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Abstract 11 

Proximity-ligation methods as Hi-C allow us to map physical DNA-DNA interactions along the 12 
genome, and reveal its organization in topologically associating domains (TADs). As Hi-C data 13 

accumulate, computational methods were developed for identifying domain borders in multiple cell 14 
types and organisms. 15 

Here, we present PSYCHIC, a computational approach for analyzing Hi-C data and identifying 16 
Promoter-Enhancer interactions. We use a unified probabilistic model to segment the genome into 17 

domains, which we merge hierarchically and fit the Hi-C interaction map with a local background 18 
model. This allows us to estimate the expected number of interactions for every DNA-DNA pair, 19 

thus identifying over-represented interactions across the genome. 20 

By analyzing published Hi-C data in human and mouse, we identified hundreds of thousands of 21 
putative enhancers and their target genes in multiple cell types, and compiled an extensive 22 

genome-wide catalog of gene regulation in human and mouse. 23 

 24 

Introduction 25 

One of the key mechanisms of gene regulation in eukaryotes involves enhancer-promoter 26 

interactions, where distal regulatory regions along the DNA (enhancers) come in close physical 27 
proximity to their target promoters, to further activate transcription. The human genome is 28 

estimated to contain hundreds of thousands of enhancers, often with multiple enhancers regulating 29 

a single gene. These act in a tissue specific manner and could be found up to 1Mb away from their 30 
target genes (Fraser and Bickmore 2007, Visel et al. 2009, Van Steensel and Dekker 2010, 31 

Bickmore and van Steensel 2013, Dekker and Mirny 2016, Rowley and Corces 2016). The 32 
importance of enhancers for gene regulation is further emphasized by a growing body of works that 33 

link genetic variation in enhancer sequences to human diseases (Lettice et al. 2003, Claussnitzer 34 
et al. 2015, Lupiáñez et al. 2015, Achinger-Kawecka and Clark 2016, Franke et al. 2016). 35 
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Nonetheless, we still lack a deep understanding of how enhancers work molecularly, how their 36 

tissue specificity is encoded in their DNA sequence, and above all how they recognize and 37 
physically interact with their target genes. 38 

 39 
In recent years, high-throughput molecular methods have been developed to study the three-40 

dimensional organization of the genome, and its relation to various functions. For example, 41 

proximity ligation methods such as 4C, ChIA-PET and Hi-C quantify the frequency of DNA-DNA 42 
interactions in living cells and map the 3D organization of the genome in high resolution (Simonis 43 

et al. 2006, Lieberman-Aiden et al. 2009, Handoko et al. 2011, Jin et al. 2013, Kieffer-Kwon et al. 44 
2013, Rao et al. 2014, Fraser et al. 2015, Lajoie et al. 2015, Mifsud et al. 2015). To date, Hi-C 45 

experiments were performed in a variety of organisms and cellular conditions, including many cell 46 
types and tissues. 47 

 48 
While the genomic resolution of these data is often low, varying from few Kbs to 40Kb blocks, they 49 

were mainly used to identify and delineate topologically associating domains (TADs). These are 50 
continuous regions (hundreds of Kb to few Mbs) that were shown to be folded upon themselves 51 

into local compartments and facilitate high number of local (cis) DNA-DNA interactions (Dixon et al. 52 

2012, Nora et al. 2012, de Laat and Duboule 2013, Rao et al. 2014). 53 
In recent years, topological domains were studied extensively, and were shown to be related to 54 

replication domains (Pope et al. 2014, Dileep et al. 2015), to be largely conserved across 55 
evolution, and to play a crucial role in chromosome function (Ryba et al. 2010, Dixon et al. 2012, 56 

Gómez-Marín et al. 2015, Jager et al. 2015, Vietri Rudan et al. 2015, Taberlay et al. 2016). 57 
TADs also play a key role in gene regulation, as they define the regulatory scope of enhancers.  58 

The domains boundaries were shown to act as regulatory “insulators” that prevent targeting genes 59 
outside of the enhancer domain (Doyle et al. 2014, Symmons et al. 2014). Disruptions of the 60 

chromosomal structure, either in human genetic disorders or by artificially deleting boundary 61 
elements (e.g. using CRISPR-Cas9), were shown to be associated with enhancer mis-regulation 62 

and aberrant gene expression (Zhang et al. 2013, Lupiáñez et al. 2015, Achinger-Kawecka and 63 

Clark 2016, Blinka et al. 2016, Franke et al. 2016, Fulco et al. 2016). While we still lack a deep 64 
understanding of the exact mechanisms by which topological domains are defined and maintained, 65 

