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Abstract

The genetic architecture of autism spectrum disorder (ASD) is known to consist of contributions from
gene-disrupting de novo mutations and common variants of modest effect. We hypothesize that the
unexplained heritability of ASD also includes rare inherited variants with intermediate effects. We investigated
the genome-wide distribution and functional impact of structural variants (SVs) through whole genome
analysis (≥30X coverage) of 3,169 subjects from 829 families affected by ASD. Genes that are intolerant to
inactivating variants in the exome aggregation consortium (ExAC) were depleted for SVs in parents, specifically
within fetal-brain promoters, UTRs and exons. Rare paternally-inherited SVs that disrupt promoters or UTRs
were over-transmitted to probands (P = 0.0013) and not to their typically-developing siblings. Recurrent
functional noncoding deletions implicate the gene LEO1 in ASD. Protein-coding SVs were also associated with
ASD (P = 0.0025). Our results establish that rare inherited SVs predispose children to ASD, with differing
contributions from each parent.

Keywords: genomics; whole genome sequencing; autism; noncoding; mosaics; structural variation

Introduction
Autism Spectrum Disorders (ASDs) have a complex
etiology with a major contribution from genetic fac-
tors. Microarray and exome sequencing studies over
the past decade have demonstrated that de novo gene-
disrupting or protein-altering variants contribute in
approximately 25% of cases [1, 2, 3, 4, 5, 6, 7, 8, 9], and
causality has been demonstrated for many genes [10].
In addition, common variants of modest effect con-
tribute to risk for ASD [11]. Thus, the genetic architec-
ture of ASD consists of a wide spectrum of risk alleles.
At one extreme are the dominant-acting variants that
carry high risk and are rarely carried by asymptomatic
parents. At the opposite extreme are many common
’polygenes’ which individually exert subtle influences
on risk.
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Much of the allelic spectrum of ASD genetics how-
ever has been unexplored, namely rare inherited cod-
ing or noncoding variants with intermediate effects
[12]. Recent studies have developed our understanding
how much of the genome is regulatory through anal-
yses of evolutionarily conservation and identification
of biochemically active noncoding genetic elements
[13, 14]. However, functional noncoding variants are
not easily distinguishable from the vast background of
neutral variation in the general population. Initial ap-
plications of whole genome sequencing (WGS) in ASD
therefore have been underpowered to detect any asso-
ciation of rare noncoding point mutations with ASD
[15, 16, 17, 18].

Structural variants (SVs), such as deletions, dupli-
cations, insertions and inversions [19], are more likely
to impact gene regulation because of their potential
to disrupt, duplicate, and shuffle functional elements
in the genome. SVs could therefore provide a foothold
for expanding our knowledge of the genetic architec-
ture of ASD beyond what is detectable through exome
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sequencing or GWAS. Recent WGS efforts led by the
1000 Genomes consortium and our group have revealed
thousands of rare, inherited SVs in each genome that
were previously undetectable with microarray or ex-
ome sequencing technologies [19, 20].

We hypothesize rare, inherited SVs that disrupt
functional elements of variant-intolerant genes critical
for neurodevelopment will be enriched for variants that
contribute to autism spectrum disorder. In order to as-
sess this we have created a pipeline for accurate detec-
tion and genotyping of SVs in high coverage WGS data
and investigated genetic association across multiple
classes of variants (inherited, de novo, coding and non-
coding) in two independent cohorts comprising 3,169
individuals from 829 families affected by ASD. We find
that paternally inherited noncoding CNVs that dis-
rupt promoters or UTRs of variant-intolerant genes
are preferentially transmitted to affected offspring and
not to their unaffected siblings, replicating this finding
in both cohorts, and implicating the novel gene LEO1
in ASD.

Results
Genome-wide detection and genotyping of SV in ASD
families
We investigated SVs genome wide by high coverage
whole genome sequencing (mean coverage = 42.6) of
3,169 individuals from two cohorts: (1) the REACH
cohort consisted of 311 families with 362 affected off-
spring and 112 sibling controls (n = 1,097 genomes)
recruited from Hospitals and clinics in San Diego and
Barcelona and sequenced in San Diego and (2) The
Simons Simplex Collection (SSC) dataset consisted of
518 discordant sibling-pair quad families (n = 2,072
genomes) sequenced at New York Genome Center. By
design, these two cohorts differ slightly with respect
to genetic etiology. The REACH cohort is a represen-
tative sample of ASD, and had not been previously
analyzed by microarrays or exome sequencing. The ra-
tio of males to females in cases was 4:1 in the REACH
cohort. The SSC sample was selected from a larger
cohort of 2,644 families [7, 9] after excluding families
in which cases or sibling controls carried a large de
novo copy number variant (CNV) or truncating point
mutation from microarray or exome sequencing. Thus,
the SSC cohort was selected to enrich for novel ge-
netic etiology and has a diminished contribution from
de novo mutations that are detectable by standard ge-
netic approaches. The SSC sample was disproportion-
ately male (8:1), which was in part due to the removal
of de novo mutation carriers that tend to be overrep-
resented in females (a lower male-female ratio of 2:1)
[21]. In total 829 families were sequenced, comprising
880 affected, 630 unaffected individuals, and their par-
ents (Table S1).

We developed a pipeline for genome wide analysis
of SV that consisted of multiple complementary meth-
ods for SV discovery combined with custom software
for estimating genotype likelihoods from the combined
set of SV calls (Figure S1). To assess the association
of inherited SVs with ASD in families, high genotyping
accuracy is needed [22]. Thus, a key innovation of the
current pipeline was the development and refinement
of SV2, a support-vector machine (SVM) based soft-
ware for estimating genotype likelihoods from short
read WGS data [23]. Genotype likelihoods serve as
our primary metric for SV filtering and assigning of
SV genotypes in families. The genotyping accuracy of
SV2 and the potential for spurious associations to arise
from genotyping error was evaluated in this study as
part of a companion paper [23].

Briefly, the primary variant calls include biallelic
deletions and tandem duplications, inversions, four
classes of complex SVs, reciprocal translocations, and
four classes of mobile element insertion. An average
of 3,746 SVs were detected per individual, the major-
ity of which were deletions (2,428 / individual), Alu
insertions (920 / individual) and tandem duplications
(174 / individual; Table S2). Variants were typically
private to individual families, being present in only
one parent (53.1%), although 48.8% overlapped (≥50%
reciprocally) with variants from the 1000 Genomes
Phase 3 callset (Figures S2 and S3). False discov-
ery rates (FDR) for deletion and duplication calls were
estimated from Illumina 2.5M SNP array data (using
SVToolkit, see Materials and Methods), which was col-
lected on a subset of samples in our study (n = 205).
FDR was estimated to be 4.2% for deletions, 9.4% for
duplications (Figure S4; Table S3), and 6.5% for
deletions and duplications within complex SVs. We
demonstrate that private deletions and duplications
>100bp in size have low FDR and Mendelian-error
rates and neutral transmission to offspring (Figure
S4). Given that deletions and duplications >100 bp
comprise the majority of SV calls, can be uniformly
genotyped with high accuracy, and their functional
impact is more readily interpretable, our subsequent
analyses was restricted to this subset of SVs.

