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Abstract

Current statistical models of haplotypes are limited to panels of haplotypes whose genetic varia-
tion can be represented by arrays of values at linearly ordered bi- or multiallelic loci. These methods
cannot model structural variants or variants that nest or overlap. A variation graph is a mathemat-
ical structure that can encode arbitrarily complex genetic variation. We present the first haplotype
model that operates on a variation graph-embedded population reference cohort. We describe an
algorithm to calculate the likelihood that a haplotype arose from this cohort through recombina-
tions and demonstrate time complexity linear in haplotype length and sublinear in population size.
We furthermore demonstrate a method of rapidly calculating likelihoods for related haplotypes. We
describe mathematical extensions to allow modelling of mutations. This work is an essential step
forward for clinical genomics and genetic epidemiology since it is the first haplotype model which
can represent all sorts of variation in the population.

1 Background

Statistical modelling of individual haplotypes within population distributions of genetic variation dates
back to Kingman’s n-coalescent [5]. In general, the coalescent and other models describe haplotypes
as generated from some structured state space via recombination and mutation events.

While coalescent models are powerful generative tools, their computational complexity is unsuited
to inference on chromosome length haplotypes. Therefore, the dominant haplotype likelihood model
used for statistical inference is Li and Stephens’ 2003 model (LS) [7] and its various modifications.
LS closely approximates the more exact coalescent models but admits implementations with rapid
runtime.

Orthogonal to statistical models, another important frontier in genomics is the development of
the variation graph [10]. This is a structure which encodes the wide variety of variation found in the
population, including many types of variation which cannot be represented by conventional models.
Variation graphs are a natural structure to represent reference cohorts of haplotypes since they encode
haplotypes in a canonical manner: as node sequences embedded in the graph [8].

In this paper, we present the first statistical model for haplotype modelling with respect to graph-
embedded populations. We also describe an efficient algorithm for calculating haplotype likelihoods
with respect to large reference panels. The algorithm makes significant use of Novak’s graph positional
Burrows-Wheeler transform (gPBWT) [8] index of haplotypes.

2 Encoding the full set of human variation

Haplotypes in the Kingman n-coalescent and Li-Stephens models are represented as sequences of values
at linearly ordered, non-overlapping binary loci [5,6,7]. Some authors model multiallelic loci (for
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example, single base positions taking on values of (A, C, T, G, or gap) [6], but all assume that the
entirety of genetic variation can be expressed by values at linearly ordered loci.

However, many types of genetic variation cannot be represented in this manner. Copy number
variations, inversions or transpositions of sequence create cyclic paths which cannot be totally ordered.
Large population cohorts such as the 1000 Genomes project data [1] contain simple insertions, dele-
tions and substitution at a sufficient density that these variants overlap or nest into structures not
representable by linearly ordered sites. Two examples of this phenomenon from 1000 Genomes data
(Phase 3 VCF) for chromosome 22 are pictured below.

@ TTGATGTTTATCCTGGATAAG AATTTAAATTATTGCTAAT GCAAGTGATG GTGACTCTGh

Figure 1: Overlapping, non-linearly orderable loci in a graph of 1000 Genomes variation data for chromosome 22

In order to represent these more challenging types of variation, we use a wvariation graph. This
is a type of sequence graph—a mathematical graph in which nodes represent elements of sequence,
augmented with 5" and 3 sides, and edges are drawn between sides if the adjacency of sequence is
observed in the population cohort [10]. Haplotypes are embedded as paths through oriented nodes in
the graph. We are able to represent novel recombinations, deletions, copy number variations, or other
structural events by adding paths with new edges to the graph, and novel inserted sequence by paths
through new nodes.

3 Adapting the recombination component of Li and Stephens to
graphs

The Li and Stephens model (LS) can be described by an HMM with a state space consisting of previ-
ously observed haplotypes and observations consisting of the haplotypes’ alleles at loci [6,7]. Recom-
binations correspond to transitions between states and mutations are modelled within the emission
probabilities. Since variation graphs encode full nucleic acid sequences rather than lists of sites we
extend the model to allow recombinations at base-pair resolution rather than just between loci.

Let G denote a variation graph. Let S(G) be the set of all possible finite paths visiting oriented
nodes of G. A path h in S(G) encodes a potential haplotype. A variation graph posesses an embedded
population reference cohort H which is a multiset of haplotypes h € S(G). Given a pair (G, H), we
seek the likelihood P(h|G, H) that h arose from haplotypes in H via recombinations.

Recall that every oriented node of GG is labelled with a nucleic acid sequence. Therefore, every path
h € S corresponds to a nucleic acid sequence seq(h) formed by concatenation of its node labels. We
represent recombinations between haplotypes by assembling subsequences of these sequences seq(h)
for h € H. We call a concatenation of such subsequences a recombination mosaic. This is pictured
below.

