mechanism (dots) and an approximation (dashed red), Eq. (26). The size of fluctuations in these lineages is generally smaller
than expected for single cells (inset). (c) Lineage distributions are compared for both lineage types with a coefficient of variation
of 0.5. Theory (lines) and simulations (dots, shaded areas) assume Gamma-distributed cell-growth rates with unit mean and
prescribed coefficient of variation; size control errors are modelled using a Gamma distribution with coefficient of variation of

10% except in (a, inset).

It also follows that determining population-growth rate
based on individual cell-growth rate always overestimate
population-growth rate while measures based on size dou-
bling rate always underestimate it. We validate this pre-
diction using reported cell- and population-growth rates
of E. coli cells®>3? (Fig. 4). Because these studies do not
provide an estimate of Ef,[1], we used division time as
a proxy (dashed red line). This yields the same lower
bound as obtained by Hashimoto et al.®. Using simu-
lations we found that the lower bound provided here,
Eq. (22) can be sharper, especially for large division er-
rors (not shown).

To make further analytical progress, we ignore vari-
ability in cell size control, ¢(sq|so) = 0(sq — 280), in the
following. We then find that, after integrating, Eq. (21)
reduces to

o0
1= 2/ da27M(a), (23)
0

which determines the population growth rate A. This
equation is an Euler-Lotka equation®® with division time
74 = In2/c. Tts predictions are highly accurate for dif-
ferent modes of size control (Fig. 5a, solid line). Insights
into its solution can be obtained by using an approxima-
tion valid for small cell-growth fluctuations (Methods 4),
which results in

A ~FE},[a] (1 — CV7,[a] (1 - 1“22)), (24)

where Ey,[a] is the expected growth rate of a single cell
and CV,[a] its coefficient of variation. Stochastic sim-
ulations verify the accuracy of this approximation in the

physiological regime®*26:39 (CV,,[a] < 0.5, Fig. ba dot-
dashed line).

To investigate the effect of cell size control on popu-
lation growth, we numerically solve Eq. (21). We find
that errors in size control can increase the population
growth rate slightly above the estimate (23), which we
demonstrate for the adder mechanism (Fig. 5a, inset).
The impact of size control on population growth requires
the presence of cell-growth variations, however. Thus the
bounds given in Eq. (22) demonstrate that growth fluc-
tuations fundamentally constrain population fitness.

Cells grow faster in backward lineages

Having determined the population growth rate, we
discuss the distribution of cell-growth rates in a back-
ward lineage. Since this distribution determines the cell-
growth rate, it must be given by the term below the in-
tegral of Eq. (23),

(25)

Interestingly, we find that the probability of cell-growth
rates in forward and backward lineages is equal for cells
growing at the same rate as the population. As a conse-
quence cells growing faster than the population are over-
represented while slower cells are under-represented. Us-
ing a similar approximation as in Eq. (24), we find that

Epula] = Epyla] (1+1n2CV?,[a]), (26)

meaning that the expected cell-growth rate in a backward
lineage is larger than in a forward lineage (Fig. 5b dashed

Vb (@) = 21_%1/(04).
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FIG. 6. Asymmetric growth shifts the frequency of
growth phenotypes. A situation is described in which
old pole cells grow faster than new pole cells. (a) Asym-
metric growth tilts the distribution of cell-growth rates in
forward lineages (black line) towards fast growing cells in
backward lineages (blue line). Specifically, cells with growth-
rates above the population-growth rate (red dot) are over-
represented while cells below are under-represented. This en-
richment (red line) is in excellent agreement with the theoret-
ical predictions (Eq. (25)). (b) Proportions of new and old
pole cells show less slow growing cells than fast growing cells.
(c) Birth-size distributions of both lineage types agree and
resemble ideal lineages. (d) Simulated lineages qualitatively
confirm the enrichment of old (red) compared to new pole
cells (black) in backward lineages. Theory and simulations
assume Gamma-distributed adder control with a coefficient
of variation of 30%.

red line). The resulting shift to higher cell-growth rates
in the backward lineage distributions (Fig. 5¢) is well
described by Eq. (25). Similarly, the size of fluctuations
is smaller in backward than in forward lineages because
of the increased mean (Fig. 5b, inset). Our predictions
are shown to be in excellent agreement with stochastic
simulations.

Histories of asymmetrically growing cells contain fewer slow
than fast growing cells

Single-cell experiments revealed that asymmetric divi-
sion in mycobacteria results in sister cells that differ in
their elongation rates?’2. Specifically, a daughter in-
heriting the new pole grows slower than an old pole cell.
By symmetry it is clear that the proportions of old pole
(op) and new pole cells (np) must be equal in forward
lineages,

V(@) = 2tp(@) + 2 op(@).