TAD borders seem be enriched for highly transcribed genes (Dixon et al. 2012), as well as CTCF 66 
and cohesin binding sites (Demare et al. 2013, Seitan et al. 2013, Ong and Corces 2014, Zuin et 67 

al. 2014, Ing-Simmons et al. 2015, Nichols and Corces 2015, Tang et al. 2015, Vietri Rudan et al. 68 
2015, Fudenberg et al. 2016).  69 

As more and more 3D data accumulate, in a multitude of tissues and cellular conditions, algorithms 70 
were developed to analyze Hi-C data and partition the genome into a set of topological domains 71 

(Dixon et al. 2012, Ay et al. 2014, Lévy-Leduc et al. 2014, Fraser et al. 2015, Lajoie et al. 2015, 72 
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Adhikari et al. 2016, Chen et al. 2016, Xu et al. 2016). Most notable is the statistical method by 73 

Dixon et al (2012), which scans the genome by analyzing the set of DNA-DNA interactions for 74 

every locus, and identifies transitions from loci with mostly backward interactions to adjacent loci 75 
with mostly forward interactions. While this method is generally fast and robust, it is inherently  76 

biased towards short-range interactions that form the vast majority of DNA-DNA interactions. This 77 
method also ignores a visible feature of Hi-C maps - the hierarchal structure of sub-domains 78 

organized into larger domains (Fraser et al. 2015). 79 
 80 

 Here, we present PSYCHIC (Fig 1) - a three step modular algorithm to identify promoter-enhancer 81 
interactions. Briefly, we use a unified probabilistic model and a Dynamic Programming algorithm to 82 

find an optimal segmentation of each chromosome into topological domains; we next iteratively 83 
merge neighboring domains into hierarchical structures; and finally we fit each domain using a 84 

local background model. This allows us to identify over-represented DNA-DNA pairs, including 85 

enhancers and their target genes. We have analyzed Hi-C data from 15 conditions and cell types 86 

 
Figure 1. Overview of the PSYCHIC algorithm 
(A) Example of Hi-C interaction map (rotated in 45°), from mouse cortex (chr16, 59Mb - 64.8Mb) (Dixon et al. 
2012). Blue and yellow lines correspond to DNA-DNA pairs, 650Kb apart, within and across domains. (B) 
Histograms show the empirical abundance of DNA-DNA interactions (650Kb apart), located within domains 
(blue), or across domains (yellow). Dotted lines mark the density function of log-Normal distribution fitted to 
the empirical data. (C) This unified probabilistic mixture model is used to compare the intra- and inter-domain 
models for each cell in the Hi-C matrix. For example, a proposed segmentation into three domains A-C 
(delineated by vertical lines), would prefer the intra-TAD model for Hi-C cells within the domains (shown in 
blue) and the inter-TAD model outside (yellow). An alternative segmentation, where A and B domains are 
unified would only differ in striped rectangle. Dynamic Programming algorithm identifies the optimal (Viterbi) 
segmentation of the chromosome into domains. (D) PSYCHIC then iteratively merge similar neighboring 
domains (here, A+B) into a hierarchical structures. Finally, a bi-linear power-law model is used to reconstruct 
a specific background model for each domain/merge of the Hi-C map, allowing for the identification of over-
represented DNA-DNA pairs, including putative promoter-enhancer interactions. 
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in mouse and human (Dixon et al. 2012, Rao et al. 2014, Fraser et al. 2015), and identified 87 

hundreds of thousands of over-represented interactions. This comprehensive genome-wide tissue-88 
specific database of putative interactions between enhancers and their target genes would be of 89 

great interest to the scientific community. 90 

Results 91 

A Unified Probabilistic Mixture Model for Hi-C Data 92 

Hi-C interaction maps often show a clear distinction between two different patterns. Rectangular 93 
regions along the diagonal of the Hi-C map correspond to topological domains, and present high 94 

intensity of (intra-domain) DNA-DNA interactions. These are often surrounded by regions with 95 
fewer (inter-domain) DNA-DNA interactions. Due to symmetry, Hi-C maps are often rotated in 45 96 

degrees, with topological domains shown as isosceles right triangles along the (now horizontal) 97 
diagonal of the Hi-C map (Fig. 1A). 98 

We begin by developing a simple two-component probabilistic model, corresponding to the 99 
probability of intra- and inter-TAD interactions. In brief, our algorithm analyzes the Hi-C interaction 100 

matrix, and infers for every cell (DNA-DNA pair) the Log Probability Ratio (LPR) of these loci 101 
occurring within the same topological domain or not. At the following stages we will combine these 102 

ratios into a unified score, and use Dynamic Programming to optimally segment each chromosome 103 
into domains. 104 