Defining genomic elements depleted for structural
variation
The prioritization of rare variants in disease studies
is aided by knowledge of the functional elements and
genes that are under functional constraint in humans,
as illustrated by recent studies that utilize variant
frequencies from the exome aggregation consortium
(ExAC) to prioritize genes for disease studies [24]. We
expect that the genetic effect of rare inherited and de
novo variants will be most readily detectable among

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 27, 2017. ; https://doi.org/10.1101/102327doi: bioRxiv preprint 

https://doi.org/10.1101/102327
http://creativecommons.org/licenses/by-nd/4.0/


Brandler et al. Page 3 of 26

0-10
10-20

20-30
30-40

40-50
50-60

60-70
70-80

80-90
90-100

pLI percentile bins

Loss of function variants

O
dd

s 
Ra

tio

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
EXAC loss of function
Protein coding exon deletion

P < 0.01
P < 0.001

*
**
***

P < 0.05

Deletions
Fetal brain promoter
3'UTR
5'UTR plus TSS
Protein coding exon

O
dd

s 
Ra

tio

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0-90
90-100

pLI percentile bins

Duplications
Internal exon
Exonic including 5'UTR
Exonic including 3'UTR
Whole gene

O
dd

s 
Ra

tio

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0-90
90-100

pLI percentile bins

A B C

Figure 1 Classes of functional element that are intolerant to structural variation. Bar charts illustrating functional elements that
show depletions in structural variation relative to random permutations, stratified on variant-intolerance of genes as estimated by the
EXAC consortium (see Table S4 for a comprehensive set of genomic elements). A) Odds ratios for loss of function mutations from
EXAC compared to protein coding deletions from our study, binning genes based on their probability of loss of function intolerance
(pLI) scores. B) Coding and noncoding features depleted in deletions. C) Odds ratios highlighting the enrichment/depletion of four
different classes of exonic duplication. The number of stars indicates the level of significance; whiskers represent 95% confidence
intervals.

functional elements that display a demonstrable sig-
nature of negative selection for SVs. To this end we
sought to define classes of cis-regulatory elements that
are depleted in rare SVs in parents in our dataset com-
pared to a random distribution of SVs based on per-
mutations. Noncoding SVs were defined as SVs that
did not intersect with any protein coding exons. Con-
sidering all genes, we found a depletion of deletions
in protein coding exons (odds ratio OR = 0.46; P
< 0.0001), and variants disrupting 5’UTRs and tran-
scription start sites (TSS OR = 0.77; P = 0.0003),
and 3’UTRs (OR = 0.87; P = 0.007) (Table S4), rel-
ative to permuted SVs. All other features showed no
significant depletion of SV after FDR adjustment for
27 features tested (Table S4).

The depletion of SVs within functional elements cor-
related with independent measures of the functional
constraint of genes from ExAC (Table S4; Figure
1) [24]. ExAC contains a collection of 46,785 exomes
from individuals who do not have psychiatric disor-
ders, which has been used to identify genes that are
depleted in loss of function mutations [24]. Binning
genes by ExAC probability of loss-of-function intol-
erance (pLI) scores, there was a positive correlation
between depletion of exonic deletions and depletion
of loss of function point mutations (Figure 1A; Pear-
son’s r = 0.98). Considering only genes with pLI scores
in the 90th percentile or greater, we observed a signif-
icant depletion of SVs in exons, UTRs and TSSs. In
addition, chromatin marks associated with promoters
in fetal brain tissue also showed depletion among these
variant-intolerant genes (OR = 0.73; P = 0.0011).

We divided exonic duplications into four categories;
whole gene duplications, internal exon duplications,
exonic duplications that also duplicate the 5’UTR (but
not 3’UTR), and exonic duplications that include the
3’UTR (but not 5’UTR; Figure S5). Whole gene du-
plications were depleted if they duplicated the most
variant-intolerant genes (pLI ≥90th percentile; OR =
0.49; P < 0.0001; Figure 1C) and enriched in genes
that are tolerant to inactivating mutations (pLI <90th

percentile; OR = 1.50; P < 0.0001). Internal exon du-
plications showed depletions similar to that of exonic
deletions, consistent with their predicted loss of func-
tion effect (Figure 1C). Exonic duplications that en-
compassed the 5’UTR were also depleted in the most
variant-intolerant genes (pLI ≥90th percentile OR =
0.68; P = 0.007; Figure 1C), but 3’UTR exonic dupli-
cations showed no depletion (Table S5; Figure 1C).

Functional classes of SV that were most strongly de-
pleted in the genome relative to permutations (Fig 1B-
C) were subsequently selected for family-based associ-
ation tests including deletions of fetal brain promoters,
UTRs, TSSs and exons, and duplications of UTRs or
exons in variant-intolerant genes. The same loci are
also highly enriched in known autism genes from ex-
ome and CNV studies (OR = 19.6; Fisher’s Exact P
< 2.2×10-16; Table S5) [6, 9].

Association of noncoding structural variants with ASD
We hypothesize that rare SVs overlapping cis-regulatory
elements or exons of variant-intolerant genes depleted
in structural variation are associated with ASD in fam-
ilies. We further hypothesize that inherited SVs show
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Figure 2 Biased transmission of noncoding and exonic variants in genes intolerant to inactivating mutations. A) Percentage of

structural variants transmitted from parents to offspring that disrupt elements of variant-intolerant genes (pLI ≥90th percentile) for
maternally inherited, paternally inherited, and combined parents. This analysis was stratified into controls, ASD cases from the
REACH cohort, ASD cases from the SSC, and the combined ASD cases. The results reported here are for intronic variants,
noncoding variants disrupting promoters / UTRs, or protein coding deletions. B) Number of variants transmitted from either the
father or the mother to individuals with ASD in the combined cohort. The number of stars indicates the level of significance;
whiskers represent 95% confidence intervals.
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Figure 3 Recurrent promoter deletions of LEO1 derepress gene expression. A) Paternally inherited deletions of the LEO1
promoter were detected in three affected individuals, one trio (14-59) and one concordant sib pair (F0182). A common deletion
polymorphism (parent allele frequency = 0.011) is also present in this locus, but does not disrupt any predicted regulatory regions.
B) CTCF and RNA Polymerase II ChIA-PET data suggests that the noncoding element upstream of LEO1 disrupted by both rare
deletions (F0182 deletion shown here) serves as a focal point for the spatially organized transcription of LEO1 and MAPK6. C)
mRNA expression of LEO1 and MAPK6 were increased in fibroblast lines derived from two deletion carriers (REACH000319 and
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27 acetylation (an active promoter associated mark) in seven cell types from ENCODE. ChromHMM Tss = predicted transcription
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a maternal origin bias, consistent with a reduced risk
of ASD in females [25]. Family based association was
tested using a group-wise transmission/disequilibrium
test (TDT), applying it to private variants (autosomal
parent allele frequency = 0.0003) assuming a dominant
model of transmission [26]. To control for any poten-
tial methodological artifacts we also assessed trans-
mission of SVs in variant-tolerant genes, which showed
no transmission bias (Table S6). Protein coding dele-
tions in these genes were more likely to be transmitted
to individuals with ASD (54/83; transmission rate =
65.1%; P = 0.002), but not to controls (26/57; trans-
mission rate = 45.6%; P = 0.54; Figure 2). After
excluding variants that disrupted protein-coding ex-
ons, noncoding variants that intersected a predicted
fetal brain promoter or UTR of a variant-intolerant
gene showed a paternal transmission bias to cases
(39/55; transmission rate = 70.9%; P = 0.0013) but
not a biased maternal transmission (21/23; transmis-
sion rate = 48.9%). Controls showed a slight depletion
in transmission from both parents (24/64; transmis-
sion rate = 37.5%; P = 0.06). The joint probability
of the transmission bias in cases and controls com-
bined was significant (joint binomial P = 0.003; OR
= 3.2; CI = 1.2-8.7). The above associations were sig-
nificant after correction for multiple testing (5 groups
of SVs tested for each parent separately, Table S6).
Validation was performed where possible using PCR,
single molecule sequencing, or an in-silico SNP based
approach (see methods), with a 96% validation rate
overall and genotypes from validation were 100% con-
cordant with genotype calls from SV2 (149/155, Table
S7).

Further highlighting the paternal inheritance of non-
coding variants, SVs in promoters or UTRs of variant-
intolerant genes were more likely to be transmitted
to affected offspring from the father (39 paternal, 22
maternal; Binomial P = 0.02; Figure 1B). A non-
significant maternal bias was observed for coding SVs,
consistent with previous studies [25, 27]. All private
noncoding or protein-coding variants in genes with pLI
scores≥90th percentile are given in Table S7. The me-
dian lengths of these categories of noncoding SV were
2,140bp (interquartile range IQR = 520-7,489bp) and
7,548bp (IQR = 3,795-72,664bp) respectively.

