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Abstract

The circadian regulation of gene expression allows
plants and animals to anticipate predictable envi-
ronmental changes. While the influence of the cir-
cadian clock has recently been shown to extend to
ribosome biogenesis, the dynamics and regulation of
the many small nucleolar RNA that are required in
pre-ribosomal RNA folding and modification are un-
known. Using a novel computational method, we
show that 18S and 28S pre-rRNA are subject to
circadian regulation in a nuclear RNA sequencing
time course. A population of snoRNA with circa-
dian expression is identified that is functionally as-
sociated with rRNA modification. More generally,
we find the abundance of snoRNA known to mod-
ify 18S and 28S to be inversely correlated with the
abundance of their target. Cyclic patterns in the ex-
pression of a number of snoRNA indicate a coordi-
nation with rRNA maturation, potentially through
an upregulation in their biogenesis, or their release
from mature rRNA at the end of the previous cycle
of rRNA maturation, in antiphase with the diurnal
peak in pre-rRNA. Few cyclic snoRNA have cyclic
host genes, indicating the action of regulatory mech-
anisms in addition to transcriptional activation of
the host gene. For highly-expressed independently
transcribed snoRNA, we find a characteristic RNA
polymerase II and H3K4me3 signature that corre-
lates with mean snoRNA expression over the day.

Key index words: circadian rhythms; small nu-
cleolar RNA; noncoding RNA; RNA dynamics;

1 Introduction

Circadian rhythms in animal physiology and
metabolism anticipate predictable diurnal variations
in the environment [1, 2]. In mammals, the mas-

ter clock is located in the hypothalamic suprachias-
matic nucleus (SCN) region of the brain. Cells and
peripheral organs have autonomous oscillators coor-
dinated with the SCN through hormonal signals [3].
The molecular basis of these cycles is well under-
stood: The Clock:Bmal1 heterodimer activates the
transcription of Per and Cry genes, these proteins
then repress Clock and Bmal1 transcription [2, 3].
Despite Clock:Bmal1 binding its targets in a narrow
time window, 6 hrs after dawn in mouse, the tar-
geted genes peak in expression at varying times [4].
Recent genome-wide sequencing studies of nascent
and mature mRNA have shown that rhythmic pre-
mRNA transcription is not necessarily followed by
rhythmic mRNA levels, and that rhythms in mRNA
expression are observed in genes lacking rhythmic
transcription [5]. In addition, oscillations in protein
levels and phosphorylation states give further evi-
dence for circadian regulation operating at all levels
from transcription to translation, splicing and the
maintenance of transcript stability [6, 7].

Ribosome biogenesis has also been shown to be
influenced by the circadian clock through the tran-
scription of translation initiation factors, ribosomal
proteins and ribosomal RNAs [8]. For example, in
mouse, Rps18 and Rpl30 mRNA expression in the
polysomal RNA fraction peaks at 14-22 hrs after
dawn [8]. The 45S pre-rRNA peaks around the
middle of the day and is synchronised with riboso-
mal proteins potentially through UBF1 binding [8].
However, little is known about the dynamics of the
complex process of rRNA biogenesis across the cir-
cadian cycle, or the regulation of the many small
nucleolar RNAs (snoRNAs) that support the fold-
ing and modification of rRNA precursors.

Small nucleolar RNA are short noncoding RNAs
with a conserved role in ribosome biogenesis. SnoR-
NAs are found in both eukaryotes and archaea in-
dicating an ancient origin [9]. In mammals, many
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of the currently characterised snoRNA are located
in the introns of protein-coding genes, from which
they are processed after splicing and debranching
of the intron lariat [10]. SnoRNA are also found
embedded within annotated noncoding host genes
(named processed transcripts in current genome bio-
type annotations), lincRNAs, and in nongenic re-
gions. Two classes of snoRNA have been defined,
box C/D and box H/ACA, guiding the methylation
of rRNA and its pseudouridylation respectively. Box
C/D snoRNAs have an additional role in the cleav-
age and folding of pre-rRNA. However, numerous
orphan snoRNAs outside of these two classes are
also known to exist in mammalian genomes, and a
variety of novel functional roles for snoRNAs have
also emerged. Suggested non canonical functions
of snoRNA include the cross-modification of other
snoRNA, binding to other ncRNAs (e.g. 7SK), the
editing and splicing of mRNA, association with ac-
cessible chromatin and as precursors for miRNA [10].
A potential role for snoRNA in circadian metabolism
in mouse and human has also been suggested [11],
and snoRNA host genes in Drosophila have been
shown to oscillate [12] but, to date, the extent of cir-
cadian dynamics across the diversity of mammalian
snoRNA transcripts is unknown.