Formally, let Pd(N) denote the probability of observing N Hi-C interactions between two DNA loci d 105 
bases apart. This equals to the sum of the intra-domain and inter-domain sub-models: 106 

 (1) 
where Pd(N | TAD) and Pd(N | BG) correspond to the likelihood of observing N interactions d bp 107 

apart in the intra- and inter-TAD sub-models, respectively. Pd(TAD) and Pd(BG) correspond to the 108 

a priori probability of observing two loci d bp apart to be within or outside of the same TAD. For 109 
simplicity and robustness, we model N using a log-Normal distribution: 110 

 (2) 

where the log-Normal distribution with mean μ and standard deviation ! can be written as: 111 

 
(3) 

This greatly reduces the number of free parameters, resulting in a compact model θd with only six 112 

parameters for every distant d, including μd
TAD, !d

TAD ,μd
BG, and !d

BG (mean and standard deviation 113 

parameters for intra- and inter-TAD models); and two prior parameters Pd(TAD) and Pd(BG), while 114 
maintaining robust and accurate approximation of the empirical distributions (Figure S1). 115 
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For every distance d, we directly estimate the model parameters from annotated Hi-C data. To 116 

estimate θd, we rely on an initial (possible noisy) segmentation of the Hi-C map into domains. 117 
These could be obtained using various methods, including the directionality index (DI) HMM-based 118 

method of Dixon et al (Andersson et al. 2014), or approximated iteratively using the Expectation-119 
Maximization (EM) algorithm (Dempster et al. 1977). Given such annotations, we consider all intra- 120 

and inter-TAD pairs and use a maximum likelihood estimation of the mean and the standard 121 
deviation parameters. The same approach is used to estimate the prior probabilities, namely which 122 

percent of the DNA-DNA interactions of distance d occur within, or across, topological domains. 123 

 124 

Identification of TAD Boundaries using Log Posterior Ratios 125 

Using the above probabilistic model, we now wish to re-segment the genome into TADs. For this, 126 
we propose a score that will integrate information from various distances of DNA-DNA interactions 127 

across the entire Hi-C matrix, without being skewed by the significantly higher number of 128 
interactions among nearby DNA-DNA pairs. 129 

 
Figure S1. (A) Intra-TAD and (B) Inter-TAD histograms and matching log-Normal approximations (shown as 
dotted lines) for DNA-DNA pairs located 100Kb, 250Kb, 500Kb, 650Kb and 1Mb apart. Shown are data from 
mouse ES cells, chr 11 (Fraser et al. 2015). Distribution were normalized according to their matching a priori 
probabilities, resulting with increased probability for short-range pairs for the intra-TAD models, and long-
range pairs for inter-TAD models. (C) Power-law distributions for TADs A and B (as in Fig 1), their merged 
interactions and the inter-TAD background interactions (denoted as “Sky”). 
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For this, we define a local score that calculates for every cell in the Hi-C matrix the Log Posterior 130 

Ratio (LPR) of the intra- and inter-TAD models. Assuming N interactions for two DNA loci d bases 131 
apart, we could use Bayes’ law to derive the posterior probability of the intra-TAD model: 132 

 
(4) 

and similarly for the inter-TAD model: 133 

 
(5) 

and LPRd(N), the Log Posterior Ratio of the two sub-models could be written as: 134 

 
(6) 

We are now ready to score a segmentation of the genome into domains. First, let us define the 135 
probabilistic score for a single topological domain t from position s to position e 136 

 
(7) 

Here, we sum the Log Posterior Ratio for all intra-TAD pairs <i,j> where s ≤ j ≤ i ≤ e, and subtract 137 

the Log Posterior Ratios (or add the log of the inverse ratio) for all inter-TAD pairs of outside TAD t, 138 

defined by pairs <i,j> up to some maximal distance h (e.g. 4Mb) such that s ≤ (i+j)/2 ≤ e. These 139 

are shown as blue (intra-) and yellow (inter-TAD) regions in Fig 1C. Probabilistically speaking, we 140 
allow each Hi-C cell to independently compare its likelihood given each of the two sub-models. 141 

We then define a global score for a segmentation C of the genome into a set of TADs, by summing 142 
over their scores: 143 

 
(8) 

Finally, we find the optimal segmentation of each chromosome into topological domains, with 144 

respect to our model. For this, we use a Dynamic Programming algorithm that recursively 145 
computes the optimal score of each genomic interval C(i,j) by comparing its score as a one single 146 

TAD, or by breaking it at position k into two distinct regions: 147 

 
(9) 

