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Abstract. In the recent literature there appeared a number of studies
for the quality assessment of sequencing data. These efforts, to a great
extent, focused on reporting the statistical parameters regarding to the
distribution of the quality scores and/or the base-calls in a FASTQ file.
We investigate another dimension for the quality assessment motivated
with the fact that reads including long intervals having fewer errors im-
prove the performances of the post-processing tools in the down-stream
analysis. Thus, the quality assessment procedures proposed in this study
aim to analyze the segments on the reads that are above a certain qual-
ity. We define an interval of a read to be of desired quality when there
are at most k quality scores less than or equal to a threshold value v, for
some v and k provided by the user. We present the algorithm to detect
those ranges and introduce new metrics computed from their lengths.
These metrics include the mean values for the longest, shortest, average,
cubic average, and average variation coefficient of the fragment lengths
that are appropriate according to the v and k input parameters. We pro-
vide a new software tool QASDRA for quality assessment of sequencing
data via range analysis. QASDRA, implemented in Python, and pub-
licly available at https://github.com/ali-cp/QASDRA.git, creates the
quality assessment report of an input FASTQ file according to the user
specified k and v parameters. It also has the capabilities to filter out the
reads according to the metrics introduced.

1 Introduction

With the spread of high-throughput DNA sequencing, today, not only the re-
search centers, but also the practitioners such as the hospitals, clinics, and even
the individuals become customers of the sequencing centers. Each day more se-
quencing data than the previous is being produced rapidly. This brings a strong
necessity to assess the quality of the generated data.

Previous studies [3, 12, 10, 13, 11, 1] for the quality assessment of the DNA
sequencing data concentrated on extracting the basic statistical properties such
as the mean, median, and standard deviation values of the quality score distri-
bution, where some of those efforts also included the statistical analysis of the
base-calls distributions as well, e.g., the GC or N content ratios.
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It is well known that long intervals having fewer errors improve the perfor-
mances of the post-processing tools in the down-stream analysis of the DNA
sequencing data [2]. This brings the idea of evaluating the DNA sequencing
data quality via analyzing the lengths of the fragments that are above a certain
threshold. Such an assessment requires the explicit definition of desired–quality
on a read segment.

We propose to identify the quality of fragments by using two parameters v
and k. The v parameter defines a threshold value such that quality scores less
than or equal to v are assumed to be erroneous. Similarly, in an interval the
number of allowed errors, which are defined by v, is limited by the parameter k.
Based on v, and k parameters, the read segments that include at most k scores
below v are of desired–quality. Finding such ranges has been recently studied in
[5] as the inverse range selection queries.

We focus in this study to devise some metrics based on analyzing the lengths
of the intervals that include at most k quality scores less than or equal to v on
the quality scores of the reads in an input FASTQ file. The proposed scheme
computes a series of metrics for the quality assessment of the input file. We
present QASDRA as a new quality assessment tool for DNA sequencing data
based on these metrics. QASDRA creates an assessment report that includes the
results with various related plots for the input fastq file according to the provided
v, k parameters. Since the fastq files can potentially be so large, random sampling
of the reads with a user specified percentage is possible with the QASDRA.
Additionally, filtering out the reads that are below the defined threshold is yet
another capability of the developed tool.

The outline of the paper is as follows. We briefly review the previous studies
in Section 2. Section 3 first introduces the algorithm to answer the inverse range
selection queries introduced in [5], and then, describes the proposed metrics
along with the reasons that they are devised for. Before the final conclusions,
the empirical evaluation on some sample files are given in Section 4.

2 Previous Studies

The major tools that have been proposed in the related literature for the DNA
sequencing data quality evaluation have focused on statistical distributions of
the quality scores, the base–calls, or both. We provide a short review of those
tools below.

PIQA [10], was proposed as an extension of the standard Illumina pipeline
particularly targeting identification of various technical problems, such as de-
fective files, mistakes in the sample/library preparation and abnormalities in
frequencies of sequenced reads. With that purpose it calculates statistics con-
sidering the distribution of the A-C-G-T bases. Both the base-calls and their
quality scores are considered together.