5 5 (27)

8

The distribution of individual cell-growth rates in back-
ward lineages is obtained by using the above relation to-
gether with Eq. (25). For new pole and old pole cells with
different mean growth rates, Fig. 6a (left) shows that the
growth rate distribution in backward lineages contains
fewer cells with a slow growing pole than expected in
forward lineages. The fraction of new pole cells observed
in backward lineages is given by an exponential weight-
ing of the cell-growth rate against the population-growth
rate

Pr(np) =1 — Pr(op) = /000 da2™% Unp (). (28)

To understand this result in more detail, define the size
doubling time 74 = In2/a and note that 2% = e AT
is the size-proportion that a cell growing at rate a con-
tributes to the growth of the population. We verify this
dependence through simulation (Fig. 6b). We also show
that the distribution of birth sizes is indeed close to the
statistics of ideal lineages (¢). The good agreement with
the simulations verifies the accuracy of the employed ap-
proximations. Qualitatively, a few stochastic realisations
of forward (d, top) and backward lineages (bottom) con-
firm this result.

I1l. DISCUSSION

We presented a method to predict histories of single
cells in an exponentially growing population. Our anal-
ysis reveals that physiological differences in sister cells
have a significant impact on individual cell histories and
their contribution to the overall population-growth. We
found that if every cell division results in a pair of per-
fectly identical sister cells, inheriting both the growth
rate and equal proportions of the mother’s size, the statis-
tics of forward lineages histories can be predictive for
cell histories. Cell division is naturally imperfect and
when this happens, cell histories in a population deviate
from forward lineages because larger cells grow faster and
hence contribute more to the overall population growth,
which becomes particularly conspicuous for asymmetri-
cally dividing cells such as budding yeast. When sister
cells grow at different rates we showed that it is the size-
fraction that a cell contributes to the growth of the pop-
ulation that determines its history. Consequently, fast
growing cells contribute more to a typical cell’s history
than they contribute population growth. These findings
highlight the dependence of cellular histories on physiol-
ogy.

A range of single-cell tracking devices are used to study
cellular growth and size control. Mother machines, for
instance, are used to measure forward lineages of E.
coli cells. Such devices yield qualitatively different re-
sults from chemostats, as for example, increased filamen-
tation rates*® and the production of mini-cells’. Our
theory could be used to explain these differences be-
cause of the different proportions cells are being repre-
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sented in cell histories and growing populations. Micro-
chemostats®'443 are ideal candidates to facilitate the
long-term observation of cell histories that we have pro-
posed here. More recent approaches allow measuring
growth rates directly in populations, the statistics of
which can be inferred from cellular histories (Methods 2).
The proposed quantitative framework thus bridges the
gap between these competing experimental approaches*?.

Using this theory, we obtained two fundamental
bounds on the population dynamics: the population
growth-rate can never exceed the rate at which an aver-
age cell grows but the population-doubling time is shorter
than the time at which an average cell doubles its size.
We validated this dependence using available single-cell
data. Within the theoretical bounds, cell size control
can affect population growth but only in the presence of
cell-growth variations. It hence follows that growth fluc-
tuations are fundamentally limiting the fitness of a cell
population.

Previous studies provided similar lower bounds on
population-growth rate based on division timing®4°. We
found that when cells control their division size, leading
to correlated division times, that cell populations cannot
exploit their phenotypic variations to increase population
fitness above the rate at which an individual cell grows,
which we validated using available single-cell data. Popu-
lations could exploit this mechanism for noise reduction
by negative selection, for instance, through mutations
that tend to decrease individual growth differences.

Individual cells must make decisions based on their
past. The fact that cells within a clonal population ex-
perience histories that cannot be predicted solely from
observations of cells in isolation is due to the division
process that results in progeny with variable physiology.
It would be interesting to study how cells may exploit
these historical fluctuations to win competitions or to
enable population-level strategies*>46.
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METHODS
1. Statistics of forward lineages

We first summarize the lineage approach briefly. We
consider a sequence of cellular birth sizes where the in-
formation about one of the daughters is discarded. The
sequence of birth volumes and cell-growth rates obtained
in this way is a forward lineage. In simple terms, it can
be modelled by expressing the birth size at the start of
the (n + 1)-th cell cycle as a function of the size at the

9
end of the n-th cell cycle!6:1?
so" ™ =M (@™, 567). (29)

We here assume that (i) the proportions of size p()
inherited by a daughter cell of the n-th is identically
and independent distributed with density 7(p), (ii) the
cell-growth rates o™ are independently distributed be-
tween daughter cells with distribution v(«), and (iii)
the division sizes s&") are conditionally independent with
density ¢ (5d|50,a). The stationary lineage distribu-
tion £, (s0, @) is obtained by writing an integral equa-
tion that maps the n-th generation’s distribution to the
(n + 1)-th generation’s distribution and taking the limit
n — oo. The result is Eq. (4).