T GAGTATGTGTAAGATGAATGGTTAATTCACTTAGAAGCCATT G G TGTTGGTGCCTTCAGTGCCTAGC
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Figure 2: The pink path shows the recombination mosaic x superimposed on the embedded haplotypes H in our 1000
Genomes project chr 22 graph; below x is mapped onto its nucleic acid sequence.

We can assign a likelihood to a mosaic x by analogy with the recombination model from Li and
Stephens. Assume that nucleotide in x has precisely one successor in each h € H to which it could
recombine. Then, between each base pair, we assign a probability 7, of recombining, and therefore a
probability (1 — (JH| — 1)m,) of not recombining. Write x. for (1 — (|H| — 1)7,).

By the same argument underlying the Li and Stephens recombination model, we then we have a
probability of a given mosaic having arisen from (G, H) through recombinations:

P(a|G, H) = 7ft®) gl A (1)

where |z| is the length of x in base pairs and R(x) the number of recombinations in z. We will use
this to determine the probability P(h|G, H) for a given h € S(G), noting that multiple mosaics = can
correspond to the same node path h € §(G).

Given a haplotype h € S(G), let x(h) be the set of all mosaics involving the same path through
the graph as h. The law of total probability gives

P(h|G,H) = Y P(x|G,H) (2)
zex(h)
- R(x)
= 3 AlR@RE) Z i 3 () 3)
zex(h) zex(h) e

Let p := 7=; then P(h|G, H) is proportional to a pT@)_weighted enumeration of € x(h).

We can extend this model by allowing recombination rate m(n) and effective population size
|H|cpr(n) to vary across the genome according to node n € G in the graph. Varying the effective pop-
ulation size allows the model to remain sensible in regions traversed multiple times by cycle-containing
haplotypes. In our basic implementation we will assume that 7(n) is constant and |H|.rf(n) = |H]|,
however varying these parameters does not add to the computational complexity of the model.

4 A linear-time dynamic programming for likelihood calculation

We wish to calculate the sum Z:pex(h) pf@) efficiently. (See Eq. 3 above) We will achieve this by
traversing the node sequence h left-to-right, computing the sum for all prefixes of h. Write h; for the
prefix of h ending with node b.

Definition 1. A subinterval s of a haplotype h is a contiguous subpath of h. T'wo subintervals s1, so of
haplotypes hi, ho are consistent if s; = sy as paths, however we distinguish them as separate objects.

Definition 2. Given a node b of a haplotype h, S is the set of subintervals s’ of A’ € H such that
1. there exists a subinterval s of h which begins with a, ends with b and is consistent with s’
2. there exists no such subinterval which begins with a — 1, the node before a in h (left-mazimality)

Definition 3. For a given prefix h; of h and a subinterval s’ of a haplotype h' € H, define the subset
X(h)s C x(h) as the set of all mosaics whose rightmost segment corresponds to s'.

The following result is key to being able to efficiently enumerate mosaics:

Claim 1. If s1,50 € S} for some a, then there exists a recombination-count preserving bijection between
X(hw)s; and x(hp)s, -


https://doi.org/10.1101/101659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/101659; this version posted January 28, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Proof. See supplement. O

Corollary 1. If we define
Ry(si):= Y p"® (4)

meX(hb)Si

then Ry(s1) = Rp(s2) if 51,82 € S for some a. Call this shared value Ry(a).
Definition 4. A, is the set of all nodes a € G such that S} is nonempty.

Using these results, the likelihood P(hy|G, H) of the prefix hj can be written as

P(hy|G, H) = n™ Y~ Ry(si) = m/*l Y |Sp|Ry(a) (5)

Si ac€Ay

Let b — 1 represent the node preceding b in h; it remains to show that if we know Ry_1(a) for all
a € Ap_1, we can calculate Rp(a) for all @ € Ay in constant time with respect to |h|. This can be
recognized by inspection of the following linear transformation:

Rifa) = pF 0, A+ B) + Luss(1 = ) (H(ORsa (@) + 20

where w = 3" |58, fs(w,£) :== (1+ (w—1)p)"L, fi(£) := (1 —p)*~L, and A, B are the |A%,L | element
sums

A= 3 ISERi(a),  Bi= 3 (S5l — IS¢ Rs-1(a)

ac€Ap_1 a€A,_q

Proof that this computes Rp(-) from Rp_1(-) is straightforward but lengthy and therefore deferred to
the supplement.