SolexaQA [3] calculates sequence quality statistics and creates visual repre-
sentations of data quality for second-generation sequencing data. Default metric
is mean quality scores extracted from the reads, but users may also calculate
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variances, minimum, and maximum quality scores observed. Additionally, the
longest read segments with a user defined threshold for minimum quality score
is also provided. Based on this calculation, it provides support to trim all reads
such that only the longest segment with the user defined threshold remains. The
longest fragment detection provided in SolexaQA is a special case of one of our
metrics. We discuss this issue in section 3 at the related subsection.

BIGpre [13] provides the statistics such as the distributions of the mean
qualities of the reads, and the GC content. The main contribution here has been
reported to be the extra features to achieve alignment-free detection of duplicates
in the read set.

The quality control and statistics tools in the NGS-QC toolkit [11] is yet
another option to retrieve the fundamental statistics of the quality scores and
the base-calls. The toolkit includes features to remove low quality reads decided
according to the mean quality scores or the base-call distributions.

Similar to SolexaQA, the HTQC [12] performs quality assessment and filtra-
tion focusing on statistical distribution of quality scores throughout the input
reads with the main motivation of achieving this process faster.

The FastQC software [1] is a commonly used quality control tool. It reports
the basic statistics as well as the GC or N content, per base or per read with a
graphical user interface.

Algorithm 1: InverseRangeSelect(X, k, v)

Input: X = 〈x1, x2, . . . xn〉 is the input integer stream, k and v are the parameters of the
inverse range selection query.

Output: The maximal range set A′ including all possible 〈i, j〉 pairs such that
〈xi, xi+1, . . . , xj〉 is a maximal range having k values less than or equal to υ.

A′ ← {};
z ← 1;
q ← 0;
for i = 1 to k + 1 do // the positions of the first (k + 1) integers not greater than υ

while
(
(xz > υ) ∧ (z ≤ n)

)
do z ← z + 1; // find next xz ≤ υ

arr[q]← z ; // store the position in arr[q]
z ← z + 1 ; // advance the pointer on X
q ← (q + 1) mod (k + 1) ; // advance the pointer on the circular array arr
if (z > n) then break;

end
if (i < (k + 1)) then return 〈1, n〉; // less than (k + 1) items are ≤ υ in X
begin← 1 ; // the beginning position of the first interval
end← arr[(q − 1) mod (k + 1)]− 1 ; // the ending position of the first interval

A′ ← A′ ∪ 〈begin, end〉;
while (z < n) do

begin← arr[q] + 1; // save the beginning position of the next interval

while
(
(xz > υ) ∧ (z ≤ n)

)
do z ← z + 1; // find next xz ≤ υ

arr[q]← z; // update the array to store the detected position z
end← arr[q]− 1; // compute the ending position of the interval

A′ ← A′ ∪ 〈begin, end〉; // add this interval to the maximal range set
q ← (q + 1) mod (k + 1) ; // manage the circular array to imitate the FIFO list
z ← z + 1 ; // advance the pointer on X

end

return A′;
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3 The Method

The metrics we propose are based on detecting intervals of the reads that contain
at most k quality scores below a given threshold v, which is akin to inverse range
selection queries [5].

3.1 Inverse Range Selection Queries

On a given integer sequence X = 〈x1, x2, . . . xn〉, the ordinary range selec-
tion [4, 6] query υ ← R(i, j, k) returns the kth smallest value υ in the range
〈xi, xi+1, . . . xj〉, for 1 ≤ k ≤ (j − i+ 1) and 1 ≤ i < j ≤ n. Recently the reverse
case of this problem has been addressed as the inverse range selection queries
[5]. Akin to that, we define in this study the InvR(k, v) query to return the set
A, which includes all possible 〈i, j〉 tuples such that in 〈xi, xi+1, . . . , xj〉 there
are no more than k items less than or equal to v.