We investigated the effect of inherited SVs on autis-
tic traits in families using the Social Responsiveness
Scale (SRS) measures that were available for all family
members in the SSC cohort. Parents who transmitted
protein-coding deletions of variant-intolerant genes to
affected probands had elevated SRS scores indicating
that these variants contribute to social impairment in
unaffected relatives (combined parent SV carrier mean
SRS = 39.6; parent non-carrier mean = 29.1; Wilcoxon

Rank Sum test P = 0.041; Table S8). Parents carry-
ing noncoding SVs did not show significantly higher
scores relative to non-carriers, and neither ASD cases
nor siblings showed elevated scores in either category
(Table S8).

Recurrent inherited gene mutations were also en-
riched in ASD. Five variant-intolerant genes displayed
exon disrupting mutations in more than one family
and were also transmitted to cases, including ASTN2
[28], ATAD2, CACNA2D3 [6], PTPRT and NRXN1
[9] (Table S7), a 2.87-fold enrichment compared to
random permutation of transmitted SVs across this
gene set (expected n = 1.75; Permutation P = 0.034).

We also observed recurrent noncoding mutations in
four genes, CNTN4, LEO1, MEST and RAF1 (Table
S7), a significant enrichment compared to random
permutation (expected n = 0.023; Permutation P ≤
0.0001). We examined these candidate genes in a com-
bined dataset of 12,889 cases from 20 exome sequenc-
ing studies from ASD and developmental delay and
identified two de novo mutations disrupting LEO1
[6, 29]. This is a higher rate of LEO1 LoF de novo
mutations than would be expected based on a Poisson
model that controls for gene length and sequence con-
text (expected n = 0.1; P = 0.0025) [30, 31]. A third
LoF variant of LEO1 was reported in an ASD family
[6], but parental genotypes were not available. Only
one LoF mutation has been observed in this gene in
46,785 control individuals (expected n = 23.8) [24].

Both LEO1 deletions eliminate an upstream regu-
latory element that has a chromatin signature associ-
ated with an active transcription start site in multi-
ple cell types from the Epigenomics Roadmap Project
(Figure 3) [32]. A smaller 8.7kb deletion polymor-
phism (parent allele frequency = 0.011) was also de-
tected near the LEO1 promoter, but this variant
does not disrupt any annotated functional elements
(Figure 3), and does not show biased transmission
to cases (P = 0.44) or controls (P = 0.45). All three
deletions were validated and fine-mapped by single-
molecule sequencing of long PCR products using the
MinION platform (Oxford Nanopore; Figure S6).

The involvement of this functional element in gene
regulation is further supported by published chro-
matin interaction mapped by ChIA-PET [33, 34].
Chromatin interactions associated with transcription
factors CTCF and RNA polymerase II revealed this
upstream cis-regulatory element to be a focal point
for long range chromatin interactions associated with
transcription. Expression of LEO1 and the neighbor-
ing MAPK6 was higher in fibroblast cell lines from
two deletion carriers compared to controls (LEO1 T
test P = 0.018; MAPK6 P = 0.008; Figure 3; Table
S9).
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Figure 4 De novo structural variation in 1,510 children. Circos plot of de novo variants with concentric circles representing (from
outermost to inner): ideogram of the human genome with colored karyotype bands (hg19), deletions, mobile element insertions,
tandem duplications, balanced inversions, complex structural variants. Circles indicate the location of de novo SVs, and their colors
match the five SV types. Bars represent the log10 SV length of the de novo variants.
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Figure 5 Somatic Mosaic deletion disrupting TBR1. A) Discordant paired end and split reads identify and resolve the breakpoints
of a putative de novo 14.1kb deletion in the affected proband MT 18.3 that encompasses the full length of TBR1, but does not
directly affect other genes. B) The proband’s mean coverage is intermediate between a copy number of one and two, but lower than
all other individuals in the REACH cohort, indicating possible somatic mosaicism. C) There is one phased heterozygote SNP in the
locus (rs180808502), which has a skewed read depth ratio indicating the deletion impacts the maternal chromosome. D) ddPCR
validation confirms somatic mosaicism in the child.
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De novo and mosaic structural mutation
A circos plot in Figure 4 details the distribution of
163 de novo SVs across the genome in 1,510 children.
The de novo SV mutation rate in ASD and sibling
controls was 15.5% (CI = 11.8-19.9) and 12.5% (CI =
7.2-20.4) respectively in the REACH cohort (Figure
S7). Despite the fact that subjects carrying de novo
CNVs previously detected by microarray or exome se-
quencing had been excluded from the SSC sample, we
detected de novo SVs in 8.7% of ASD (CI = 6.4-11.5)
and 9.5% of controls (CI = 7.1-12.4; Figure S7). The
FDR was 8% overall, 4.1% for variants ≥500bp (92/96
validated) and 28% for smaller variants (13/18 vali-
dated). All five false de novo variants <500bp proved
to be false negatives in a parent (Table S10). All MEIs
(13/13), inversions (2/2), and all but one complex SV
(7/8) were validated (Table S10). A majority (68%)
of phased de novo SVs originated from the father (bi-
nomial test P = 0.038; Table S10), similar to a pre-
vious estimate of 71% [35], and comparable to the bias
observed for SNVs and indels [36, 15, 37]. Paternal age
was not significantly greater in families with de novo
SVs (Wilcoxon Rank Sum P = 0.69).

Our methods were sensitive enough to detect somatic
mosaicism for a subset of deletions (n = 6), including
a 14.1kb deletion of TBR1 that likely occurred in the
first cell division of embryonic development (Figure
5). Protein-truncating mutations of TBR1 have been
implicated as a monogenic cause of ASD [4, 38]. We
estimate from our data that at least 6% (8/133; CI =
2.8-11.4%) of de novo CNVs display either high-level
somatic or low-level parental mosaicism (Table S11),
consistent with previous microarray studies [39].

Confirming what we have observed previously, de
novo SNVs and indels clustered in proximity to de
novo CNV breakpoints (permutation P = 0.0029; Ta-
ble S12; Figure S8) [20].

Contribution of de novo and inherited SVs to ASD
The global rate of de novo structural mutation was
similar cases and controls (Figure S7), as we have pre-
viously shown [20]. The REACH cohort had a greater
burden of gene disrupting de novo variants than con-
trols (7.2% in ASD versus 2.1% in controls; permu-
tation P = 9.2×10-5; Table S13), A 5.1% excess of
gene disrupting de novo SVs in cases is slightly higher
than estimates of 3-4% from previous studies using less
refined methods of detection [8, 9]. A 2.3% rate of cod-
ing de novo SVs in the SSC further suggests that the
contribution from small coding de novo SVs is modest
(Permutation P = 0.46). After excluding SVs that in-
tersected with protein coding exons, only one de novo
variant-intersected a noncoding element of a variant-
intolerant gene, a promoter deletion of SIM1 in a con-
trol (Table S10).

Combining our findings from the REACH and SSC
cohorts we are able to place lower bounds on the pro-
portion of cases that carry rare coding and noncoding
risk variants. We estimate that rare SVs contribute
to 11% of ASD cases (CI = 9.8-13.4%), half of which
(5.1%) are gene-disrupting de novo mutations. The re-
mainder includes inherited rare variants of which cis-
regulatory and coding SVs, which contribute to 2.1%
(CI = 1.2-2.8%) and 1.9% (CI = 0.8-2.9%) of cases
respectively. Known pathogenic SVs not accounted
for above contribute in another 1.9% of cases (Table
S14).

Discussion
Here we demonstrate that rare inherited SVs that dis-
rupt cis-regulatory elements of functionally-constrained
genes confer risk for ASD, and there is a similar con-
tribution from inherited SVs that disrupt genes.

We observe a differential contribution of rare variants
from mothers and fathers. SVs that disrupt variant-
intolerant genes were inherited more frequently from
mothers, consistent with a reduced vulnerability of fe-
males to rare variants of large effect [40, 41]. SVs that
disrupt only promoters or UTRs, on the other hand,
showed a significant paternal transmission bias. The
underlying genetic mechanism that explains this pa-
ternal bias is not clear.