This algorithm allows us to efficiently enumerate over all possible configurations {C} and identity 148 

the optimal segmentation C, with respect to the above probabilistic score. 149 

Hierarchical Model of Topological Domains 150 

So far, we developed a probabilistic framework for modeling Hi-C data within and across 151 
topological domains, and presented an efficient algorithm for identifying the optimal segmentation. 152 
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For this, our model assumed that all intra-TAD DNA-DNA pairs, located d bases apart, distribute 153 

according to one set of log-Normal parameters, and all inter-TAD pairs use another set. 154 

We now wish to alleviate this assumption, and allow each domain to be modeled by a unique set of 155 

parameters. Specifically, we wish to iteratively agglomerative neighboring domains into a 156 
hierarchical structure of topological domains. For this, we developed a “merge score” that allows 157 

us to examine adjacent domains. A naive scoring system for neighboring TADs would simply 158 
quantify their connectivity, by directly counting the number of inter-TAD interactions (Fraser et al. 159 

2015). This score however, might be biased by the size of the two domains, as well as the overall 160 
interaction intensity in each of the two domains. Instead, we calculate for each domain the average 161 

number of DNA-DNA interactions for any distance, and compare these plots to those of the 162 
merged region and inter-TAD regions (Figure S1C). Formally, this translates to finding the optimal 163 

α satisfying: 164 

 (10) 
where IMERGE, ITAD, and IBG denote the average intensities for each d at the inter-TAD merged area, 165 

the two TADs, and at the inter-TAD background model. We do so iteratively, merging the current 166 
most similar pair (=highest α), up to a maximal size of 5Mb for the merged structure, thus creating 167 

a hierarchical forest-like TAD structure, which corresponds to triangles (TADs) and rectangles 168 
(inter-TAD regions). 169 

TAD-Specific Background Model of Hi-C Data using a Bi-Linear Power-Law Model  170 

Once we have segmented the Hi-C map into hierarchical domains, we wish to model the expected 171 
intensity of the Hi-C map. Previous works used a power-law scaling model (Lieberman-Aiden et al. 172 

2009, Mirny 2011, Naumova et al. 2013), to describe I the number of DNA-DNA interactions as 173 
their distance Δ exponentiated by some coefficient a: 174 

 (11) 

This is often plotted in log-log scale, where the number of interactions (in log scale) scales linearly 175 

with the distance (in log scale): 176 

 (12) 

with a being the power-law coefficient (slope, in log-log plot) and b is the intersection parameter.   177 

 178 
Nonetheless, while we found the power-law model to be generally accurate, it is clear that some 179 

domains are characterized with a significantly higher number of interactions than others (Fig 1A), 180 
suggesting they would be best described by different power-law parameters (Fig S1C). 181 
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We therefore wish to use the hierarchical model of topological domains and construct a local 182 

background model of Hi-C intensity, with local parameters (slope ai and intersect bi) for each TAD 183 
and each inter-TAD merged region (Fig 1D). This will allow us to estimate the expected number of 184 

interactions at any distance within every topological domain/merge and quantify the statistical 185 
significance over-represented interactions. 186 

Next, we quantified the goodness of fit by each model to the Hi-C data. First, we tested the original 187 
segmentation of the genome for the mouse brain Hi-C data (Dixon et al. 2012). For each TAD we 188 

estimated the optimal power-law parameters ai and intersect bi resulting with RMSE score of 1.04, 189 
an improvement of 9% compared to a random segmentation of the genome (RMSE=1.14. Fig S2). 190 

Our segmentation by itself did not yield a better fit (RMSE=1.11), probably due to shorter domains 191 
(mean length of 650Kb, compared to 1.5Mb). Following the hierarchical agglomeration of 192 

neighboring domains, with additional local background model merge, yielded a much better fit 193 

(RMSE=1.02). Finally, we considered a more sophisticated parametric family for modeling Hi-C 194 
interaction data. For this, we developed a piecewise linear regression model for modeling the 195 

average number of interactions (in log scale) for any distance (in log scale) (Fig S3). This richer 196 
power-law model offers a more accurate model (RMSE=0.83), a 20% reduction in the Hi-C fit error 197 

compared to the original TAD-specific power-law fit. Put together, the bilinear power-law fit and the 198 
hierarchical TAD model allows us to model Hi-C interaction data with high accuracy, thus forming a 199 

 
Figure S2. PSYCHIC improves the modeling of Hi-C data by over 20%, compared to similar fit models using 
the original TAD segmentation by Dixon et al (2012). Here, we compare the root mean squared error (RMSE) 
of the Hi-C matrix (in log scale) with the reconstructed background model (in log scale). 
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detailed background model against which we can compare the data and identify over-represented 200 
DNA-DNA interactions. 201 