Definition 1 (Maximal range). The range 〈xi, xi+1, . . . xj〉 denoted by the
tuple 〈i, j〉 in the answer set A of the InvR(k, v) query is a maximal range if
there exists no other tuple 〈m,n〉 ∈ A such that m ≤ i < j ≤ n, which means
the 〈i, j〉 interval cannot be expanded either to the right or to the left.

For example, onX = {16, 17, 3, 6, 2, 11, 5, 2, 3, 15, 16, 9, 13}, the interval 〈1, 7〉,
〈4, 8〉, and 〈6, 13〉 are the maximal ranges for the InvR(k = 2, v = 3) query. On
the other hand, although 〈2, 7〉 is a valid answer to this query, it is not maximal
as it is possible to expand it to the left.

Lemma 1. If 〈xi, xi+1, . . . xj〉 is a maximal range, then
[
(xi−1 ≤ v) ∨ (i = 1)

]
and

[
(xj+1 ≤ v) ∨ (j = n)

]
conditions should hold.

Proof. The maximal range 〈xi, xi+1, . . . xj〉 includes k items that are less than
or equal to υ, and is not expandable towards right or left. The interval can not
be extended to the left when i = 1 as this is the leftmost position on X that
naturally prohibits moving left. In case i > 1, if xi−1 > v, then 〈xi, xi+1, . . . xj〉
violates the definition of the maximal range, and thus, xi−1 ≤ v should hold. In
the same way, the expansion to the right is restricted when j = n or xj+1 ≤ υ.

Proof. There are k integers that are less than or equal to υ in 〈xi′ , xi′+1, . . . xj′〉.
All of the integers in the intervals 〈xi, xi+1, . . . xi′−1〉 and 〈xj′+1, xj′+2, . . . xj〉
should be larger than k, since there will be otherwise more than k items smaller
than υ, which would violate the query. Then, an interval 〈xa, xa+1, . . . xb〉, for
a ∈ {i, i+ 1, . . . , i′} and b ∈ {j′, j′+ 1, . . . , j}, includes exactly k items less than
υ, and holds with the Q̄(υ, k) query.

Theorem 1. The maximal range set of the inverse range selection query InvR(k, v)
on an integer sequence X can be detected in O(n)-time by using (k + 1) · log n
bits additional space.
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Proof. Following Lemma 1, a maximal range computation requires the knowl-
edge of (k+ 1) consecutive positions whose corresponding integers are less than
or equal to υ on X. A first-in-first-out array q[1 . . . (k+ 1)] keeping the positions
of the last observed such (k + 1) integers can be maintained while passing over
X linearly. The size of that array is (k+ 1) · log n bits as each entry is log n bits
long. After detecting the first such (k + 1) integers on X, the initial maximal
range is 〈x1 . . . xq[k+1]−1〉, which expands from position 1 to the preceding po-
sition of the last item in the array. The next maximal range should begin from
the succeeding position of the first element in the q array. After selecting the
starting position of the next maximal range as q[1] + 1, the next position on X
whose corresponding value is less than or equal to υ is scanned and the q array
is updated. Since q is a FIFO array, this update may be described as shifting all
values to the left by one, which disposes q[1], and inserting the newly detected
position to the end of the array, q[k + 1]. Now the end of the current maximal
range is set to the newly computed (q[k + 1] − 1). Deciding on the start of the
next range, updating the array by keep scanning X linearly, and setting the end
according to the latest update is repeated until all elements in X are visited.
Since we visit each element of X once during the traversal, and maintain an
array of size (k+ 1), the procedure detects all maximal ranges in O(n)-time and
O(k)-space.

3.2 The Metrics

We denote the quality values of a read t by Q[t] = q1q2 . . . q`t , where `t is the
length of that read. The total number of reads in the input FASTQ file is shown
by N , and the total length of the reads is L = `1 + `2 + . . .+ `N .