A paternal-origin effect for non-coding deletions sug-
gests the possibility of an epigenetic mechanism. For
example, deletion of key cis regulatory elements can
lead to de-repression of imprinted genes [42]. Recurrent
promoter deletions were observed in one gene that is
known to be imprinted in fetal tissues, mesoderm spe-
cific transcript (MEST ) [43]. However, classical [44]
or brain-specific [45] imprinting are unlikely to ex-
plain our results given that both phenomenon affect a
very small fraction (<1%) of genes and are not exclu-
sively paternal. A paternal-specific epigenetic mecha-
nism that acts on many functionally constrained genes
has not been described, but we cannot rule out this
possibility.

An alternative to an epigenetic mechanism is a ’bi-
lineal two-hit model’, in which risk is attributable to
a combination of a maternally-inherited coding vari-
ant and a non-coding variant of moderate penetrance
that is inherited from the father. Since males are more
vulnerable than females to psychiatric disorders, then
mothers could be more likely to carry a coding muta-
tion of large effect [46], while additional genetic burden
(including non-coding SVs) might tend to be derived
from paternal lineage. A formal test of this hypothesis,
however, would require a combined analysis of SNVs,
indels and SVs and a much more complete knowledge
of the inherited risk factors for ASD.
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The intermediate genetic effects of inherited cis-

regulatory SVs (OR = 3.2), paternal transmission bias,

and a lack of evidence for the association noncod-

ing de novo SVs suggests that structural mutations in

noncoding regions have a relatively moderate level of

penetrance compared to protein coding variants. Fur-

thermore, we demonstrate that coding variants influ-

ence neurobehavioral traits in parents, but we do not

find similar evidence for noncoding variants, consis-

tent with rare cis-regulatory variants carrying moder-

ate risk.

SVs that directly disrupt cis-regulatory elements can

identify novel candidate loci and novel genetic mecha-

nisms underlying risk. Based on recurrent de novo LoF

variants, the gene LEO1 represents a strong candidate

gene for ASD. Recurrent promoter deletions detected

in this study remove a CTCF and RNA Pol II binding

site that is highly topologically connected to adjacent

genes, and its disruption results in the de-repression of

LEO1 and adjacent MAPK6.

The contribution of cis-regulatory variants that we

observe was not evident in previous studies of idio-

pathic ASD, in part because a majority of risk SVs in

this study were below the detection limits of previous

methods. Furthermore, our results stand in contrast

to two previous studies that have found anecdotal evi-

dence that the rare de novo SVs of noncoding elements

contribute to ASD [47, 17]. We cannot exclude the pos-

sibility that rare highly penetrant noncoding variants

contribute to ASD. Indeed, there is one well-known ex-

ample: the triplet repeat expansions that cause Frag-

ile X syndrome [48]. However, we can conclude that

de novo SVs within regulatory elements of variant-

intolerant genes are extremely rare (observed in one

control in this study).

Our analysis of distal enhancers is limited by our

ability to infer the functional effects of SVs and iden-

tify their relevant target genes. Thus, it is likely that

we have failed to capture some ASD risk variants in

intergenic regions. A rigorous analysis of such variants

would require a more comprehensive knowledge of the

’enhancerome’ [49, 50], and an effective means for dis-

tinguishing between neutral and deleterious variants.

Due to the greater potential of SVs to impact gene

function and regulation relative to SNVs and indels,

this class of genetic variation has historically proven

effective for illuminating new components of the ge-

netic architecture of disease [51]. Our findings provide

a demonstration of the utility of SV analysis for char-

acterising the genetic regulatory elements that influ-

ence risk for ASD.

Methods
Patient Recruitment
This study consists of two primary cohorts, which will
be referred to as ’REACH’ or ’SSC’ in the follow-
ing sections. Relating genes to Adolescent and Child
Health (REACH) cohort individuals were referred
from clinical departments at Rady Children’s Hospital,
including the Autism Discovery Institute, Psychiatry,
Neurology, Speech and Occupational Therapy and the
Developmental Evaluation Clinic (DEC) as part of the
REACH study. Further referrals came directly through
the REACH project website (http://reachproject.
ucsd.edu/). In total 612 individuals from 161 families
came from the REACH project. The Autism Center of
Excellence at the University of California San Diego
contributed 11 trios. A further 452 samples from 139
families were recruited at Hospital Universitari Mútua
de Terrassa in Barcelona. The REACH families com-
bined consisted of 112 controls and 362 affected indi-
viduals - 285 with ASD, 43 with pervasive developmen-
tal disorder - not otherwise specified (PDD-NOS), 10
with attention deficit hyperactivity disorder (ADHD),
and 24 with speech delay, epilepsy, anxiety, or other
related developmental disorders that were therefore
classified as ’cases’ for bioinformatics analyses. The
Simons Simplex Collection (SSC) Whole Genome Se-
quencing dataset (http://bit.ly/2jc34rU) consisted
of 518 quad families with sibling pairs discordant for
an ASD diagnosis that were selected from the full co-
hort of 2,644 families [7] after excluding those where
offspring carried any plausible contributory de novo or
inherited SNVs, indels, deletions or duplications iden-
tified from microarray or exome sequencing data. The
exclusion criteria for exome- or array-’positive’ indi-
viduals are described below and were applied to both
ASD cases and sibling-controls:
1 De novo CNVs (189 families): Any confirmed or

published de novo copy number variant (CNV)
[52, 53], Illumina SNP genotyping data, or ex-
ome CNV data that is: Rare (≤0.1 population
frequency based on parents and DGV) or genic
(≥1 exon).

2 Inherited CNVs (92 families): Any CNV from Il-
lumina genotyping data [53], or exome CNV data
that is: rare (≤0.1 population frequency based on
parents and DGV), or intersects ≥10 genes.

3 De novo LoF (564 families): Any de novo loss
of function from published sequencing data that
is: rare (≤0.1 population frequency based on the
exome variant server), nonsense, canonical splice
site, or frameshift [7, 40].

Whole Genome Sequencing
Our combined dataset consisted of WGS data col-
lected for two cohorts and sequenced at three sites
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(Table S1). All WGS data were generated from whole
blood DNA. All members of individual families were
sequenced within the same batch of samples.

REACH cohort
The REACH cohort initially consisted of 1,126 individ-
uals from 319 families, including 893 individuals from
260 families that were sequenced at Human Longevity
Inc. (HLI) on an Illumina HiSeq X10 system (150 bp
paired ends at mean coverage of 50X) and an addi-
tional 204 individuals from 59 families that were se-
quenced at the Illumina FastTrack service laboratory
on the Illumina HiSeq 2500 platform as described in
our previous publication [20]. We performed initial
quality control (QC) steps to ensure relatedness and
gender matched the sample sheets, excluding any mis-
matches or half-siblings. We also tested for an excess of
Mendelian errors in the children, and an excess of sin-
gle nucleotide variants called in either parent (≥3 SD
from the mean) indicative of low quality DNA. In to-
tal 29 samples were removed, including eight complete
families. Therefore, 1,097 individuals from 311 families
were taken forward for structural variant calling and
analysis.

SSC Cohort
Whole genome sequencing of the SSC cohort on an
initial 540 families was performed at the New York
Genome Center on an Illumina HiSeq X10 (150 bp
paired ends at mean coverage of 40X). Of the 540 SSC
families, 518 were complete quad families. Incomplete
families were excluded from the dataset. All 518 met
the above QC criteria for inclusion in the study. Mean
coverage (39-50X) and insert sizes (348-420) and were
similar at all three sequencing sites (Table S1). Se-
quence alignment and variant calls for REACH sam-
ples were generated on families using our WGS analy-
sis pipeline implemented on the Comet compute clus-
ter at REACH. For SSC samples the same pipeline was
adapted for use on Amazon Web Services (AWS). In
brief, short reads were mapped to the hg19 reference
genome by BWA-mem version 0.7.12 [54]. Subsequent
processing was carried out using SAMtools version 1.2
[54], GATK version 3.3 [55], and Picard tools version
1.129, which consisted of the following steps: sorting
and merging of the BAM files, indel realignment, re-
moval of duplicate reads, base quality score recalibra-
tion for each individual [56].