Here we take advantage of unique nascent (poly A-
) and mature (poly A+) RNA sequencing data sets
to explore the expression dynamics of ribosome bio-
genesis in mouse liver. We show that nascent RNA-
seq data is a rich resource that reveals both snoRNA
and pre-rRNA dynamics, and using a new approach
to detect periodic expression we reveal novel subpop-
ulations of circadian snoRNA and a distinct subpop-
ulation with with time-varying expression greatly in
excess of their host genes. Additional data on chro-
matin state gives further novel insights into snoRNA
biogenesis. Overall these data suggest that snoR-
NAs regulated with circadian periodicity are tightly
integrated with ribosome biogenesis in mammalian
cells.

2 Results

We quantify the remarkable variations in snoRNA,
host mRNA and rRNA abundance, and explore
their interrelationships, in next generation sequenc-
ing data generated across the circadian cycle in
mouse liver [5, 13]. Cyclical variations in microRNA
expression across the circadian cycle have been noted

[14, 15], as have such variations in lincRNA [5], but
to date such changes in snoRNA and rRNA have
not been revealed. We adopt the current mouse as-
sembly (Ensembl GRCm38) and annotation (84) for
coding and noncoding genes. Approximately 1500
snoRNA genes are included, many from RFAM com-
putational predictions (which have had a controver-
sial status [16]). Thus we explore the current catalog
of snoRNA gene expression in a diverse range of se-
quencing data from mouse.

2.1 SnoRNA are a major constituent of
nascent sequencing data

Nascent sequencing captures nuclear RNA prior to
the formation of the 3’ end [5]: The protocol de-
pleted polyadenylated RNA but rRNA was not re-
moved. Thus we found the nascent sequencing data
contained reads mapping to most RNA species, in-
cluding those that are not polyadenylated in their
mature form such as snoRNA and rRNA. Two bio-
logical samples were obtained at six time points from
Zeitgeber Time 0 (ZT0, dawn) to ZT20 (20 hours af-
ter dawn) from 12 different mice (see [5] for details).

The abundance of RNA transcripts was quanti-
fied in TPM using the Kallisto pseudo-alignment
technique [17]. This requires the set of transcripts
of interest to be compiled (Ensembl GRCm38) to
which we added the 5.8S, 18S and 28S pre-rRNA
sequences (snOPY database [18]). The large pro-
portions of snoRNA and rRNA species, and their
variation over the day in nascent seq data were un-
expected but readily apparent (Fig 1a). It was evi-
dent that mRNA constituted between 16% and 27%
of the RNA in nascent sequencing across the day,
with rRNA, snoRNA and snRNA all accounting for
at least 15% of sequenced RNA. In contrast, mRNA
constituted over 94% of RNA abundance in conven-
tional RNA sequencing data (Fig 1b).

2.2 SnoRNA hosted by protein-coding
genes and nongenic snoRNA are
extensively expressed in mouse
liver

There is a considerable discrepancy between the
number of snoRNA genes curated in the literature
and the number annotated as snoRNA in Ensembl,
based on a computational prediction protocol. The
number of snoRNA genes in mammals has been esti-
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Figure 1: All major categories of non coding RNA are captured by nascent sequencing.
a Stacked bar charts show the total expression of five selected RNA biotypes in nascent sequencing, and in
RNA sequencing data b, at 6 time points. Quantification is in TPM and hence sums to 106 at each time
point. c Chart depicts the numbers of small nucleolar RNAs annotated in Ensembl classified according to
host gene biotype, designated antisense if on the opposite strand to an overlapping gene, else designated
nongenic. d The number of small nucleolar RNAs categorised as in c that are both expressed and identifiable
by a uniquely mapping read in nascent sequencing data.