The inverse range selection query InvR(k, v) on Q[t] returns the set of max-
imal ranges as {r1, r2, . . . rφt}, where each ri = 〈si, ei〉 denotes the maximal
interval of length |ri| = ei − si + 1 as qsiqsi+1

. . . qei such that no more than k
quality values are less than equal to v. The number of detected maximal ranges
on Q[t] is denoted by φt.

The standard variation of the maximal range lengths {r1, r2, . . . rφt} is shown
by σt.

We compute the InvR(k, v) on each read based on the parameters k and v
provided by the user, and then, calculate the following per read based on the
detected maximal range lengths (MRL).

– Longest MRL: LMRLt = max{|r1|, |r2|, . . . |rφt |}.
– Shortest MRL: SMRLt = min{|r1|, |r2|, . . . |rφt |}.
– Average MRL: AMRLt =

|r1|+...+|rφt |
φt

.

– Cubic mean of MRL: CMMRLt =
3

√∑φt
i=1 |ri|3
φt

.

– Coefficient of variation of MRL: CVMRLt = σt
AMRLt

The proposed quality assessment metrics based on the individual values cal-
culated per read are defined below.
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Average longest maximal range length (ALMRL)

ALMRL =
1

N
·
N∑
t=1

LMRt

The performance of the downstream processing on DNA sequences increase
with longer intervals having less errors. For instance, it had been shown in [3] that
filtering the low quality segments of the reads improve the assembly performance.
Thus, ALMRL aims to evaluate the quality by measuring the lengths of the
segments that are defined to be of enough quality by the inverse range selection
query.

Notice that this metric is akin to the dynamic trimming of the SolexaQA
[3] that detects the longest read segment, where the minimum quality value is
above a threshold. The process regarding to that in SolexaQA is a special case
of ALMR metric by setting the k value to 1, where the proposed tool allows
variable number of bases instead of one to be below the threshold value. This
extension make sense when one uses methods that can handle multiple errors on
the reads. For example, the alignment applications such as the BWA [8], Bowtie
[7], and others[9] have mechanisms to handle more than one error efficiently.

Larger ALMRL scores indicate better quality. Since the perfect LMRL value
of a read is its length, which indicates the number of quality scores below v are
at most k throughout the read, the best ALMRL score of a fastq file is actually
its average read length.

Average shortest maximal range length (ASMRL)

ASMRL = (1/N) ·
N∑
t=1

SMRt

The shortest maximal range on a read indicates the smallest distance in which
there are k quality scores that are below v. This value becomes k in the worst
case, where all the low quality values appear subsequently. When the SMRLt

value of a read is significantly small, it means there is a burst error, where the
erroneous values appear very close to each other.

Thus, the ASMRL metric might be useful for the purpose of measuring the
distribution uniformity of the low quality positions. For instance, when those
erroneous positions do not appear close, larger ASMRL values are expected.

Grand average of maximal range lengths (GAMRL)

GAMRL = (1/N) ·
N∑
t=1

AMRt

There might be, and most possibly will be, more than one maximal range
on a read. The mean value of those maximal range lengths are computed per
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each, and the grand average of those means can be used to evaluate the overall
performance of the sequencing process assuming that higher values of GAMRL
indicates better quality. It is expected that on a given read there appears a
segment of length GAMRL withholding the queried v, k criteria. However, this
measure is a bit coarse, and due to that, we introduce additional metrics below
to support more detailed analysis of the detected segments.

Average cubic means of maximal range lengths (ACMRL)

ACMRL =
1

N

N∑
t=1

CMMRLt

When the maximal range lengths are detected on a read, we would like to
devote more weight to the longer ones than the shorts. With this aim, despite the
GAMRL measure, we also compute the cubic mean of the MRLs on a read. Notice

that cubic mean, which is a generalized mean computation p

√
1
n

∑
i = 1nxpi with

p=3, favors the long MRL values more. For instance assume the detected MRLs
on two different reads are 〈20, 30, 40〉 〈30, 30, 30〉. Although their averages are
both 30, their cubic means are 32.07 and 20.80. Here we can see the difference
made by longer segments which shows the power of longer reads.