SV Detection
We utilized four complementary algorithms to detect
SVs: ForestSV, Lumpy, Manta, and Mobster. ForestSV
is designed to detect deletions and duplications based

on a combination of signatures including, coverage, dis-
cordant paired ends and other metrics such as map-
ping quality [15]. In addition we implemented two al-
gorithms, Lumpy and Manta (Manta workflow version
0.29.0 was run with default parameters), the latter be-
ing a new addition to the SV analysis pipeline since
our previous publication [20], both of which utilize a
combination of discordant paired ends and split reads
and have greater sensitivity for small (<500 bp) dele-
tions, duplications, inversions and complex rearrange-
ments [57, 58, 59]. Finally, Mobster uses discordant
paired-end and split-read signal in combination with
consensus sequences of known active transposable el-
ements to identify mobile element insertions (MEIs)
[60]. A consensus callset was generated by merging
calls from ForestSV, Lumpy, Manta and Mobster. SV
calls from multiple methods were combined, and over-
lapping variants detected in the same sample were col-
lapsed as described in our previous structural variant
publication [20]. The unfiltered consensus callset con-
sisted of the union of calls from the four methods. As a
preliminary filtering step, SVs were removed from the
consensus callset if they overlapped by more than 66%
with centromeres, segmental duplications, regions with
low mappability with 100bp reads, regions subject to
somatic V(D)J recombination (parts of anitbodies and
T-cell receptor genes). SVs called by Manta or Lumpy
were filtered if they had one or both breakpoints over-
lapping one of these regions. Regions used for filtering
can be found in our previous publication [20].

SV genotyping and filtering
We generated a set of uniformly-called genotypes for
the combined set of deletions and duplications called
by three methods Lumpy, Manta, or ForestSV, us-
ing a single genotyping algorithm SV2 v2.0 (https:
//github.com/dantaki/SV2). SV2 provides estimates
of genotype likelihoods for deletions and duplications
across a broad size range (10bp-10Mb), and this metric
was used as our primary filtering criterion for these.
The SV callers Lumpy [58] and Manta [59] provide
genotype likelihoods for the subset of calls that were
generated by these methods, which include SVs that
are not genotyped by SV2 such as inversions and non-
tandem duplications. These genotype likelihoods were
also used as quality metrics during the filtering of SV
callsett as described below.

We assessed the performance of each genotyper for
deletions and duplications across a range of sizes
and depending on sequence context (short tandem
repeats, segmental duplications, etc.), estimating the
FDR from Illumina 2.5M SNP array data on a sub-
set of 205 genomes using the Intensity Rank Sum test
implemented using the Structural Variation Toolkit.
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Based on these FDR estimates, we applied a range of
genotype likelihood filters on variants. For de novo SV
calling, more stringent SV2 genotype likelihood filters
were applied to safeguard against false positives in the
child or false negatives in the parents, including a min-
imum reference genotype likelihood. The final filtering
criteria are detailed in Table S3.

Genotype-likelihood thresholds for SV filtering were
determined based on estimates of FDR, which were
performed from Illumina 2.5M SNP array data on
a subset of 205 genomes using the Intensity Rank
Sum test implemented using the Structural Variation
Toolkit. SV2 designates SV calls as ’PASS’ or ’FAIL’
at two levels of stringency: ’standard’ and ’de novo’,
which are described in detail in our companion paper
[23]. Standard filters were used to generate to over-
all callset and for family based association testing.
The more stringent de novo filters were used for de
novo mutation calling. In addition, we included in the
consensus callset SVs, which passed genotype likeli-
hood thresholds for Lumpy and Manta, and thresholds
were selected based on FDR estimates for SVs across
a range of sizes and depending on sequence context
(short tandem repeats, segmental duplications, etc.).
FDR estimates for SV calls filtered at standard and
de novo stringency and genotype likelihood thresholds
for Lumpy and Manta are provided in Table S3.

Due to the requirements of this study for high geno-
typing accuracy, we have applied additional filtering
measures that were not used in a previous publication
from our group [20]. The FDR of variants intersect-
ing STRs was an order of magnitude higher than SVs
that did not; therefore more stringent genotype like-
lihood filters were applied to SVs overlapping STRs (
Table S3). Furthermore because STRs were depleted
in probes on the Illumina 2.5M SNP array, only 7.2%
of deletions and 12.9% of duplications overlapping an
STR had one or more probes, compared to 28.5% of
deletions and 56.3% of duplications that do not. FDR
estimates for these variants could be less accurate.
Therefore, for all analyses in this study, we have ex-
cluded SVs with breakpoints overlapping STRs. We
have also annotated these in the callset VCF (which
can be downloaded from NDAR study number 434),
and we suggest that these SVs be treated with cau-
tion. Hence, the number of deletions and duplications
reported in the SV callset here is lower than in our
previous publication [20].

Deletions and duplications called by Lumpy and
Manta were overrepresented by breakpoints that over-
lap with short tandem repeats (STRs) 21.75 and 49.6%
respectively compared to the 2.3% of the genome that
consists of STR. The FDR of variants intersecting
STRs was also an order of magnitude higher than SVs

that did not; therefore more stringent genotype like-
lihood filters were applied to SVs overlapping STRs
(Table S3). Furthermore because STRs were depleted
in probes on the Illumina 2.5M SNP array, only 7.2%
of deletions and 12.9% of duplications overlapping an
STR had one or more probes, compared to 28.5% of
deletions and 56.3% of duplications that do not. FDR
estimates for these variants could be less accurate. It
is therefore suggested that these SVs be treated with
caution (they are annotated in the callset VCF, which
can be downloaded from NDAR study no. 434). We
have excluded SVs with breakpoints overlapping STRs
for all analyses. Due the high stringency filters that
were applied to this subset of variants, the number of
deletions and duplications reported in the SV callset
here is lower than in our previous publication [19, 20].

In total we detected 11.87 million alleles from 89,123
distinct loci encompassing 19.4% of the GRCh37
(hg19) release of the ’mappable’ reference human
genome (0.497/2.57Gb, excluding SVs larger than
1Mb, which are likely to be pathogenic and would con-
tribute disproportionately to this estimate, Table S2).
12.5% (320Mb) of the reference genome was deleted
and 7.3% (186Mb) duplicated in our cohort of 829
families.

De novo calling and phasing
De novo SVs were called if they occurred in a child
and were genotyped reference in both parents and
the parent allele frequency for the variant was less
than 1%. We also applied more stringent SV2 geno-
type likelihood filters for de novo SVs and TDT anal-
yses, which are detailed in Table S3. The average
rate of Mendelian errors in the callset as a whole for
deletions and duplications was 0.99% (95% CI: 0.03)
and 4.66% (95% CI: 0.15) respectively (Figure S4).
De novo genotype likelihood filters applied to variants
with parent allele frequencies <1% reduced the rate to
0.21% (95% CI: 0.1) for deletions and 0.5% (95% CI:
0.2) for duplications.

SV validation
We validated large putative de novo deletions and du-
plications using an in silico SNP-based approach that
utilizes read depth from the VCF files from GATK
Haplotype Caller. For each SNP we normalized allelic
read depth relative to the genome average for refer-
ence / alternate alleles, and calculated a z-score for
each SNP. We also calculated the B allele frequency
(BAF) by taking the average of the allele (reference or
alternate) with the fewest number of supporting reads
across the locus. Since deletions are hemizygous the
expected BAF is 0 (unless the mutation is mosaic, see
below). For duplications we calculated the BAF only
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for heterozygote SNPs, which have an expected BAF of
0.33 for autosomal variants. If the child showed an av-
erage elevated or depleted SNP read depth more than
one standard deviation from both parents, and a BAF
consistent with the called SV type, and / or the variant
could be phased, then the SV was designated as valid.
Furthermore this SNP data was used to determine
the parent of origin, by performing a paired t-test on
phased SNP allelic depth within the locus. We plotted
the validation results for each member of the trio using
the R package CNVplot, which was developed in house
(https://github.com/dantaki/CNVplot). The plots
can be viewed by clicking on hyperlinks in Tables S7,
S10, and S13. This approach is orthogonal to the
SV calling steps above, which do not phase variants,
calculate their BAF, or estimate coverage using SNP
data.