Assuming memoization of the polynomials fs(h,£), fi(¢), and knowledge of w, ¢ and all |S}'|’s, all
Ry(a)’s can be calculated together in two shared |A;_i|-element sums (to calculate A and A + B)
followed by a single sum per Rp(a). Therefore, by computing increasing prefixes hy of h, we can
compute P(h|G,H) in time complexity which is O(nm) in n = |h|, and m = maxp|Ap|. The latter
quantity is bounded by |H| in the worst theoretical case; we will show experimentally that runtime is
sublinear in |H]|.

R,(0) ——> R,(0) —— R,(0) l—: R,(0)
R,1) —3 R,®1) %—» R,(1) RO, e
_ > R,3) R (1)

Figure 3: A sketch of the flow of information in the likelihood calculation algorithm described. Blue arrows a represent
the rectangular decomposition, R.(-) are prefix likelihoods
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5 Using the gPBWT to enumerate equivalence classes in linear time

Novak’s graph positional Burrows Wheeler transform index (gPBWT) [8] is a succinct data structure
which allows for linear-time subpath search in a variation graph. This is graph analogue of Durbin’s
positional Burrows Wheeler transform [3] used in Lunter’s fast implementation of the Viterbi algorithm
in the LS model [6]. Like other Burrows-Wheeler transform variants, its search function returns
intervals in a path index, and therefore querying the number of subpaths in a graph matching a path
is also linear-time in path length.

We demonstrate that we also need only perform a maximum of |A;_1|+1 gPBWT operations and a
corresponding amount of arithmetic to calculate all [S§| for a given b, provided that we have all [S§ |

Definition 5. J{ := the number of subpaths in H matching h between nodes a and b

This is O(n) in the gPBWT for n = b — a; in particular, it is O(1) given that we have the search
interval to compute J;'_;.

Definition 6. I := J¢ — Ji!
Claim 2. I = |S}|

Proof. By straightforward manipulation of definitions 2, 5, 6. O

It is then evident that |A, 1| + 1 single-node search extension queries! are sufficient to determine

|S¢| for all @ € Ap. Determining these values for all b € h is therefore also O(nm) in n = |h|, and
m = mazp|Ap|.

In practice, since Jy = Ziga I}, we can reduce the number of gPBWT queries even further by
employing a recursive partitioning of intervals to avoid querying those whose values we can tell are
unchanged.

6 Modelling mutations

We can assign to two haplotypes h, ' the probability P,,(h|h") that h arose from h’ through a mutation
event. As in Li and Stephens, we can assume conditional independence properties such that

Pot(h|G,H)= > Pn(h|l)P.(|G, H)
h'eseq(G)

It is reasonable to make the simplifying assumption that P,,:(h|h’) = 0 unless b’ differs from h
exclusively at short, non-overlapping substitutions, indels and cycles since more dramatic mutation
events are vanishingly rare. This assumption is implicitly contained in the n-coalescent and Li and
Stephens models by their inability to model more complex mutations.

Detection of all simple sites in the graph traversed by h can be achieved in linear time with respect
to the length of h. The number of such paths remains exponential in the number of simple sites.
However, our model allows us to perform branch-and-bound type approaches to exploring these paths.
This is possible since we can calculate upper bounds for likelihood knowing either only a prefix, or
for interval censored haplotypes where we do not specify variants within encapsulated regions in the
middle of the path.

Furthermore, it is evident from our algorithm that if two paths share the same prefix, then we
can reuse the calculation over this prefix. If two paths share the same suffix, in general we only need
to recompute the |S§| values for a small number of nodes. This is demonstrated in our evaluation of
the time complexity of our methods for haplotypes derived from recombination of previously assessed
haplotypes.

'the additional one is to compute J?


https://doi.org/10.1101/101659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/101659; this version posted January 28, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

7 Implementation

To test our methods, we implemented the algorithms described in C++4, using elements of the variation
graph toolkit vg [4] and the gPBWT index implementation in zg [8]. This can be found in the
“haplotypes” branch at https://github.com/yoheirosen/vg. Since no competing graph-based haplotype
models exist, we were not able to provide comparative performance data; absolute performance on a
single machine is presented instead.

8 Results

8.1 Runtime for individual haplotype queries

We assessed time complexity of our likelihood algorithm algorithm using the implementation described
above. Tests were run on single threads of an Intel Xeon X7560 running at 2.27 GHz.

To assess for time dependence on haplotype length, we measured runtime for queries against a 5008
haplotype graph of human chromosome 22 built from the 1000 Genomes Phase 3 VCF on the hgl9
assembly created using vg and data from the 1000 Genomes project [1]. Starting nodes and haplotypes
at these nodes were randomly selected, then walked out to specific lengths. In our graph, 1 million
nodes corresponds, on average, to 16.6 million base pairs. Reported runtimes are for performing both
the rectangular decomposition and likelihood calculation steps.