mated as 216 (H. sapiens) [19], which is only a frac-
tion of the 1484 snoRNA annotated in the mouse as-
sembly GRCm38 (mm10). To address whether these
genes are expressed in mouse liver, for each of the 12
sequencing datasets, we selected a lower threshold of
TPM expression as the first quartile (0.7-1.6 TPM)
and considered all genes with expression above this
threshold in any dataset to be expressed. As an ad-
ditional test, we required at least a single uniquely-
mapping read per transcript to call a snoRNA iden-
tifiable.

The categorisation of all Ensembl snoRNAs ac-
cording to the gene type of the host gene (if any),
and the numbers expressed in nascent sequencing are
indicated in Figs 1c and 1d. Overall, we found 516
snoRNA (37%) to be both expressed and identifi-

able in mouse liver. For snoRNA hosted by protein-
coding genes the fraction rises to 83%. A smaller
proportion of antisense snoRNA were expressed and
identifiable, but the fraction was still surprisingly
high at 65%. In contrast, only 12% of other nongenic
snoRNA meet these criteria. As this analysis was
based on the alignment of reads to sequences, dupli-
cate sequences had to be eliminated (101 snoRNA
genes had one or more duplicates and were replaced
by 17 exemplars to give a total of 1400 unique genes).
Supplementary File 1 lists the snoRNA in mm10
along with their locus, that of their host, RFam fam-
ily, snoRNA type, equivalence class and whether ex-
pressed or not.

We then examined whether nongenic snoRNA
tend to have higher sequence similarity with other
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Figure 2: SnoRNA expression varies considerably over time.
a Normalised read depth in nascent sequencing data over the Hspa8 locus at 6 time points. The locations
of Hspa8 exons are shown by black bars, snoRNA by blue bars. Nascent sequencing depth was 70M-157M
and coverage was normalised to 108. b Scatterplot of snoRNA expression against host gene expression at
ZT0. Points above the solid black line represent snoRNA with abundance greater than their host, and those
above dashed black line have expression 10 times greater than their host. c Scatterplot of log fold change in
snoRNA expression (b value calculated by sleuth) against mean expression over the time series. In b c, blue
symbols indicate snoRNA with expression at least than ten times that of their host gene at all time points,
red indicates a significant change in expression (adjusted p ≤0.05), and purple shows snoRNA satisfying
both criteria. d Heatmap of the expression of 28S rRNA and snoRNA known to modify 28S. Scale is log 10
difference in TPM from minimum. 28S rRNA (top row) has peak expression at ZT12-ZT16 whereas snoRNA
known to interact with 28S have minimum expression at this time. Box H/ACA snoRNA are indicated by
blue side colours and box C/D by green. e f Scatterplots of the expression of selected 28S-modifying snoRNA
against 28S expression for the 12 samples available (2 replicates at six time points). e Scatterplot of Snord92
(host gene Wdr43) and f Snora52 (host gene Rplp2) against 28S expression, lines show linear regressions for
snoRNA (red) and host gene (grey).

snoRNA as an explanation of their lack of identi-
fiability. Using Blast, we built sets of genes with
sequence alignments from 85% to 100% and found

that snoRNA with processed transcript hosts were
more prevalent than expected in the 85% similar-
ity set and that nongenic snoRNA were not (Fig
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S1). The number of identifiable genes (those with
uniquely-mapping reads) reduced as sequence simi-
larity increased, and in the 85% similarity set anti-
sense snoRNA were more identifiable than expected
and nongenic snoRNA less so (Fig S1). However,
at 85% similarity, only 71 nongenic genes were not
identifiable, and so sequence similarity appeared to
be only a small factor in the eight fold reduction
in the number of nongenic snoRNA that were actu-
ally expressed and identifiable: This class of snoRNA
does not appear to be active in mouse liver.