Small deletions, duplications, inversions, complex
SVs, and MEIs were validated using PCR. Both de
novo inversion calls were validated. We attempted
PCR validation on 13 de novo Alu elements, all of
which validated as de novo. Alu insertions have poly-
A tails; we therefore used a lower extension tempera-
ture (65◦C), because A/T rich sequences have a low
melting temperature [61]. We also used longer exten-
sion times (90 seconds) to an otherwise standard PCR
protocol.

Oxford Nanopore Validation
Recurrent deletion of the LEO1 locus were validated
and fine mapped by single molecule sequencing. Dele-
tions and wild type sequence were amplified by long
range PCR in three families with LEO1 deletions
(14-59, F0182, and F0208). We performed reactions
in a volume of 10µl PCR, containing contained 20ng
of patient genomic DNA, 0.4µM forward and reverse
primers and LongAmp R© Taq 2X Master Mix (New
England BioLabs, M0287L). We gel-purified PCR am-
plicons and barcoded them using Oxford Nanopore
Technologies’ (ONT) Native Barcoding Kit 1D (EXP-
NBD103) and added sequencing adapters using Liga-
tion Sequencing Kit 1D (SQK-LSK108). We ran se-
quencing libraries for 48 hours on ONT’s MinION
Mk1B, using the SpotON Flow Cell Mk I (R9.4, FLO-
SPOTR9) and MinKNOW software (v.1.3.30). In to-
tal, we generated approximately 2.3Gb of fasta data.
We applied a quality and length filter was applied to
the unaligned reads and removed those with a mean
quality score of 8.5 or less, or which differed from
the expected amplicon length by 2kb or more. Using
BWA-mem (v.0.7.15-r1140) [54] with the ’-x ont2d -M’
flags we aligned reads to the human genome (hg19),
and filtered to keep those that overlapped the ampli-
con region. Regions of high coverage were defined as

those areas where the coverage was 20% or higher of
the maximum coverage for that amplicon. For each
of the deletion amplicons, we analysed the coverage
profile to determine putative deletion endpoints, and
used these endpoints to generate a putative haplotype
sequence using the reference genome. We also gen-
erated a corresponding wild-type haplotype. We re-
aligned reads using BWA-mem against these haplo-
types and then filtered read that did not align to the
expected haplotype or that covered less than 95% of
the high coverage regions. We fed the alignments for
the top 100 reads, as judged by read quality score, into
nanopolish (v.0.6-dev, commit 8be00b94182, https:

//github.com/jts/nanopolish/) [62] to generate a
consensus, and called SNPs using Mummer [63]. The
consensus fasta sequences can be downloaded from
NDAR.

Evaluation of SV calling across data from multiple
sequencing centers
The average SV numbers for each class of SV were sim-
ilar between cohorts sequenced at different sequencing
centers (Table S1). We compared SV calls for one in-
dividual (REACH000236) who was sequenced twice,
on the Illumina HiSeq 2500 with 100bp reads (at 43X
coverage) and on the Illumina HiSeq X with 150bp
reads (also at 43X coverage). Since the coverage is the
same between the two samples but the read length is
50% longer on the HiSeq X, this sample has only 2/3
as many reads when sequenced on the HiSeq X. This
affects SV calling for two reasons, there will be on aver-
age more split reads supporting each call on the HiSeq
X, but fewer discordant paired-end reads. The overlap
between the SVs called on each platform in this sample
ranged from 66-96% for each SV type (Figure S9).

Investigating the intolerance of genetic functional
elements to structural variation
We investigated the enrichment/depletion of private
deletions, duplications, and mobile element insertions
within specific genomic features compared to a ran-
dom distribution of SVs, we shuffled the position of
sites that were private to families (i.e. observed in only
one parent) across the genome using BedTools [64],
while excluding overlap with regions of the genome
that cannot be sequenced with short reads. We counted
the number of times where a shuffled SV overlaps
(at least 1bp) the following genomic features: protein
coding exons, transcription start sites (TSS), 5’UTRs,
3’UTRs, promoters, noncoding RNAs, enhancers, con-
served noncoding regions, human accelerated regions,
CTCF binding sites, exon flanking (one breakpoint
within 100bp of an exon), 1kb upstream, 1kb down-
stream, and introns. Events that overlapped multiple
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features were prioritized in the order above, so for ex-
ample if a variant overlapped a protein coding exon, a
3’UTR and an intron, it is counted as protein coding
but not 3’UTR or intronic. Each feature is explained
in detail below and we’ve summarized each in a table
included as part of Table S4. We performed 10,000
permutations and compared the observed overlap to
the expected overlap. P values were corrected using a
Benjamini-Hochberg false-discovery rate adjustment.

Definitions of gene disrupting SVs versus noncoding

Gene disrupting deletions were defined as those that
directly disrupted at least one protein coding exon
from one transcript of a gene (transcripts were ex-
tracted from hg19 refgene). Noncoding deletions could
delete UTRs, introns, enhancers, or promoters of
genes, but not protein coding exonic sequence or the
start position of the first exon of a transcript. Protein
coding duplications were divided into four categories.
Whole gene duplications encompassed at least one full
length transcript of a gene. Internal exon duplications
intersected at least one protein coding exon internal
to a transcript, but not the UTRs. Duplications that
intersected at least one exon and with one breakpoint
outside of the gene and the other internal to the gene
were divided into two categories, those that encom-
passed the 5’UTR (and promoter), and those that
encompassed the 3’UTR. Gene disrupting inversions
were classified as variants that either had one or both
breakpoints inside a protein coding exon of a gene, or
that had one breakpoint in an intron of a gene and the
other breakpoint either outside of that gene or in an-
other intron. Inversions that inverted an entire gene or
genes but had intergenic breakpoints were considered
noncoding.

Definition and selection of noncoding elements

Transcription start sites, 3’UTRs, and 5’UTRs were
defined using full-length protein-coding transcripts
from RefSeq. We defined two types of noncoding
RNAs, micro-RNAs and natural antisense transcripts.
Human micro-RNAs were downloaded from miRBase
(v21) [65], lifted over to hg19 annotated to genes if
they were intronic in a sense orientation and therefore
transcribed with the gene itself. We assigned exons of
natural antisense transcripts (NATs) to genes if they
were transcribed in an antisense direction and over-
lapped with a gene. NAT data was downloaded from
GENCODE v25 (only including transcripts with sup-
port level of 1, 2 or 3) [66].

Conserved noncoding regions were defined from
two studies; one that defined ultraconserved elements
≥100bp conserved in human, mouse and rat genomes

[67], and the other that defined ultrasensitive noncod-
ing regions with almost as much selective constraint
as coding genes [68].

We defined promoters and enhancers using fe-
tal brain data Epigenomics Roadmap Project and
data from ENCODE [32]. The Epigenomics Roadmap
Project integrated combinatorial interactions between
five different chromatin marks to define 15 chromatin
states using a Hidden Markov Model algorithm called
chromHMM v.1.10 [69] (http://egg2.wustl.edu/
roadmap/web_portal/chr_state_learning.html).

Four states were used to define promoters, ac-
tive transcription start site (1 TssA), TSS flank
(2 TssAFlnk), bivalent TSS (10 TssBiv), and bivalent
TSS flank (11 BivFlnk). Three states were used to de-
fine fetal brain enhancers, genic enhancer (6 EnhG),
enhancer (7 Enh), and bivalent enhancer (12 EnhBiv).