Runtime (s) vs. haplotype length Log-log plot: Runtime (s) vs. haplotype length
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Figure 4: Runtime (s) vs. haplotype length (nodes) for chromosome 22 1000 Genomes data

The observed relationship of runtime to haplotype length is consistent with O(n) time complexity
with respect to n = |h|.

We also assessed the effect of reference cohort size on runtime. Random subsets of the 1000
Genomes data were made using vcftools [2] and our graph-building process was repeated. Five replicate
subset graphs were made per population size with the exception of the full population graph of 2504
individuals.
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Runtime (s) vs. reference cohort size Log-log plot: Runtime (s) vs. reference cohort size
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Figure 5: Runtime (s) vs. reference cohort size (diploid individuals) for chromosome 22 1000 Genomes data

We observe an asymptotically sublinear relationship between runtime and reference cohort size.

8.2 Time needed to compute the rectangular decomposition of a haplotype formed
by a recombination of two previously queried haplotypes

The assessments described above are for computing the likelihood of a single haplotype in isolation.
However, haplotypes are generally similar along most of their length. It is straightforward to generate
rectangular decompositions for all haplotypes h € H in the population reference cohort by a branching
process, where rectangular decompositions for shared prefixes are calculated only once. This will
capture all variants observed in the reference cohort.

Haplotypes not in the reference cohort can then be generated through recombinations between the
h € H. If this produces another haplotype also in H, it suffices to recognize this fact. If not, then
given that h is formed by a recombination of hy and hs, then h must contain some sequence of nodes
¢ — j contained in neither h; nor hy. We only need to recalculate Sy for a < j <b.

We have implemented methods to recognize these nodes and perform the necessary gPBW'T queries
to build the rectangular decomposition for h. The distribution of time taken (in milliseconds) to
generate this new rectangular decomposition for randomly chosen hi, ho and recombination point is
shown below.
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Figure 6: Distribution of times (in milliseconds) required to recompute the rectangular decomposition of a haplotye
given that it was formed by recombination of two haplotypes for which rectangular decompositions have been constructed.
This graph omits 0.6% of observations which are outliers beyond 1 second of time.

Mean time is 141 ms, median time 34 ms, first quartile time 12 ms and 3rd quartile time 99 ms. To
compute a rectangular decomposition from scratch mean time is 71,160 ms, first quartile time 68,690
ms and 3rd quartile time 73,590 ms.

This rapid calculation of rectangular decompositions formed by recombinations of already-queried
haplotypes is promising for the feasibility of a mutation model or of sampling the likelihoods of large
numbers of haplotypes. Similar methods for the likelihood computation using this rectangular decom-
position are a subject of our current research.

8.3 Qualitative assessment of the likelihood function’s ability to reflect rare-in-
reference features in reads

We used vg to map the 1000 Genomes low coverage read set for individual NA12878 on chromosome 22
against the variation graph described previously. 1476977 reads were mapped. Read likelihoods were
computed by treating each read as a short haplotype. These likelihoods were normalized to “relative
log-likelihoods” by computing their log-ratio against the maximum theoretical likelihood of a sequence
of the same length. An arbitrary value of 10™° was used for T ecomb-

We define a read to contain n “novel recombinations” if it is a subsequence of no haplotype in the
reference, but it could be made into one using a minimum of n recombination events. We define the
prevalence of the rarest variant of a read to be the lowest percentage of haplotypes in the index which
pass through any node in the read’s sequence.

We segregated our set of mapped reads according to these features. We make the following quali-
tative observations, which can be observed in the plots which follow:

1. The likelihood of a read containing a novel recombination is lower than one without any novel
recombinations

2. This likelihood decreases with increasing number of novel recombinations

3. The likelihood of a read decreases with decreasing prevalence of its rarest variant
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Figure 7: Left: density plot of relative log-likelihood of reads not containing variants below 5% prevalence or novel
recombinations (black line) vs reads containing novel recombinations. Right: density plot of relative log-likelihood of
reads not containing variants below 5% prevalence or novel recombinations (black line) vs reads containing variants
present at under 5% prevalence and under 1% prevalence.
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A further comparison of these same mapped reads against reads which were randomly simulated
without regard to haplotype structure shows that the majority of mapped reads from NA12878 score
are assigned higher relative log-likelihoods than the majority of randomly simulated reads.

—— primary mappings
—— randomly simulated reads

Density

0.00

Relative log-likelihood

Figure 8: Density plot of relative log-likelihood of mapped reads versus randomly generated simulated haplotypes

9 Conclusions

We have introduced a method of describing a haplotype with respect to the sequence it shares with
a variation graph-encoded reference cohort. We have extended this into an efficient algorithm for
haplotype inference based on Novak’s gPBWT [8]. We applied this method to a full-chromosome
graph consisting of 5008 haplotypes from the 1000 Genomes data set to show that this algorithm can
efficiently model recombination with respect to both long sequences and large reference cohorts. This
is an important proof of concept for translating haplotype inference to the breadth of genetic variant
types and structures representable on variation graphs.