Gene-Wise Identification of Enriched DNA-DNA Interactions 202 

We now wish to use the hierarchical TAD-specific bi-linear model as background model for Hi-C, 203 
and identify over-represented DNA-DNA interactions, that could correspond to promoter-enhancer 204 

and other functional interactions in vivo. For this, we aim to compute the “virtual 4C” plot for each 205 
promoter, and compare it to the expected number of interactions according to the background 206 

model. We consider a large genomic region surrounding each promoter (±1Mb) and search for 207 
enriched Hi-C interactions with the promoter. By subtracting the hierarchical Hi-C background 208 

model from the actual data, we obtain the “residual” over-representation map. To assign a 209 
statistical enrichment score, we model all residual DNA-DNA interactions within this 2Mb window 210 

using a Normal distribution, and calculate the Normal p-value of all regions interacting with the 211 

promoter, following an FDR correction for multiple hypotheses (Benjamini and Hochberg 1995) 212 
(Methods). 213 

We begin by focusing the Foxg1 locus (chr12:50.3Mb-51.2Mb) using Hi-C data from adult mouse 214 
cortex (Dixon et al. 2012). Figure 2A shows the residual map for this locus, with two Foxg1 215 

enhancers (hs566 and hs1539) located 550Kb and 750Kb downstream of the gene, with 216 

 
Figure S3. TAD-specific bilinear power-law fit of Hi-C data, for four genomic loci using adult mouse Hi-C 
data (Dixon et al.). Shown are the average numbers of Hi-C interactions (Y-axis) for each genomic distance 
between the interacting DNA loci (X-axis). Dotted lines mark the piecewise linear fit. 
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enrichment p-values of 7e-12 and 1e-20, respectively (following FDR correction). These two 217 

enhancers were discovered in human by us and others, using ChIP-seq and conservation data 218 
(Visel et al. 2007, Visel et al. 2008, Visel et al. 2013). Comparison of our predictions with published 219 

ChIP-seq data of H3K27ac, CTCF, and PolII, as well as DNaseI hyper-sensitivity data from the 220 
mouse ENCODE project (Mouse ENCODE Consortium et al. 2012), and evolutionary conservation 221 

data (Siepel et al. 2005) further identifies the exact location of these Foxg1 enhancers (Figure 2B). 222 
 223 

Genome-Wide Validation of Putative Enhancers 224 

To further test our results on a genome-wide scale, we systematically characterized the chromatin 225 
landscape surrounding all predicted enhancers in the mouse cortex (Dixon et al.). For this, we 226 

aligned a 4Mb region around each of the 12,278 putative enhancer regions (FDR<1e-2), and 227 

 
Figure 2. PSYCHIC analysis of the Foxg1 locus in adult mouse cortex Hi-C data (Dixon et al. 2012) identifies 
two putative enhancer regions, which are enriched with Foxg1. (A) Residual map for the Foxg1 locus 
(chr12:50.3Mb-51.2Mb). These include ChIP-seq marks for active chromatin, and overlap two (human) 
enhancers validated for brain activity. (B) ChIP-seq and conservation data matching active enhancers, within 
the two putative enhancer regions (C) Virtual 4C plots for the Foxg1(left) and the two enhancer loci (hs599, 
middle; and hs1539 right) loci, comparing Hi-C interaction data against local background model 
reconstructed by PSYCHIC. Arrows mark significant interactions between Foxg1, hs566 and the hs1539 
orthologous regions. 
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compared it to various enhancer-related chromatin marks. These include active enhancer marks 228 

(H3K27ac, H3K4me1), promoter marks (H3K4me3, PolII), architectural proteins (CTCF), 229 
evolutionary conservation, accessibility, and chromHMM predictions (Siepel et al. 2005, Ernst and 230 

Kellis 2012, Mouse ENCODE Consortium et al. 2012, Shen et al. 2012). For all data types, the 231 
predicted enhancers were notably enriched compared to their surrounding flanking regions (i.e.  232 

regions in 2Mb distance). 233 
Since all predicted enhancers are located no more than 2Mb from known promoters, we wanted to 234 

rule this out as a trivial explanation for the observed enrichment. We therefore constructed a  235 

 