For the Epigenomics Roadmap Project data we
defined fetal brain promoters/enhancers using the
intersection of male and female fetal brain tissue
(epigenomes: E081 and E082). We defined adult
brain promoters/enhancers using the intersection of
epigenomes from eight brain regions (E067 (Angu-
lar gyrus), E068 (Anterior Caudate), E069 (Cingulate
Gyrus), E070 (Germinal Matrix), E071 (Hippocam-
pus), E071 (Inferior Temporal Lobe), E073 (Dorsolat-
eral Prefrontal Cortex), and E074 (Substantia Nigra)),
excluding any elements that intersected with those in
fetal brain.

ENCODE enhancers and promoters were defined
based on chromatin state segmentations from six hu-
man cell lines (GM12878, K562, H1-hESC, HeLa-S3,
HepG2, and HUVEC), which integrated ENCODE
ChIP-seq, DNase-seq, and FAIRE-seq data from two
algorithms (chromHMM and Segway) to segment the
genome into seven states [69, 70]. Data for all six cell
types was downloaded from UCSC genome browser,
two states were used to defined ENCODE promoters,
predicted promoter or transcription start site (state:
TSS), predicted promoter flanking region (state: PF).
One state was used to define ENCODE enhancers, pre-
dicted strong enhancer (State: E). ENCODE CTCF
enriched elements were used to define CTCF binding
sites (State: CTCF). Promoters and Enhancers were
assigned to genes based on proximity, if they inter-
sected or were within 10kb of the transcription start
site of an isoform of the gene.

Assigning enhancers to genes based purely on prox-
imity is not the most effective approach, as the ma-
jority of annotated enhancers do not interact with
the nearest gene [71, 50]. We therefore implemented
TargetFinder, a machine-learning algorithm that an-
notates to genes with an FDR ≤15% by integrating
features such as DNA methylation, histone marks,
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and cap analysis of gene expression (CAGE) data
to predict distal enhancers (distance 10kb-2Mb) that
interact with promoters [50]. We extracted all en-
hancers predicted to directly activate genes in six cell
types from ENCODE (GM12878, HeLa-S3, HUVEC,
IMR90, K562, and NHEK) [50]. We also attempted
to assign enhancers to genes using the correlation of
expression between enhancers and promoters within
500kb of each other using data from FANTOM5 [49].

We downloaded chromatin interaction analysis by
paired-end tag (ChIA-PET) data detailing the interac-
tome map between noncoding elements and transcrip-
tion start sites through CTCF or RNA polymerase II
interactions [33, 34]. For each interacting pair of el-
ements if one member of the pair overlapped a pro-
moter of a gene (within 10kb) we assigned its pair to
the target gene as a putative noncoding interacting
element. Finally we also tested fetal central nervous
system DNase hypersensitivity data [17] and ’human
accelerated regions’ that have undergone rapid evolu-
tion since the split from chimpanzees [47]. Both these
features were assigned to genes based on proximity as
for enhancers and promoters.

Defining variant-intolerant genes and annotating known
ASD genes
We categorized genes based on their probability of
being loss-of-function (LoF) intolerant (pLI) as as-
sessed by large-scale exome sequencing of populations
by the Exome Aggregation consortium (ExAC) [24].
We downloaded the data from EXAC release 0.3.1
(January 2016), and used the scores calculated using
a subset of the data that excluded individuals with
schizophrenia. The pLI score ranges from 0-1 for 18,421
genes, with higher scores indicating that a gene is more
intolerant to inactivating mutations.

Our set of known autism genes were taken from the
integration of ASD array data and exome sequencing of
the SSC cohort [9], and genes with an FDR ≤0.1 from
another large scale whole exome sequencing study [6].
In total there are 71 ASD associated genes.

Transmission Disequilibrium Test
For family-based association tests, we used SV2 geno-
type calls for SVs filtered at standard stringency.
We tested whether variants private to families in our
callset were transmitted to affected children or controls
more or less than expected by chance, using a two-
tailed haplotype-based group-wise transmission dise-
quilibrium test (gTDT) [26], assuming a dominant
model. We excluded variants smaller than 100bp or
overlapping STRs (≥50%) as it is challenging to vali-
date them or estimate their FDR. We further excluded
two families from this analysis, one family where the

parents DNA was cell line derived (MT 121), and one
family where the mother and child had an excess of
coverage based calls from ForestSV (F0226). Our anal-
ysis focused on genes with pLI scores ≥90th percentile,
which we determined are enriched for genes associated
with autism from published exome studies. We also
only tested features that were depleted in structural
variation from the callset permutation analyses above
as we hypothesize that these features will be enriched
for variants associated with autism.
P values were corrected for multiple testing using a

Benjamini-Hochberg false-discovery rate adjustment,
and both the coding and noncoding results detailed in
the main text pass a false discovery threshold of 1%.

To compare paternal and maternal transmission
rates to cases we performed a binomial test under the
assumption that 50% of transmitted variants should
derive from each parent. Case-control transmission
analyses were performed using a joint-probability bino-
mial test, by combining transmission of both cases and
controls into a single association test. We defined as-
sociation supporting transmission events as those that
were transmitted to cases or untransmitted to controls,
and transmission events not supporting association as
those that were untransmitted to cases or transmit-
ted to controls. We then performed a binomial test on
these two groups to calculate the joint probability.

Considering potential biases or technical artifacts in the
TDT
The transmission disequilibrium test requires accurate
genotyping of variants. Genotyping error can result in
the apparent biased transmission of parental variants
to offspring. For example false-positive SV calls in par-
ents or false negative genotype calls in children can
lead to an apparent under-transmission bias. For in-
stance, given an FDR of 2% for SV calls in parents, and
no transmission of the false calls, a rate of 48% trans-
mission would be consistent with random segregation.
This modest under-transmission bias, is not specific to
SVs, and is also apparent for single nucleotide vari-
ants genotyped using GATK [26]. Ascertainment bias
for rare SVs could potentially have similar effects. For
example, families with many children could be prone
to an overtransmission bias because variants present
in parents and multiple offspring could be better as-
certained than untransmitted variants present in only
one parent.

We have therefore evaluated the potential for geno-
typing error to lead to spurious results in the TDT
as part of a companion study [23] and in this study,
we further examined the rates of Mendelian error and
transmission to offspring for private SVs across a broad
size range (Figure S4). Our results suggest that pri-
vate >100 bp deletions and duplications respectively
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have low FDR (2.3% and 1.7%) and Mendelian error
rates (2.0% and 0.6%). As expected based on the 4%
FDR for deletions 100bp-1kb, there is a subtle (2.0%)
undertransmission bias, which is consistent with ran-
dom segregation of these variants (Figure S4). Since
only 2.7% of variants <100bp had probes on the Illu-
mina 2.5M SNP microarray we could not accurately
estimate the FDR; therefore these SVs were not in-
cluded in our analysis.

Our development of a machine-leaning genotyping
algorithm, SV2, has enabled us to obtain genotype
calls with high accuracy, thus eliminating such bias
for SVs [23]. As expected based on the FDR, there
is a subtle (1-2%) undertransmission bias for variants
<1kb (Table S6), No bias is apparent for SVs ≥1kb
(Table S6).

As an additional control in the TDT we also demon-
strate that there is no transmission bias for intronic
variants (which are not depleted in SVs), and we tested
all features in genes with pLI scores <90th percentile.
Both ’control’ sets of SVs were suitable as comparators
as they did not differ in terms of SV length, family-
size or genotype likelihoods of SVs in functionally con-
strained genes. We were therefore able to rule out a
systematic transmission bias as an explanation for our
results. Lastly, over-transmission of private coding and
non-coding SVs was specific to cases, not observed in
controls, and the association was replicated in an in-
dependent cohort.