Our implementation does not model mutation. This depends on being able to efficiently calculate
likelihoods for similar haplotypes. We demonstrate that we can compute rectangular decompositions
for haplotypes related by a recombination event in millisecond-range times. We have also devised math-
ematical methods for recomputing likelihoods of similar haplotypes which take advantage of analogous
redundancy properties, however, they have yet to be implemented and tested. However, we anticipate
that we will be able to compute likelihoods of large sets of related haplotypes on a time scale which
makes modelling mutation feasible.
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11 Appendix A: An O(n-m) implementation of the rectangular de-
composition construction

Suppose that we wish to find subhaplotypes embedded in the graph which are consistent with a
query sequence h of nodes. In brief, in the gPBWT, indexing information for haplotypes is stored
in such a manner that this can be achieved by calling a function STARTSEARCHATNODE(Node) on
the first node of h, which returns a search interval gPBWTInt of a form analogous to the search
interval of a Burrows—Wheeler Transform based index of sequences. This search interval is extended
by calling an operation EXTEND(gPBW T Int, Node) to extend this search with each additional node
in h. Finally, this search interval can be converted into a count of matching subhaplotypes using a
function COUNT(gPBWTInt). It is shown in [8] that STARTSEARCHATNODE, EXTEND and COUNT
all admit O(1) implementations.

It is evident that this search process yields a function COUNTHAPLOTYPEMATCHES(h) which is
O(n) in the length |h| of h in nodes. Let hihahs ...y -1k, denote the node sequence of h. Using
COUNTHAPLOTYPEMATCHES we can identify the set A of nodes in h such that either J2~! Jg:ll or
I2 # 0 in O(n) independent length-2 subhaplotype count queries:

10
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2

Algorithm 1 Identifying A, the set of “relevant” nodes

1: function BUILDA (h, B]))
2 A [1]

3 htprev — |B[h1]|

4 for i =2,...,|h| do
5: htpew < | Blhi|
6

7
8

9

Ji7! « COUNTHAPLOTYPEMATCHES (h;_1h;)
if JI1 < htpew O Rtprey > hlpey then
APPEND(A, 1)

htprev — htnew

Given that we have constructed A, we can determine the rest of the rectangular decomposition and
all of the J-values according to the following algorithm:

Algorithm 2 Building the J’s and Acyr’s

1: function BuiLpJs(h, BJ])

2: Ji « |B[h4]|

3: Aiurr +—1

4: for i € Ado

5: Aiurr A H

6: if ‘B[hzﬂ > JZ then

7: APPEND(A’,,., 1)

8: S; = STARTSEARCH(h;)
9: for j € A7l do

10: S;j < EXTEND(S}, h;)
11: if CounT(S;) # 0 then
12: J! « Count(S})

13: APPEND(AL,,,,7)

14: else

15: break

12 Appendix B: Arithmetic for derivation of Equation 6

Here we lay out the arithmetic to derive Equation 6, which is used in our iterative computation of
likelihood of a haplotype h with respect to a population reference cohort H embedded in a variation
graph G. The reasoning is straighforward but involves many subcases which require care.

12.1 Notation

Definition 7. A haplotype is a sequence of nodes ny — -+ — ny;| in a variation graph. The base
sequence of a haplotype is the sequence of DNA bases spelled by its node labels. A haplotype subinterval
is a contiguous subsequence of a haplotype. A haplotype base sequence subinterval is analogously
defined. Denote by |h| the length of a haplotype base sequence in base pairs.

Definition 8. Haplotypes h, h’ are consistent if |h| = |h/| and n; = n} Vi.

Definition 9. A mosaic of haplotypes = consistent with h is a vector (z(;) of subintervals of base
sequences of haplotypes in H whose concatenation is consistent with the base sequence of h. The
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recombination count R(x) is one less than the number of elements in (x(;). NB: defining these in
terms of base sequence rather than node subintervals permits recombination within nodes. Recall
Figure 2 from the main text.

Definition 10. x(h) is the set of all mosaics x consistent with h. x(h)f is the subset with R(z) = R.
X(h)[, g] is the subset whose final subinterval is a subinterval of g. x(h)[g, ] is that with initial subinterval
a subinterval of g. |x(h)| is the number of elements in x(h).

12.2 Arithmetic shortcuts

Lemma 1. There exists a partition of h into subintervals hy, ho, ..., hy, such that if a haplotype g € H
has a subinterval consistent with a subinterval of h; then it has a subinterval consistent with all of h;.