2.3 A subpopulation of snoRNA have
time-varying expression greatly in
excess of their host gene

The difference in expression between genic snoRNA
and their host genes was a striking feature of the
nascent sequencing data. For example, Snord14c
and Snord14d were 20 times more highly expressed
than their host Hspa8 at certain times of the day
(Figs 2a and S2). Many snoRNA were consistently
more highly expressed than their nascent host gene,
indeed, 56 were at least 10 times more greatly ex-
pressed than their host gene at all time points (Fig
2b). To assess the change in expression in these
genes we might consider the fold change between
maximum and minimum values over the time course.
However, simply requiring a threshold of a 2-fold
change in mean expression would lead to the conclu-
sions that 63% of all snoRNA with a host showed
differential expression, and that a comparable frac-
tion (66%) of snoRNA with expression in excess
of their host were differentially expressed. In fact,
testing for differential expression using the Wald
test (implemented in sleuth [20]) such that vari-
ability between replicates is accounted for led to
a very different conclusion: 4% of snoRNA with a
host (21 genes) showed significant changes and 25%
of snoRNA with expression in excess of their host
were differentially expressed. The 21 genes identi-
fied had adjusted p values ≤0.05 after accounting
for the testing of 98327 transcripts, and the same set
were significant if we considered only snoRNA and
chose a conservative threshold of 0.005 after Ben-
jamini Hochberg correction (a conservative thresh-
old is warranted to account for the selection of min-
imum and maximum values over the time course).
The extent and significance of the fold changes in
snoRNA expression over the day are indicated in Fig
2c by the plot of effect size (the b value computed by

sleuth, proportional to log fold change) over the time
course against mean expression. Known modifiers
of 28S are among the 14 genes satisfying both crite-
ria in Figs 2b and 2c: Snord17, Snora23, Snora65,
Snora74a, and Gm23946. (Supplementary File 2
lists these genes and provides their expression data.)
These properties of snoRNA abundance raise ques-
tions as to the relationship between snoRNA and the
rRNA they modify, and raise the possibility that
some snoRNA may be cyclically expressed. The
limitations of assessing circadian regulation through
comparisons of maximal and minimal expression are
also evident and we address these below.

2.4 The expression of snoRNA known
to modify 18S and 28S rRNA is
negatively correlated with rRNA
expression

To obtain a reliable functional annotation of
snoRNA, we found exact sequence matches for En-
sembl genes in the snOPY database [18] and thereby
accessed curated data on the modification of rRNA
by snoRNA. This resource also provided informa-
tive names for many mouse genes whose names in
Ensembl begin ‘Gm’ (following snOPY usage, these
names are capitalised). Utilising this information,
we observed many snoRNA known to modify 18S
and 28S rRNA to have minimum expression at ZT12
or ZT16, that is, precisely the time when 18S and
28S expression reached a peak (Figs 2d and S3) and
to increase thereafter. To quantify this unexpected
relationship we derived linear models for the expres-
sion of each snoRNA as a function of 28S expression,
and similarly for the host genes of these snoRNA and
28S expression. The scatterplots of Figs 2e and 2f
illustrate two examples where snoRNA expression is
negatively correlated with 28S and the host gene is
positively correlated with 28S. To assess the statis-
tical significance of these correlations, we compared
the number of snoRNA targeting 28S that are neg-
atively correlated with 28S with the numbers nega-
tively correlated in the remainder of expressed genes
at a specified value of R2 using the hypergeometric
test (and similarly with positively correlated genes,
and for host genes). Rather than select a value of R2

apriori, we assessed overrepresentation for R2 from 0
to 1, and found the negative correlation of snoRNA
to be significant up to an R2 of 0.56 (p=0.009). The
fractions of snoRNA and host genes with positive
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Figure 3: A novel cosine model better fits nascent seq data for known clock genes.
Expression of twelve established clock genes plotted as a polygons (blue shaded areas) between the maximum
replicate data values across the time series and their minimum. Black symbols are data values. The solid
lines are the best fit of the standard cosine model (black) and the cosineq model (blue) to the median of the
replicates at each time point.

and negative correlations to 28S are plotted in Fig
S4 where it can be seen that as R2 increases the
number of genes reaching this level of correlation re-
duces until there are insufficient genes to test. A
similar pattern is found for snoRNA modifying 18S.
It should be noted that to counteract the variation
in total rRNA, rRNA genes were removed and the
expression of other genes rescaled to 106 in the above
analysis. This analysis was repeated by quantifying
counts of uniquely mapping reads (see Methods) and
again we saw a striking increase in counts at ZT20
in comparison with ZT16 (Fig S5).