 
Figure 3. Chromatin marks at 4Mb windows centered around 12,278 putative enhancer regions, predicted 
using adult mouse cortex Hi-C data (FDR<1e-2) (Dixon et al. 2012). Shown are typical enhancer (H3K27ac, 
H3K4me1) and promoter (H3K4me3) marks, along with PolII and CTCF ChIP-seq, chromHMM classification, 
and DNaseI hypersensitivity assays. Blue lines mark the average signal over all predictions. Dotted red lines 
mark the signal in a random set of genomic loci, sampled in 2Mb windows around promoter. 
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similarly sized set of random genomic loci, uniformly sampled around promoters (Fig. 3, red lines). 236 

These only show low (15%) enrichment compared to flanking regions. 237 
Notably, most - but not all - putative enhancers show strong enrichment for active chromatin 238 

marks. For example, about 70% of the 1e-2 predicted enhancers show increased accessibility 239 
compared to their flanking DNA regions (Fig. 3, “Accessibility”). Almost half (46%) of the predicted 240 

enhancer regions show enrichment that is greater than one standard deviation compared to their 241 

flanking regions (32% > 2SD). For comparison, only 43% of the randomly selected regions show 242 
increased accessibility, with only 24% exceeding one standard deviation (15% > 2SD). Similar 243 

numbers are obtained for H3K27ac or CTCF. 244 

This suggests that over-represented DNA-DNA interactions (in Hi-C) are not limited to active and 245 
accessible regions, and raises the hypothesis that a non-trivial fraction of the putative enhancer 246 

regions we have identified are “silent” and inaccessible. A closer examination identified several 247 

 
Figure 4. Over-represented promoter-enhancer interactions between Shh (in adult mouse cortex) and the 
limb-specific enhancer ZRS (chr5:28.3Mb-30.2Mb). (A) Residual map (of Hi-C data compared to the 
PSYCHIC hierarchical background fit model) identifies over-represented DNA-DNA interaction between the 
Shh and its limb-specific enhancer ZRS. (B) Genome-wide ChIP-seq and accessibility data from adult mouse 
cortex shows no active enhancer marks for this enhancer, suggesting that ZRS is often interacting with Shh 
in the brain. (C) Virtual 4C plots for the Shh (left) and the ZRS (right) loci, comparing Hi-C interactions with 
the local background model reconstructed by PSYCHIC. Arrows mark significant between Shh and ZRS. 
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known enhancers even within those. For example, PSYCHIC identified the ZRS locus as 248 
interacting with the Shh gene, even in adult mouse cortex (Fig. 4). In the mouse, early  249 

 

 
Figure S5. Number of predicted enhancer regions per gene. For each Hi-C dataset, we ran PSYCHIC 
and predicted putative interactions for each promoter (up to a maximal distance of 1Mb), using several 
thresholds of statistical enrichment (FDR values of 0.05, 0.01, 1e-3 and 1e-4). Shown are the numbers of 
genes (Y-axis) predicted to be regulated by X putative enhancer regions (X-axis), compared to a random set 
of gene-surrounding genomic loci (in green, total size similar to the FDR<1e-2 set of putative enhancers). 
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developmental Shh expression is essential for correct autopod formation, and is regulated in the 250 
developing limbs by the distal ZRS enhancer, located ~1Mb away (Lettice et al. 2003, Sagai et al. 251 
2005). Our results suggest that ZRS is in close physical proximity to Shh even in the adult brain 252 

(Fig. 4). This was recently validated by DNA FISH showing ZRS in the proximity of Shh throughout 253 

a variety of tissues and developmental stages, while not being in active transcription (Williamson et 254 
al. 2016). 255 

 256 

A Comprehensive Catalogue of Human and Mouse Enhancers 257 

To obtain a comprehensive list of putative enhancer regions, we have gathered Hi-C data in 15 258 

conditions and cell types in human and mouse, including mouse cortex and embryonic stem cells 259 
(Dixon et al. 2012), mouse embryonic stem cells, neural progenitor cells (NPC), and neurons 260 

(Fraser et al. 2015), and mouse B-lymphoblast (CH12LX) cells (Rao et al. 2014), as well as human  261 
 embryonic stem cells and lung fibroblast IMR-90 cells (Dixon et al. 2012), GM12878 B-262 

lymphoblastoid cells, and HMEC, HUVEC, IMR-90, K562, KBM7, and NHEK cells lines (Rao et al. 263 
2014). Globally, with an enrichment FDR threshold of 0.05, we predicted 320,737 putative 264 

enhancers (90,113 in mouse and 230,624 in human) that regulate a total of 27,497 genes (19,016 265 

in mouse and 21,000 in human). A more stringent FDR threshold of 1e-4, yields 123,149 putative 266 
enhancer regions (29,732 and 93,417) regulating 22,365 genes (12,603 and 16,919 for mouse and 267 

human respectively). These are summarized in Table S1 and on our supplementary webpage 268 
www.cs.huji.ac.il/~tommy/PSYCHIC.  269 