Proof. 1t is straightforward to verify that the intervals between successive nodes in the set A described
in the main text produce such a partition of A. O

This is important because we will show that it is simple to calculate |x(h;)| within any interval
with this property.
The following is a more notationally precise statement of Lemma 1 from the main text:

Lemma 2. For any b€ A,a < b, given that f and g are members of the same equivalence class Sy of
haplotypes, the haplotype mosaics XR(h[O,b})[, f] and XR(h[(]’b])[,g] consistent with the subinterval hygy)
and ending with subintervals of f and g are in bijective correspondence.

Proof. We assume that g # f else this is trivial. Consider any mosaic z in XR(h[O,b])[v f]. Given
x = (x1,%2,...,TR+1), let j = max{i € 1,..., R|x; is not a subinterval of g or f}. We will construct
a mosaic y = (Y1,92, .. .,Yr+1) such that for all i < j, y; = z;, and for all 7 > j, y; is the subinterval
of the same length as z; but derived from the opposite haplotype of the pair f,g.

The concatenation y1y2 - yr+1 is consistent with hygy since given that both f,g € Sy, the first
node of y;11 must be at or after a. Therefore clearly y; € XR(h[OJ,])[, g] since its final subinterval

corresponds to g. The inherent invertibility of this transformation proves that it is a bijection. O
—_— %y, — g,
9 — — —> 7,
T T
g — ;—).’7‘
—_—, — _— [

Figure 9: Visual proof of the above lemma by explicit construction of the bijection involved

Lemma 3. Suppose that h; is a subinterval of h such that if a haplotype g € H has a subinterval
consistent with a subinterval of h; then it has a subinterval consistent with all of h;. Then suppose
that fi1, fo,g € H, and all have subintervals consistent with all of h;. Then for all R < |h;| there is a

bijection between x(hi)[f1, 9] and x(hi)[f2, 9]

Proof. The proof imitates that of the previous lemma. O
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12.3 The case of a single simple interval h;

Suppose that h; is an interval of the form in Lemma 2, £ base pairs in in length, and has subintervals of
ht haplotypes of H consistent with it. Consider f,g € H such that both have subintervals consistent
with h;. Suppose that we wish to calculate, for some R < ¢, the number |xT(h)[,g]| of mosaics
consistent with h; having R recombinations and ending with haplotype g. To calculate |x(h;)| within
an interval of the form above, we need only calculate

1. |x®(hi)[g, g]|, the number of paths both beginning on and ending on g and
2. [x%(h:)[f, g]|, the number of paths beginning on f # g and ending on g, which, by lemma 4, is
the same for all such f.

Consider R = ¢ — 1. It is clear that

Z!x )i, gll = (ht — 1)F (7)

Lemma 4 tells us that all haplotypes f # g are equivalent for the purposes of enumeration, therefore
we write —g to denote any arbitrary representative f % g. There are ht — 1 such haplotypes.

X (ha)lgs gl + (Bt = 1) [x ™ (hi)[=g, 9]| = (ht — 1) (8)

We begin by calculating |x(h;)[~g,g]|. Consider first £ = R + 1 = 1, for which, given the lack

of possible recombinations, |xf(h;)[-g,g]| = 0. For £ = R+ 1 = 2, any = € x(h;)[~g,g] must

at its second node visit a haplotype which is neither g nor the —g under consideration, therefore

IxT(hi)[=g,g]| = (ht —2). Suppose now that, for arbitrary ¢ = R, we know |x'(h;)[~g,g]|. Then,
counting the (ht — 1) possible haplotypes before finally recombining to g shows us that

X (Ri)lg, 9]l = (ht = D)X (hs)[=g, 9] (9)
By (8), we know that

(ht — D)% — [x*(hy)[g, ]|

’XR—FI(hi)[ﬁgag” = (ht _ 1)

Which by (9) implies

DR (bt — DIvR(B )
|XR+1(hi)[ﬂg,g” — (ht 1) (}(Z:Lt _1i|)X (hz)[ g,g]|

= X (h)[g, )l = (bt = D =[x (hi)[=g. 9] (10)
Using (10) as the induction step with base case { = R+ 1 =2 we find that V/ =R+ 1 > 2

(ht = 1)1+ (=
X" (hi)[~g, 9]| = ”
We now relax the restriction that R = ¢. For given R < { each subset of nodes at which recom-
binations happen will define an additional set of possible recombinations. Counting all possible such
subsets

=1\ (ht —)E 4 (—1)F
el = () =

and

X" (hi)lg: gl = (ht — 1)|x"(hs)[g, g]]
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12.4 Extending a computation for a prefix by a simple subinterval h;

To extend our ability to calculate |x(h)| beyond the single interval h;, suppose we have a partition
{h1,ha, ..., hy,} of h into subintervals of the form in Lemma 2. Let b € A such that b is a node on the
boundary of such an interval, let hjg;_1; be the prefix of i formed by concatenation of the subintervals
preceding node b, and let hy,_1 4 be the subinterval beginning with node b.