Permutations of recurrent SVs
To permute the relative enrichment / depletion of SVs
overlapping the same functional elements (e.g. exons)
in different families, we permuted these variants across
the genome ensuring that permuted variants inter-
sected at least one functional element of a gene with a
pLI score ≥90th percentile using bedtools shuffle (by
implementing the -incl command). For analysis of cod-
ing variants we required that observed / permuted
variants hit any exon of the same gene to be con-
sidered recurrent. For noncoding analysis we required
that variants hit the same element (e.g. a 5’UTR from
the same transcript) to be considered recurrent. We
counted the number of times we observed a gene or
functional element was intersected by more than one
distinct SV and compared this to 10,000 permutations.

Testing the association of LEO1 de novo mutations
with ASD and DD
A series of 20 different studies have been published
that reported all de novo mutations detected across the
exome in cases. For a specific candidate locus in this
study we have investigated the potential association
with developmental disorders base on tests of de novo
mutation burden in a large combined sample of 13,391
subjects.

SV Burden
The burden of de novo structural variants between in-
dividuals with ASD in this study and the controls from
this study was assessed using a case-control permuta-
tion test implemented in PLINK [72].

Parental Mosaic Structural Variation
If one parent was genotyped as ’reference’ by SV2 but
had intermediate copy number estimates and / or low
levels of discordant paired-end / split read support for
the de novo variant, we considered them to be poten-
tially mosaic in that parent. We therefore validated
all of these variants with PCR and Sanger sequencing
and then estimated the levels of parental mosaicism
using a custom designed ddPCR assay with a FAM la-
beled probe that spanned the breakpoints, and a HEX
labeled RPP30 reference assay (BioRad laboratories).
We assessed the copy number of the deletion break-
point in the child, the putative mosaic parent, and the
other parent as a negative control.

Post-Zygotic Mosaic Structural Variation
We estimated the copy number of de novo copy number
variants using SV2, and if a de novo deletion showed
intermediate copy numbers (i.e. between 1 and 2) and
the BAF was consistent with heterozygosity within
the deletion region, this is suggestive of somatic mo-
saicism. We therefore phased heterozygous SNPs and
determined if paternal or maternal alleles had consis-
tently lower or higher allelic depth by performing a
paired T-test (or a binomial test in the case where
there was only one phased SNP). Standard copy num-
ber estimating ddPCR assays (BioRad Laboratories)
were performed to validate mosaics.

Mutational Clustering
To assess whether de novo SVs cluster with de novo
nucleotide substitutions or indels, we used a window
based permutation approach. We took windows of
100bp, 1kb, 10kb, 100kb, 1Mb, and 10Mb around the
breakpoints of de novo SVs and intersected the win-
dows with de novo SNVs and indels in the same indi-
viduals (de novo detection of SNVs and indels was per-
formed as described in our previous publication [20]).
We then shuffled the position of these windows in the
genome either randomly (excluding regions that were
filtered during SV calling) or across detected inher-
ited SV breakpoints using BedTools and calculated the
expected number of window overlapping DNMs using
100,000 permutations.

Overlap of Structural Variants with known regions
associated with developmental disorders
CNV regions associated with autism or schizophrenia
were taken from three large studies, detailed in Table
S7 [8, 9, 73].
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Fibroblast cell culture and quantitative RT-PCR
Dermal fibroblasts were obtained from the California
Institute for Regenerative Medicine (CIRM) (Oakland,
CA, USA) or obtained from N. Chi (University of Cal-
ifornia, San Diego). Samples used for analysis included
fibroblasts from F0182|REACH000322 (ASD proband
and deletion heterozygote), F0182|REACH000321 (fa-
ther, deletion heterozygote), and three unrelated con-
trol samples: CW60038, CW60044, and JS034. Cells
were recovered from cryogenic storage as per CIRM’s
protocol and cultured in Dulbecco’s modified eagle
medium (DMEM) supplemented with 10% fetal bovine
serum, 2 mM L-glutamine, 100µg/ml penicillin and
100µg/ml streptomycin (Thermo Fisher Scientific,
Waltham, MA, USA). Cells were maintained in an
incubator at 37◦C at 5% CO2 and harvested for RNA
isolation at passage three.

Total RNA was isolated using the Quick-RNA Mi-
croprep kit (Zymo Research, Irvine, CA, USA) proto-
col for adherent cells with in-column DNAse treat-
ment. cDNA was synthesized from 100ng of RNA
using random oligo primers as part of the High
Capacity cDNA Reverse Transcription kit (Applied
Biosystems, Foster City, CA, USA) according to the
manufacturer’s protocol. Multiplexed qPCR reactions
were conducted in triplicate for each sample us-
ing gene-specific predesigned PrimeTime R©. qPCR as-
says for LEO1 (Hs.PT.58.448164, FAM-labeled) and
the housekeeping gene HPRT1 (Hs.PT.58v.45621572,
HEX-labeled) (Integrated DNA Technologies, Coralville,
IA, USA) on a CFX Connect Real-Time PCR System
(Bio-Rad, Hercules, CA, USA) along with no-template
and no-reverse-transcription controls. Changes in gene
expression were calculated using the comparative CT
method [74] and the null hypothesis was assessed using
a Student’s two-tailed unpaired T-test.
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Figure S1 Structural Variant Discovery Pipeline. Flowchart detailing our custom pipeline for the discovery, genotyping, and
validation of structural variants and de novo mutations. SV = Structural Variant; MEI = Mobile Element Insertion; PCR =
Polymerase Chain Reaction.
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A

B

Figure S2 Number of deletions, duplications and inversions per individual plus their size distribution. A) Histogram of the size
distribution of deletions, duplications, and inversions per individual (log10 scale). B) Histogram of the number of deletions,
duplications, and inversions per individual.
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Figure S3 Callset overlap with 1000 Genomes Phase 3. A) Frequency of deletions, duplications, and inversions across parent allele
frequency bins, stratified on known variants (from 1000 Genomes), and novel variants (detected only in this study). B) Venn
diagrams of overlap of deletions, duplications, and inversions from our cohort with the 1000 Genomes
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Figure S4 SV calling accuracy. Bar charts illustrating the A) FDR, B) Mendelian error rates, and C) variant transmission rates
stratified on SV type (deletion and duplication) and SV length bins for private variants. Quality metrics are reported for all private

SVs in the callset filtered based on SV2 genotype likelihood at two levels of stringency (’standard’ and ’de novo’). Whiskers represent
95% confidence intervals.
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Figure S5 Functional impact of different classes of genic duplication. Diagrams illustrating how the functional impact of tandem
duplications depends on their location within a gene, in each case the position of the duplication is shown by a blue bar, horizontal
lines indicate intronic sequence, thin bars indicate UTRs and thick bars are protein coding exons; A) internal exon duplication, B)
exonic duplication including the 5’UTR (and promoter), C) exonic duplication including the 3’UTR.
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Figure S6 BLAT alignments from Oxford Nanopore sequencing of LEO1 deletions UCSC genome browser image showing BLAT
alignments of Oxford Nanopore long read sequences for three heterozygote deletions with corresponding wild type sequences. Black
bars show alignments with yellow lines indicating indels and red lines SNPs. Wild type (wt) consensus contigs are shown within the
breakpoint of the deletion. Deletion (del) contigs mapping either side of the breakpoints are linked with horizontal lines.
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Figure S7 De novo mutation rate in the cohorts Forest plot of the de novo mutation rate in the two cohorts from the present
study (REACH 2017 and SSC 2017) compared to previous whole genome sequencing and microarray studies.
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Figure S8 Mutational Clustering of SVs, Indels, and SNVs. One example of a complex mutation cluster are shown in the control
individual from the SSC, SSC09444 (alternate ID: 13874.s1). The 300kb zoomed in locus below the ideogram shows the positions of
de novo mutations relative to each other, an 82.3kb deletion is clustered with six SNVs upstream and two downstream of it. Gene
tracks below the mutation show the longest transcript of each gene within the locus, with arrows indicating the strand and bars
indicating the exons of genes.
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Figure S9 Overlap between SV calls made from one sample sequenced on two platforms. Sample REACH000236 was sequenced
at 43X coverage on both the Illumina HiSeq 2500 with 100bp reads and on the Illumina HiSeq X with 150bp reads. Venn diagrams
highlight the overlap for each SV type.
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