Next, we calculated the distribution over the number of putative enhancers regulating each gene, 270 
and compared it to the distribution of randomly selected regions (equivalent to a “random set” of 271 

enhancers, chosen with an FDR threshold of 1e-2. See Methods). As shown in Figure S5, for all 272 
analyzed Hi-C experiments, we observed a much greater number of genes predicted to be 273 

 
Figure 5. Most putative enhancers reside within the same TAD as their targets. For each of the 15 
human and mouse Hi-C experiments we analyzed, the Y-axis shows the percent of predicted DNA-DNA 
pairs to fall within the same topological domains. Green supplements show the percent of additional pairs 
falling within 1st level of TAD-TAD hierarchical merges. Blue dots show percent of “random” enhancers 
residing within the same TAD. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 18, 2017. ; https://doi.org/10.1101/101220doi: bioRxiv preprint 

https://doi.org/10.1101/101220
http://creativecommons.org/licenses/by-nc/4.0/


 15 

regulated by multiple enhancer regions, compared to the random set. Our results show some 274 

genes to be regulated by ten and more enhancers. For example, 443 genes are predicted to have 275 
five brain enhancer regions (FDR < 1e-2), compared to only two in the randomized set, or three 276 

expected according to a binomial distribution. 277 

Finally, we tested whether the predicted enhancer regions tend to reside within the same TAD as 278 

their target genes (Fig. 5). Our analyses suggest that about 88% of predicted enhancer regions (in 279 
all 15 analyzed datasets, mouse and human) are indeed within the same domain as their targets, 280 

compared to 45% of equally distant random loci. One should note that typically the topological 281 
domains called by PSYCHIC are rather short (mean length of 650Kb, compared to ~1.5Mb for 282 

Dixon et al). When considering the inferred hierarchical organization of the genome, we observe 283 
the 92% of putative enhancer regions reside within the same TAD or the first level of merging as its 284 

target, (Fig. 5, green supplements) compared to 59% at random. 285 

Discussion 286 

In this work we presented PSYCHIC, a computational model for analyzing Hi-C data to identify 287 

enriched DNA-DNA interactions. Using a probabilistic model and efficient algorithms, PSYCHIC 288 
identifies the optimal segmentation of chromosomes into topological domains, assembles them into 289 

hierarchical structures, and fits a TAD-specific background model for the Hi-C data. By considering 290 
a “virtual 4C” plot for every gene, and using the background model for statistical assessments, our 291 

algorithm identified 320,737 significant over-represented Enhancer-Promoter interactions in 15 Hi-292 
C experiments in human and mouse. 293 

To segment the genome into TADs, our algorithm uses a probabilistic two-component model that 294 

independently computes for every cell in the Hi-C matrix the likelihood ratio between intra-TAD and 295 
inter-TAD models. This score assigns similar importance to near and far DNA-DNA interactions, 296 

and therefore is less affected by the exponentially higher number of short-range interactions that 297 
dominate the Hi-C data, but are mostly invariant of the overall arrangement of the genome in 298 

topological domains. In addition, this score is additive and can be easily computed from smaller 299 
nested TADs, allowing for a fast and scalable Dynamic Programming algorithm that identifies the 300 

optimal segmentation for each chromosome. 301 
For agglomerating individual TADs into hierarchical structures and for the computation of TAD-302 

specific background models, we compute the “interaction spectrum” of each TAD. Specifically, we 303 

calculate the average number of Hi-C interactions for DNA-DNA interactions at any distance. While 304 
this spectrum was previously modeled by a power-law, our results indicate that replacing the 305 

power-law model by a two-segment power-law model greatly improves the model accuracy. 306 
Initially, we suspected that this could be due to a mixing effect of two cell populations, each with a 307 

different chromosomal organization (and power-law parameters). Alas, this hypothesis cannot hold 308 
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true, as the sum of two negative power-law functions is always convex, in contrast to the concave 309 

behavior of most intensity plots we observe. Instead, these results suggest that the power-law 310 
breaking point, typically at 100-300Kb could reflect a transition between two molecular 311 

mechanisms used for chromosomal packaging at different hierarchies.  312 
Currently, most available Hi-C data are of rather low resolution varying from 10 to 40Kb. Naturally, 313 

this hinders our ability to pinpoint Promoter-Enhancer interactions in high resolution. Nonetheless, 314 

various genomic methods for identifying enhancer regions within over-represented DNA-DNA 315 
interactions – including ChIP-seq for transcription factors and active histone marks, genomic 316 

accessibility, evolutionary conservation or computational sequence-based approaches could all be 317 
applied to further analyze putative enhancer regions in higher resolution. 318 