Suppose now that we have calculated each | XR(h[O’b_l])[, f]| and now wish to calculate these values
up to b, the node in A succeeding b — 1. By Lemma 2, the intervening sequence hp,_; 3 is of the form
for which we have just calculated |x®(h)[g, g]| and |x®(h)[—g, g]|. We divide this into cases.

Case 1: Suppose that f has no subinterval consistent with hp,;, 1), that is, f € Sj_; for some a
but f ¢ Sp. Then any mosaic extending any mosaic in XR(h[Oyb})[, f] must recombine. Since f ¢ Sy,
there are ht := Jll)’ possible haplotypes to which this recombination at b — 1 — b may occur. Let £ be
the length (in base pairs) of the interval b — 1 to b, then VR’ < ¢(b) we have previously calculated in
(8) that

N rpeaiall = ()

and therefore, where we write XR(h[o,b—u)L fl @ XR,(h[b_Lb])[, g|] for the set of mosaics formed by
continuing mosaics in XR(h[o,bq])[, f] such that they recombine between hiop—1) and hp_1p and end
with a subinterval of g,

8 h-) 10X (ol = W hoa L A1) e = 1 (1)

Case 2: Suppose now that we know |XR(h[0,b_1])[, f]l, and f € S} for some a, that is, f does have
a subinterval consistent with hp_y

There are two subcases: either there is, or there is not a recombination between the last base in
hjg,p—1) and the subsequent base at the beginning of hp_1 3. Suppose that there is not. In this case,

where we write XR(h[O,b—l])[a fle XRl(h[b_l,b])[, g] for the set of mosaics formed by continuing mosaics
in XR(h[o,b_l])[, f] such that they do not recombine between hjg;_1) and hj,_; 3 and such that they do
end with a subinterval of g,

X (hop—1))ls 1€ X7 (hp—1)l 9l = X (hpo o1 FUIXT (hip—1.9) £ 9] (12)
such that if f £ g

IR (o)L F1EXF (hp—15) ] gl = X (o p-1)) [ AT (Rpp-1.0) =9, 9] (13)

else

X% (hop—1)l 1€ X7 (hpe1a)[ all = XF (oo 1)L AXT (hip—1.0)19, 9] (14)

The other subcase is that there is a recombination between the last base in hjg,_1) and the subse-
quent base at the beginning of hy_; ;). In this case if f # g,

14
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IR (o)L F1 @ XF (A1) 91l = X (R p1), 1 @ X (hp-1.9)09. 9] +

> sl £l X (b1 9] (15)
f'#f9

= X®(ho 1)L AIXT (hp-r)lg alll -+
(ht — 2)Ix" (hio - 1))l FUXT (hip—1,4)) (g, 9] (16)

by Lemma 4

else
\XR(h[o,b—u)[v flox® -1, 9]l = (ht — 1)\XR(h[0,b—1])[a f]HXR/(h[b—l,b])[_‘gvg” (17)

12.5 Deriving the Formula for P(h|G, H)

Suppose that we have calculated |x(hjp—1])[; f]| for all f and now wish to calculate |x(hj4)[; g]| for
some g € SY, for some a < b.
Note that as defined in the main text, Ry—1(a) = [x(hjop—1))[, f]| for the a such that f € Si. This

means this calculatiuon will in fact give us the formula with which to calculate Ry given Ry_q. Let us
write Ry(f) for Ry(a) such that f € Sj.
Accounting for all prefixes in x(h[—1]) which can produce mosaics in x(hjo4)[, 9], then

X (hop)ls 9]l = Z p(R1+R2)|XR1(h[O,bfl]) o x™®(hp1y) 9l +
Ri<|ho
R;jhﬁ_bl;]“ Z plirtRatL) |y (ho,p—1) @ X2 (hpp—1.9)[, 9]l
Ri<lhjo,p—1]l
Ro<[|hpp_1,]

= Z pPFR) [y B (B 1)) © X2 (hp—1y)s 91| +

Ri<|hjgp—1]] (R1+R2+1) |, R1 Ra
R2<|h[(b)f1;]‘ p X" (hop-11) @ X (h[b—l,b])[»g”)

= > A (Z > I (hio -1l £1© X2 (hyp-1,) 1. 9]

R1<|hjo,p—1] | a<b fesSy R
Ro<|hpp_1,] f7£9 + ‘X l(h[O,b71]>[ag] ©X 2(h[b71,b]>[gag”

o (I (hpop-1)Ls 91 @ X2 (1)L ]