The ASMRL metric mainly evaluate the fragmentation and burst errors in
the reads. However, even in case of high fragmentation and burst errors, there
might still be enough long segments that can be helpful in downstream analysis.
The ACMRL metric aims to provide a way of measuring the longest maximal
range lengths associated with the number of maximal ranges detected. We would
like to increase the power of the longer maximal ranges, and thus, tried gener-
alized means with different values, where empirically decided on cubic mean as
the best value to measure this.

Average of coefficient of variations of MRL (ACVMRL)

ACVMRL = (1/N) ·
N∑
t=1

σt
AMRLt

The coefficient variation (CV) is defined as the ratio of the standard deviation
σ to the mean µ. The coefficient variation is useful because the actual value of
CV is independent of the unit in which the measurement has been taken, so it is
a dimensionless number. For comparison between data sets with different units
or widely different means, one should use the coefficient of variation instead of
the standard deviation.

For example, a data set of [100,100,100] has constant values its standard
deviation is 0 and its average is 100 so Cv=0, a data set of [90,100,110] has more
variability. its standard deviation is 8.165 and its average is 100 so Cv=0.08165,
and a data set of [1,5,6,8,10,40,65,88] has more variability again. its standard
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deviation is 30.78 and its average is 27.875 so Cv=1.104. Since each read has
different number of maximal ranges lengths with different means, this concept
illustrates the coherence of the data in terms of MRLs computed, where higher
values indicate less uniformity among the maximal range lengths. Thus, having
a small ACVMRL is good in terms of quality, and indicates that one may expect
to be more confident to observe the computed average values in a randomly
selected read.

4 Empirical Evaluation

We present the results of our assessment scheme first on the data sets used
by the FastQC [1] program evaluation. This data includes two (old) FASTQ
files generated by the Illumina equipment, which are examples of good and bad
sequencing. Roughly there are 250K reads in good data set, and 325K in the
bad data set. The reads are 40 bases long.

Good Bad
Average longest ALMRL 39.64 31.72

Average shortest ASMRL 38.85 21.94
Grand average GAMRL 39.10 24.18

Average cubic mean ACMRL 39.31 26.66
Average coefficient variation ACVMRL 0.03 0.53

Fig. 1. The quality assessment of the good and bad Illumina sequencing data from
FastQC [1] with the proposed metrics with k = 2 and v = 20.

An expected difference in the ALMRL of the data sets have appeared such
that the average length of the longest maximal range is 39 in good data and 31
in bad data. Similarly the ASMRL as 21.94 on bad data versus 38.85 on good
data reflects the quality difference.

In terms of GAMRL (39.10 versus 21.18) and ACMRL (39.31 versus 26.66)
values, we observe that the difference in GAMRL is sharper. That reminds us
although the mean MRL in bad data is not that much good, there still appears
some long intervals in the reads so that the ACMRL value improves.

Notice that the ACVMRL values for good and bad data are quite distinct,
where it is much larger on bad data set. Due to that high value, we can think
that the diversity of the maximal ranges in bad data is quite high, where the
distribution is much smooth in good data. This can also be partially observed
on Figure 4. The full reports for the good and bad data are provided in the ap-
pendices. We also present the results of our study on more recent files generated
by the different sequencing platforms with the Illumina, IonTorrent, and PacBio
equipments. we have used individual NA12878 as published by the Coriell Cell
Repository . The data files used are ERR091571 1.fastq and ERR091571 1.fastq
concatenated to one file ERR091571.fastq , High coverage reads for NA12878,
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a) Distribution of MRL values for good Illumina data ; k=2, v=20
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b) Distribution of MRL values for bad Illumina data ; k=2, v=20

Fig. 2. Distribution of maximal range lengths on good and bad Illumina data for k = 2,
v = 20
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from Illumina, SRR1238539.fastq for IonTorrent, including 183976176 reads of
lengths varying between 25 and 396,

chemistry 3 for PacBio, consisted of 8 fastq files concatenated to one, includ-
ing 654547 reads of lengths varying between 50 and 33230.