As we showed, both for Foxg1 in the mouse cortex, and later on a genome-wide scale, these 319 
putative enhancer regions, defined by over-represented number of Hi-C interactions with promoter 320 

regions, typically contain accessible sub-regions that are also enriched for active chromatin marks 321 
(H3K27ac, H3K4me1), evolutionary conservation, and are typically often bound by CTCF and PolII. 322 

Intriguingly, a closer examination of the data reveals that about a third of the predicted regions are 323 
inaccessible and bear no active chromatin marks. These include for example, the ZRS locus that 324 

acts as a limb-specific distal enhancer for Shh, located nearly ~1 Mb away. While the ZRS locus 325 

shows no accessibility or ChIP peaks in the mouse cortex, and is therefore predicted to be inactive 326 
it presents a significant number of interactions with its target gene Shh. Indeed, Williamson et al. 327 

(2016) recently used FISH and 5C to show that indeed ZRS and Shh are located in spatial 328 
proximity regardless of their activity. 329 

These results suggest that the 3D structure of the genome may be organized to support regulatory 330 
DNA-DNA interactions, rather than merely reflect the set of accessible or active regions of the 331 

genome. As more Hi-C is collected and analyzed, we hope to shed light on the causality of gene 332 
regulation and genome packaging, as well as the plasticity of genome packaging in general. 333 

Put together, we demonstrated how Hi-C data – typically used to identify TAD boundaries – could 334 
be also used to reconstruct a local TAD-specific background model that identifies enriched DNA-335 

DNA interactions, and in particular interactions between enhancers and their target genes. 336 

 337 

Methods 338 

Piece-wise Linear Regression of log (Intensity) and log (Distance) 339 
We model the Hi-C interaction intensity between two loci as a segmented power-law function of 340 

their distance. In log-log scale this is modeled by a two-piece segmented linear regression model. 341 
For this, we developed a computational algorithm (implemented in MATLAB) to iterate over the 342 

optimal breaking point and estimates the two parameters (intercept and slope) for each segment, 343 
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while minimizing the squared deviation of the data (in log-log scale). Similarly, a piece-wise linear 344 

model was learned for the remaining inter-TAD regions. 345 
 346 

TAD Merges 347 
Neighboring TADs are merged into a hierarchical structure, according to a “merge score” that 348 

compares the mean Hi-C intensity per distance within the two underlying TADs, their inter-TAD 349 

area, and the null inter-TAD model (represented by α in Eq. 10). We then iteratively merge the two 350 
neighboring TADs whose merge area is the most similar, up to a maximal domain size of 5Mb. 351 

 352 
Random set of enhancers 353 

To obtain a random set of locations along the genome, while maintaining a similar distribution 354 
around gene promoters, we considered for each gene all genomic loci up to 1Mb away (on either 355 

direction), and selected each with a probability of 1e-2. 356 
 357 

Statistical Enrichment Score 358 
To assign a statistical significance score (p-value) for each putative enhancer (namely, an over-359 

represented interaction between a promoter region and some other locus), we assumed a Normal 360 

distribution of the local residual map (i.e. Hi-C minus PSYCHIC background mode) at a 2Mb 361 
surrounding the promoter of each gene. We then fitted maximum likelihood estimator for the mean 362 

value μi, and its standard deviation !i, and used these statistics to translate the deviation of each 363 

Hi-C cell from its background model, into z-scores. Finally, we assigned a p-value for each z-score 364 

using a standard Normal cumulative distribution function, and applied a FDR correction for multiple 365 
hypothesis (Benjamini and Hochberg 1995). 366 

 367 

Genomic analysis of Putative Enhancers 368 
We used deepTools (Ramírez et al. 2014) to align putative enhancers and generate heatmaps for 369 

a 4Mb window surrounding each region, for various genomic data tracks (bigwig files). To estimate 370 
the deviation of the putative enhancer location, compared to its surrounding, we estimated the 371 

parameters of a Normal distribution based on the two 400Kb regions for each putative enhancer 372 
region, located 1.6-2Mb apart on either direction. 373 

 374 
Data availability: 375 

PSYCHIC is publicly available via GitHub (https://github.com/dhkron/PSYCHIC). A full list of 376 
putative enhancer regions, as well as the genes they regulate is available in Supplemental Table 377 

S1, and in our supplemental website at www.cs.huji.ac.il/~tommy/PSYCHIC. Also available in our 378 

website are saved UCSC Genome Browser sessions for mouse (mm9) and human (hg19). 379 
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