Characterising cell size control using linear models

On a phenomenological level, we assume that divi-
sion size is independent of cell-growth rate and set
¢ (sa|so,@) = ¢ (sa — asp). This corresponds to a lin-

ear model'!?® of the function sgln)(a("), s{) in Eq. (29)
given by

s((i") = as(()") + 7™, (30)

where the parameter a implements the size control (a = 0
sizer, a = 1 adder, a = 2 timer, see Sec. II B) and the 5("™)
are independent and identically distributed increments.
For any cell in a forward lineage, the distribution of
growth rate is then v(a) = 2v1(a) + 2va(a) but the lin-
eage distribution of birth sizes is difficult to obtain an-
alytically. It is often more straightforward to obtain a
characterisation in terms of moments!'”. The mean birth
size can be obtained by using the linear model in Eq. (4)
and multiplying the result by sg and performing the in-

tegration. This shows that

En]
2—a’

Efu[so] = (31)
is independent of the division error CV[p]. However, the
mean birth size exists only if a < 2, and thus ruling out
a timer mechanism for size-homoeostasis®4748,

2. Statistics of backward lineages

The density n(r,s, a,t)drdsda counts the number of
cells at time ¢ with age between 7 and 7+dr, size between
s and s+ds, and cell-growth rate between o and o + da.
Denoting by (7, s, a)drdsda the probability for a cell
to divide at age 7 and size s, the cell density evolves as
follows

d
&H(T7S7O‘7t) = _7(7—75705)”(7-3 S,Oé,t). (32)
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When the cell-growth rate a does not change between cell
divisions, expanding the total time derivative in Eq. (32)
leads to the evolution equation (7a) given in the main
text. The boundary condition, Eq. (7b), ensures that
the number of newborn cells must equal the number of
dividing cells.

Integrating Eq. (32) shows that the distribution of di-
vision times 7,4 is given by Eq. (2) of the main text. To
characterise the single cell behaviour, we change from di-
vision times to division sizes characterised by the distri-
bution ¢(s|sg, ) given by Eq. (3). While this character-
isation is exactly equivalent to Eq. (2) (see also Ref.??),
it allows for a tremendous simplification of Egs. (7) be-
cause it removes the simultaneous depends on cell age
and size. The result of this change of variables is the
evolution equation

9 1 9 05 (s, 50, art)
875 5525 ) 1(s: 50, 0,

= —asy(s, so, a)n(s, so, a, t), (33a)
which is subject to the boundary condition
asp n(so, So, i, t) = 2/dd/dsd/ds~o
0 0 0
X IC(SOa Oé|$d)0~é8d’7(3d, S~07 O[)’I’L(Sd, 3~07 t) (33b)

The solution of Egs. (33) can in principle be obtained by
separating variables. Formally, we write

ZN@

where \; denote the eigenvalues of the integro-differential
operator. In the long-term limit the solution is domi-
nated by the eigenvalue with largest real part A\g. For
now, we assume that such a dominant eigenvalue exists
and set

n(s, so, , t) (s, S0, ), (34)

n(s, so, i, t) ~ Noe Iy (s, sg, ). (35)
We identify ITy(s, sg, @) as the stable distribution of size,
birth size and cell-growth rate. We then see from Eq. (6)
of the main text that the total cell number grows expo-
nentially N(t) ~ Noge*! for long times. Note that in the
main text we use A to denote the dominant eigenvalue
instead of A\g. Using the above equation in Eq. (33a), we
find

AoIIp (s, S0, ) + agasﬂg(s, S0, @)
s
+ CYS’}/(S,S(),O(>HQ(S,SO7OZ) =0, (36)

which can be solved straightforwardly

o (s, S0, ) ~ Vo (50, @) B(s] 50, @) > (37a)

10

Here ®(s|sg,a) is related to the cumulative distribution
function of ¢ via

D(s]sg, ) =e
=1 7/ ds’ (s |sg, @),
s0

which gives the probability that a cell with birth size sq
and growth rate « has not divided before reaching size
s. The density 1y, (S0, ) is the ancestral distribution of
cell-growth rate and birth size that contains the informa-
tion about the history of the cells. ¥py (S0, @) is to be de-
termined from the boundary conditions and the denom-
inator containing « is a factor chosen for convenience.
Inserting Eq. (35) with IIp(s, s, ) into Eq. (33b), we
find

Ybw (S0, @) —50 7 7
0 0

X (540, )

_ f;o ds’y(s,s0,0)

(37b)

oo
/ dsoK(so, a|sq)
0

Qr‘o

wbw(soa a).