The results of the quality assessment with the proposed technique are given
in Figure 3, and the distributions of the MRLs per each platform are depicted
in Figure 4.

Illumina IonTorrent PacBio
Average longest ALMRL 94.13 55.92 55.46

Average shortest ASMRL 84.25 3.49 2.01
Grand average GAMRL 87.02 14.57 11.11

Average cubic mean ACMRL 89.56 26.23 17.00
Average coefficient variation ACVMRL 0.21 1.16 0.79

Fig. 3. The quality assessment of the selected fastq files generated by the Illumina,
IonTorrent and PacBio platforms.

We observed that the Illumina reads, according to the given parameters
k = 2 and v = 20, include longer maximal ranges according to the ALMRL,
ASMRL, and GAMRL metrics. On these measures, the IonTorrent and PacBio
platforms returned similar results particularly on ALMRL, which means the av-
erage longestTorrent and 2.01 for the PacBio data. This reminds us that on the
selected data sets, whenever a quality score below 20 is observed, its very near
neighbors are also usually below that quality, and hence, the ASMRL values are
that much small. Considering the GAMRL metric, the tested IonTorrent data
provides slighly longer contigious blocks of desired-quality. The average cubic
mean being 26.23 for the IonTorrent and 17.00 for the PacBio indicates that
although the ALMRL, ASMRL, and GAMRL values are close, the reads in the
IonTorrent data include more longer intervals than the PacBio. However, the
high value of ACVMRL in the IonTorrent shows that the PacBio data is more
uniformly distributed. In the ACVMRL metric, the Illumina shows a much nicer
distribution.

The computed metrics are highly sensitive to the selected k and v parameters.
Thus, we have included quality assessment experiments repeated on the same
data with different parameters. The results are shown in Table 1. Notice that on
PacBio and IonTorrent platforms, the shortest maximal range values are quite
small, which means in general the low-quality base-calls appear very close. The
larger ASMRL value on Illumina data shows that the low-quality positions are
more uniformly spread here.
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a) Illumina data
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b) IonTorrent data
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c) PacBio data

Fig. 4. Distributons of the MRL on the selected data files of Illumna, IonTorrent, and
PacBio data copmuted with k = 2, and v = 20. Notice that v = 7 is used on PacBio
data that approximately corresponds to v = 20 on other platforms.
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File Info k Value v Value ALMRL ASMRL GAMRL ACMRL ACVMRL

Platform: Illumina
2

20 94.13 84.25 87.02 89.56 0.21

Sequence Data: NA12878 30 83.86 62.87 69.25 74.47 0.41

Name: ERR091571.fastq
3

20 95.10 86.64 88.94 90.99 0.16

Number of Reads: 422875838 30 86.03 68.29 73.60 77.73 0.31

Quality Scores: (2,41)
4

20 95.79 88.33 90.31 92.04 0.13

Read Lengths: (101,101) 30 87.59 72.09 76.70 80.09 0.24

Platform: ION Torrent
2

20 55.92 3.49 14.57 26.23 1.16

Sequence Data: NA12878 30 3.49 2.00 2.00 2.11 0.12

Name: SRR1238539.fastq
3

20 63.18 5.84 19.66 31.74 0.98

Number of Reads: 183976176 30 4.54 3.00 3.00 3.12 0.10

Quality Scores: (3,38)
4

20 69.52 8.58 24.66 36.89 0.86

Read Lengths: (25,396) 30 5.58 4.00 4.00 4.14 0.08

Platform: PacBio
2

7 55.46 2.01 11.11 17.00 0.79

Sequence Data: NA12878 11 22.14 2.00 4.13 6.38 0.74

Name: chemistry 3.fastq
3

7 63.84 3.05 15.32 21.54 0.67

Number of Reads: 654547 11 25.70 3.00 6.00 8.32 0.60

Quality Scores: (0,14)
4

7 71.73 4.13 19.52 26.04 0.61

Read Lengths: (50,33230) 11 29.07 4.00 7.87 10.25 0.52

Platform: Illumina
2

20 92.87 84.30 86.92 88.91 0.17

Sequence Data: Exome sequencing of PBCF cell line 30 80.97 61.86 67.98 72.40 0.37