A positive correlation between nascent mRNA and
pre-rRNA potentially reflects coordinated transcrip-
tional regulation as reported for ribosomal protein
genes [8]. In contrast, the negative correlation be-
tween snoRNA and pre-rRNA expression implicates
post-transcriptional mechanisms that may include

intra-nuclear trafficking and release from the ribo-
some precursor.

2.5 Inference of circadian rhythms: A
novel method combining residual
error and standard deviation of
phase

To further analyse potential rhythmic oscillations
in snoRNA and host genes, we adopted an estab-
lished false discovery method based on Fourier anal-
ysis named F24 [21] (as used in [5]) as an initial filter.
Genes with p value for their F24 statistic of greater
than 0.2 were not considered further. Exploring al-
ternative mathematical models of circadian dynam-
ics we found that nascent expression data was better
fitted by a cosine function raised to a power, creating
a more peaked cycle, than a simple cosine function.
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The improvement in fit of the new model in compar-
ison with the standard cosine model for twelve clock
genes is illustrated in Fig 3. When assessing the
goodness of fit of circadian models to data we found
it important to account for the variability between
replicates both in the computational analysis and in
visualisation. The variability in expression between
replicates across the time series is readily perceived
by plotting curves between the upper values across
the time series, and similarly between the lower val-
ues, forming a polygon (as in Fig 3). The cosine
models were fitted to the median of the replicates at
each time point and so the cosine curve would ideally
be equally spaced between the upper and lower repli-
cates at each time point. Recall that each data point
is from a different mouse, hence the importance of
accounting for biological variability.

This modified cosine model with period 24 hrs,
with period 12 hrs and a linear model were fitted
to each time series to assess the fit of a true cir-
cadian rhythm, a rapidly oscillating signal (likely
noise given the sampling frequency of this data, but
potentially due to transcription factor binding [22])
and a gradual change in expression respectively. The
Bayesian evidence for each of the three models was
calculated using nested sampling [23, 24] and time
courses were designated circadian where the evi-
dence for the 24 hr cycle was ten times that for
the alternative models. The nested sampling algo-
rithm infers the phase and its standard deviation,
both of which are of interest in assessing rhyth-
mic behaviour. The likelihood function accounts
for the consistency between replicate data, giving
less weight to times where replicates differ more (see
Methods).

In line with comparable methods, 9% of protein
coding genes were found to be circadian. To com-
pare the results of our method with published re-
sults in more detail, the phase calculated by nested
sampling is plotted against the phase calculated by
the Fourier method in Fig S6 (a) for protein-coding
genes designated circadian in [5] (R2=0.53, p≤2e-
16). To further refine the set of circadian genes,
those whose phase could not be inferred accurately,
or whose fit to the cosine model was less good (as
determined by the standard deviation of the phase
and the residual (L1) error respectively, see Meth-
ods) were excluded. As these two measures can be
traded off, we defined a radial score that combines
them, and excluded the worst scoring 5% of these
circadian genes (Fig S6 (b)). The distribution of

phase values by our method and by the published
method (where both the quantification of expression
and phase calculation differ) are comparable (Fig S6
(c)). The range of values chosen for the power pa-
rameter (q) in the proposed cosine model is shown in
Fig S6 (d). Values of q greater than 1, the value of
the standard model, were chosen extensively. Plots
of nascent and RNA sequencing data and the fitted
models for 12 clock genes can be found in Fig S7.
Turning to snoRNA and their host genes, the fil-
tering and selection procedure yielded 43 circadian
snoRNA and 26 circadian host genes (Fig S6 (e)).
The absolute radial score threshold determined from
circadian genes was also applied in this case.