This equation determines (i) the population-growth rate
Ao and (ii) the distribution of birth sizes in a backward
lineage.

(37¢)

3. Bounds on the population-growth rate

To obtain lower and upper bounds on the population-
growth rate we specialise Eq. (37¢) to the case in which
growth rate fluctuations and division errors are indepen-
dent

K(s0,a|sq) = V(a)/o dp m(p)d(so — psa), (38)

where v(«) is the distribution of growth rates and 7 (p) is
the ratio of daughter to mother size after cell division in a
forward lineage. As in the main text, we now set ¢(sg) =

so_’\‘)/awbw(so,a) (a) and assume that ¢(s4|S0, &) to be
independent of &. We then obtain

50) 227d8d 7(150 /01 dpm(p)é(
0 0

« o(s4]) 7dw(d)(80)?° o50). (39)
0

S0 — psd)

Sd

Computation of the bounds requires bounding the expec-
tation value in square brackets.

a. Lower bound. We notice that the integrand of the
a-integral is convex in 1/&. Using Jensen’s inequality we
obtain

. ~ -\ NoErull/al
/ dav(a) (30) > (S’O) . (40)
0 Sd Sd

QX‘é’
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Inserting the above relation into Eq. (39) we obtain the
inequality

#(s0) 2/1d 7d 7(p) (22]60) 5 AoEfw[l/a]¢( )
)= p [ dso—=e(]s0 <p) $0)-
0 0 P

D S0

(41)

Multiplying this inequality by 38‘ 0oBrull/al

over sp we find

and integrating

1
1> 2/ dp 7 (p) proBrwlt/el, (42)
0

Note that because 7(p) = m(1 — p) equality holds when
Ao equals 1/Ey,, [1/a]. Larger values of Ay decrease the
integral and hence

Ao > W (43)

is a lower bound.

b. Upper bound. To obtain an upper bound we set
c= i—g < 1 and observe that

— (44)

is a convex function for Ay > 0 and @ > 0. Restrict-
ing ourselves to distributions with finite means and vari-
ances, we can employ bounds derived in Ref.*? leading
to

00 avla C)\O/a C)\o E[[;z]] E[a]Q B L@]z
[ dowtoreere < g (1~ e

(45)

The distribution that uniquely achieves this bound is

o= (52 (o 82)

+ (1 - %2‘;) lim §(ov— A).  (46)

A—o0

We are now faced with two options: either we allow for
distributions with a finite probability mass at infinity,
or the only admissible distribution is the deterministic
one, for which E[a?] = E[a]? and the second term in the
above equation vanishes. Certainly, the latter situation
is biologically relevant since single-cell growth rates are
bounded®°!. Tt then follows by using Eq. (45) in (39)
that the deterministic distribution bounds the population
growth rate from above and thus

Mo < Efy la], (47)

following the same arguments as in Sec. II B.

11
4. Perturbative calculation of population growth rate

Next, we derive an approximation for the eigenvalues
determined by the characteristic equation (23). We set
a = ap+ o€, where oy is the average cell-growth rate, its
standard deviation is ¢ and £ denotes a random variable
of zero mean and unit variance. Inserting A\ = ag+0oX; +
%)y + O(0?®) into Eq. (23) and truncating of terms of
order ¢° we find

1
5= 9~ Ao/e0 (48)

whose solutions are Ao, = g (1 + 217:2”) forn =0,1,...
Thus to this order there exists no eigenvalue with domi-
nant real part. Truncation after terms of order o yields
A1,n = 0 because E[{] = 0. Truncating the characteristic

equation after terms of order o2, we find

E[€?] [(2n%n? In2
= — 1 — —
Az Qg In2 + 2
2imnE[¢?]
———=(In2-1). 4
aon? (In2—1) (49)

Because the real part of Eq. (49) decreases with n we
find that A\g is the dominant eigenvalue. Letting n = 0 in
Eq. (49) we obtain the approximation given in Eq. (24)
of the main text by expressing the result in terms of the
mean, and the coefficient of variation of a.
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