Name: NCI-PBCF-HTB68.pson0001.Exome.fq
3

20 94.07 86.72 88.91 90.52 0.13

Number of Reads: 46192166 30 83.52 67.17 72.39 75.88 0.28

Quality Scores: (2,41)
4

20 94.92 88.44 90.33 91.68 0.10

Read Lengths: (100,101) 30 85.37 71.01 75.59 78.44 0.22

Platform: ION Torrent
2

20 71.81 7.57 24.65 38.61 1.03

Sequence Data: NA12878/ion exome 30 3.84 2.00 2.00 2.15 0.16

Name: bb17523 PSP4 BC20.fastq
3

20 81.10 12.53 32.68 46.68 0.87

Number of Reads: 40008921 30 4.91 3.00 3.00 3.17 0.12

Quality Scores: (3,38)
4

20 89.13 18.05 40.38 54.15 0.76

Read Lengths: (12,347) 30 5.98 4.00 4.00 4.19 0.10

Platform: PacBio
2

7 52.92 2.01 10.66 16.17 0.76

Sequence Data: CHM1 subreads 11 21.33 2.00 3.98 6.13 0.73

Name: m130929 024849 42213.fastq
3

7 60.83 3.03 14.72 20.49 0.65

Number of Reads: 72708 11 24.76 3.00 5.81 8.00 0.58

Quality Scores: (0,14)
4

7 68.30 4.09 18.78 24.78 0.58

Read Lengths: (35,35488) 11 27.98 4.00 7.64 9.88 0.51

Table 1. Quality assessment of some selected fastq files with different v and k values.
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5 Conclusion

The statistical properties of the distributions regarding both the quality scores
and the base–calls of a sequencing experiment have been extensively explored in
previous studies. We have presented an alternative approach to the quality as-
sessment of sequencing data by analyzing the maximal ranges, which are defined
as the longest segments in which no more than k scores are less than or equal
to v. The software developed with Python for the proposed metric is available
at https://github.com/ali-cp/QASDRA.git for public use.

The sequencing centers or the consumers of those centers can use the tool
to evaluate or benchmark their data. In the near future, it might be necessary
to define the international standards of good sequencing data, where we believe
the approach presented in this study might help in creating such standards.
The metrics introduced in this study may serve for clustering/classifying the
reads from the different platforms, or for the overall successes of the sequencing
centers.
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6 Appendices

QASDRA - Quality Assessment of Sequencing Data via Range Analysis
File Name: gooddata.fastq / Date: Mon Jan 16 12:53:26 2017

Input Sequencing Data Digest: Computed QASDRA Vector for k= 2 , v= 20:

Quality Score Format: 64 ASCII-based Phred Average Longest Maximal Range length 39.64

Quality Scores (min,max): (2,38) Average Shortest Maximal Range Length 38.85

Number of Reads: 250000 Grand Average Maximal Range Length 39.10

Processed Number of Reads: 250000 Cubic Average Maximal Range Length 39.31

Read Length (min,max): (40,40) Average Coefficient of Variation 0.03

developed by: fotouhi@itu.edu.tr
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QASDRA - Quality Assessment of Sequencing Data via Range Analysis
File Name: baddata.fastq / Date: Mon Jan 16 12:54:09 2017

Input Sequencing Data Digest: Computed QASDRA Vector for k= 2 , v= 20:

Quality Score Format: 64 ASCII-based Phred Average Longest Maximal Range length 31.72

Quality Scores (min,max): (2,34) Average Shortest Maximal Range Length 21.94

Number of Reads: 395288 Grand Average Maximal Range Length 24.18

Processed Number of Reads: 395288 Cubic Average Maximal Range Length 26.66

Read Length (min,max): (40,40) Average Coefficient of Variation 0.53

developed by: fotouhi@itu.edu.tr
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