+ Z Z |XR1(h[o,b—1])[a flo XRQ(h[b—l,b])[vg”

a<b feSy
f#g

+3 0N (o -y [f]®xR2(h[b—LbJ)[79”)>

a<b fgsg

15


https://doi.org/10.1101/101659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/101659; this version posted January 28, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

= > (Z > I (-1 AN (Pp—1,) 9, 91l

Ri<[|hig 51l a<b feSp )
’ by (13
R2<‘h[b_1,b]| f?ég v (13)

+ X (hiop—1)[ 9lIX (hpp—1,41) L9 9]

~~

by (14)
o ( I (1) gl (ot = D (g 1) 9. 9]
by(17)
303 W iDL AN ()l 91l + (Bt = 2)X™ (1) [, 9])
T by (16)
3 5 W )N el )
a<b f¢Se

= > R1+R2<ZZ|X (o)l AP (hpp1.) [0 91l = ™ (o ) g1 (i) 9 9]

R1<|h[07b 1]| a<b feS“
Rao<|hpp—1 ]
+ X" Y(hjo,p-1))]5 glllx™ (hp—1,4))19, 9]l

+p(|le<h[o,b_1]>[,gn(|x (1)l gl = X (B9 911)

+ Z Z X (R p—17) [ AU (X2 (Rpp—1 ) 9] — X2 (hpp—1.7) (29, 91)
a<b feSy
fsﬁg

—I—Z Z P hiop—1))l ]||XR2(h[b—1yb])[’g”>>

a<b fgsg

= 2 R1+R2<ZZ!>< (o1 AN (rip-1.0) 9. 911 = I (hgo.p- 1) 91 lIX™ (hpp-11) 9 9

Ry <|hjo,p—1jl a<b feSy
Ro<|hpp_1,4]
+ I (hpop-1) s 111X (Bp—1,) 19 9]

+p(z > I (-1 L ANIX™ (rp—r) [ 9l = X2 (Bp—1,) g, 911)

a<b feso

+ X (hpop-1) [ 9l X2 (i1, =9, 91l = X (hjo,p-1) s 91l X2 (-1, L9, 9]

+33  oa) A )l )

a<b f¢Se
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= 3 pth (( )(Zer (o)l FIIXT2 (hgp101) =g, 9]

Ri<|h[g,p—1]] a<b feSy
Ro<|hpp_1,

+pz Z h[ob 1)[ ]HX (h[b—l,b])[ag”>

a<b feSp
Letting
RRSame = Z pRQ‘XRQ(h[bfl,b})[gag”v
Ro<|hpp_1,]
RRDiff= > p®x™(hy-14)[9, 9]l
Ro<|hpp_14)

(And we note that RRSame and RRDiff do not actually depend on choice of g)

= > Hp (( )(ZZ\X hiop-1)ls f|RRDif f

Ri<[|hjo,p—1 a<b feSy

— X (ho p-1)) [, G| RRDif f + X" (hpo p—1))[, 9]| RRSame

D SRV DD SR 1 (S A IR

R2<|h[b71,b]| a<b fESa
by (7)

Noting that
Z P X (o p1)) ], FIl = Ro—1(f)

Ri<|hjg p—1]]
Letting:
S1:=> > Rya(f)
a<b fesy
Sy = Z Z Ry_1(f)
a<b f¢Se

then the above is equal to

(1 — p) (SlRRDi ff — Ry(g)(RRDiff — RRsame))
+(S1+8) > pth <€(b;zg_ 1) (ht —1)Re

Ra<|hpp—1,p)]

For g € Sé’ , the calculation is similar:

17
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X (hos)ls 9]l = Z pFt RO By ) @ B2 (b1 ) 9l
Ri<|hjp,p—1]]
Ro<|hpp_1 4
SID Sl ( TN (RS )
Ry <|hjo,p—1]| fesy
Ro<|hpp_14)
= (S1+5) >, pfEtY <(|h“’—1“| - 1) (ht — 1)R2>
R
Ro<|hp_1, 2

We can simplify the sums above by writing

RRS(ht, 0) ZpR2<( )(ht—l))

Rao</
/—1
= (1 + (ht — 1)p> (18)
Given a second definition
RRT(£) := (1 —p)*t (19)

we can actually write

RRSame — RRDiff = RRT(|hp_y 1))
RRS(ht,|hjp—14)|) — RRT(|hjp—1,4])

RRDiff = -

and so finally, we can write our formula for Ry(g) in a compact form as

RRS (ht,|hj,— —RRT(|hr,_
(1-p) (sa (it Py 1.y )= RRT Q1. +Rb_1<g>RRT<|h[b_1,b}|>)

Bolg) = T (St + S2)RRS(ht, by ryl) i g ¢ S
p(S1 + S2) RRS(ht, |hp—14|) if g€ SP

which gives us equation 6 of the main text.
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