2.6 A subpopulation of snoRNA show
cyclical expression

Thirteen snoRNA located in introns were found to
be cyclically expressed, including Snord35b, Snord57
and Snord14d. The peak expression of these
snoRNA occurred across the day with some pref-
erence for the beginning or end of the day (Fig 4a).
Thirty nongenic snoRNA were cyclically expressed,
showing peak expression within a more defined pe-
riod 4-16hrs after dawn (Fig 4b). The distribution
of phase values (Fig 4c) illustrates the differing peak
times of these two populations of snoRNA. We next
looked for cyclically expressed host genes in both
nascent sequencing and RNA sequencing data and
identified 26 and 14 cyclic host genes respectively
(Fig S8). Of the 30 snoRNA whose host showed
cyclic expression in nascent seq data, two were found
to be cyclically expressed and we observed one of
these to be in anti-phase with its host and the other
to be in phase (Figs S9 and S10). Thus we found
only minimal overlap between snoRNA and host ex-
pression patterns possibly indicating that their cyclic
behaviour is regulated by mechanisms in addition
to transcriptional activation. The model parame-
ters for cyclical snoRNA and their host genes can be
found in Supplementary File 3.

As is apparent from Fig 4, few of the cyclical
snoRNA are currently designated ‘Snora’ or ‘Snord’
which indicates a lack of recognition of their sta-
tus in mouse. However, from the snOPY database
we identified SNORA21 (Gm25821), SNORA46
(Gm26493), SNORD88 (Gm26247), SNORD115
(Gm26337), and three SNORA17 genes (Gm25272,
Gm24607, and Gm24656) among the cyclic snoRNA
with host genes. Considering cyclic snoRNA with-
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Figure 4: Cyclically expressed snoRNAs.
a Heatmap of the expression of 13 snoRNAs with host genes that are inferred to be cyclic. b Heatmap of the
expression of 30 cyclic intergenic snoRNAs. Heatmap rows are ordered by the inferred phase of the cosine
function, box H/ACA snoRNA are indicated by blue side colours, and box C/D by green. Expression is
scaled to range from 0 to 10 (see Methods). c Histogram of the phase of snoRNA in a and in b.

out host genes, we identified SNORA63 (Gm23679),
SNORA71 (Gm22797), SNORD86 (Gm23706) and
seven SNORA17 genes (Gm22778, Gm26421,
Gm23910, Gm24375, Gm24556, Gm23674 and
Gm22670). Of note, genes in the SNORD88 and
SNORD115 families are associated with the regula-
tion of splicing [10].

The abundance of cyclic snoRNA was on average
1.5 times that of their host genes. Of these genes,

only SNORA46 (Gm26493) was among the set of
snoRNA with consistently high ratios of expression
relative to their host (at least ten times greater).
None of the cyclic snoRNA were among those found
to have statistically significant fold changes (Fig 2b)
thus these populations of snoRNA were disjoint.
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Figure 5: Ribosomal RNA, snoRNA and host gene expression.
Expression of 5.8S, 18S and 28S rRNA (top row), selected cyclic snoRNAs (middle row) and their respective
host genes (bottom row; Rps11 hosts Snord35b, Nop56 hosts Snord57 and Hspa8 hosts Snord14d) plotted
as polygons (blue shaded areas) between the maximum replicate data values across the time series and their
minimum. Where expression was inferred to be cyclic, the best fitting cosineq model is indicated by a solid
blue line. Notably, Snord57 modifies 18S and the protein of its host Nop56 is a component of the box C/D
ribonucleoprotein complex.

2.7 18S and 28S rRNA are cyclically
expressed

Applying the circadian modelling introduced above,
we next determined that the temporal variations
noted earlier in both 18S and 28S rRNA were in-
deed circadian, while 5.8S expression dynamics did
not pass the initial false discovery filtering step. The
cyclical patterns of these transcripts are shown in Fig
5 along with selected circadian snoRNAs (Snord35b,

Snord57 and Snord14d; middle row) and their re-
spective host genes (bottom row). Snord57 and
Snord14d are known to modify 18S rRNA and it
is readily seen that their expression profiles show
starkly contrasting phase.

Of the 10 cyclic snoRNA with host genes that
had matches in the snOPY database, four modify
28S: Snord35b, SNORA21, SNORA17 (Gm25272)
and SNORD88. Three modifiers of 18S were found
among the cyclic snoRNA with hosts: Snord57,
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Snord14d, and SNORA46. Thus, we found the ma-
jority of cyclic snoRNA with host genes to be associ-
ated with rRNA modification, however as the major-
ity of these genes modify 28S or 18S this number did
not constitute a statistical enrichment. The cyclic
snoRNA without hosts we found included SNORA17
(Gm24375) a modifier of 28S, and SNORA71, a
modifier of 18S.

2.8 Highly-expressed nongenic
snoRNA have a distinct chromatin
signature

Histone modifications H3K4me3 and H3K27ac have
been shown to vary rhythmically around gene pro-
moters in mouse liver [14], and the rhythmic re-
cruitment of PolII at the promoter has been demon-
strated to oscillate in phase with RNA polymerase II
(PolII) levels on the gene body indicating that it is
the recruitment of PolII rather than its release that is
critical to diurnal transcription [13]. A set of strong
circadian promoters has been proposed to drive cir-
cadian genes with high amplitude and high average
expression, and is associated with high paused PolII
levels (relative to H3K4me3) and the extension of
H3K4me3 into the gene body [25].

To investigate whether nongenic snoRNA have a
chromatin signature that might support their tran-
scription as independent genes, and to explore any
temporal variations indicative of circadian expres-
sion, we mapped the PolII and H3K4me3 time se-
ries data from mouse liver published by Le Martelot
[13] and located peaks at each time point, and in
the combined data using MACS2 [26]. The abun-
dance of PolII and H3K4me3 around clock gene
promoters, and the variation in these signals is
shown in Fig S11 for Per2 and Nr1d1. Consis-
tent with previous studies, a substantial peak in
PolII was observed at the gene start with peaks in
H3K4me3 downstream. Of the twelve clock genes ex-
amined, PolII levels decreased towards background
levels at one or more time points in three cases
(Per2, Dbp, and Npas2) whereas H3K4me3 levels
remained above background across the day in all
cases. We then examined the chromatin signature
of three snoRNA known to be independently tran-
scribed, namely, Rnu3a (U3), Snord13 and Snord118
[19, 27], and found a distinctive peak in PolII at
the gene start in all three cases (Figs 6 and S12).
A considerable temporal variation in this signal
was also apparent. These genes overlapped with

peaks in PolII and H3K4me3 called by MACS2 and
so we searched for other nongenic snoRNA that
shared these properties and found six: Snord104 and
SNORA76 (Gm22711) (which are clustered as in hu-
man [19]), Snora57 (reported to be monocistronic
in [18]), Snora17, Gm25501, and Gm23596 (which
are antisense to Ank2 and intergenic respectively).
In the cases of Rnu3a and Snord13, the upstream
peaks in H3K4me3 were over the start of an adja-
cent gene on the opposite strand (Gtf3c6 and Tti2
respectively). Although Snora17 has no annotated
host gene in the release of Ensembl we have adopted,
it overlaps Snhg7 in Refseq. The major peaks in the
chromatin signals around Snora17 were located over
the Refseq host gene start (with minor peaks over
the gene itself) which support the existence of the
host.

The eight snoRNA we characterise as indepen-
dently transcribed had higher PolII, H3K4me3 and
nascent seq expression than did nongenic snoRNA
that lack overlapping MACS2 peaks in PolII and
H3K4me3 (p≤2.7e-4 by Wilcoxon test). The input
PolII and H3K4me3 levels of these genes did not dif-
fer from that of the remaining nongenic snoRNA (to
determine an overlap the snoRNA gene locus was
extended by 200 bases, and the expression of these
extended features was quantified in RPKM). It is
readily evident in Fig S13 that these eight genes
form a distinct cluster of highly expressed snoRNA
with corresponding chromatin marks. In addition
we found Snord60 and Snora78 (which overlap short
antisense transcripts Rab26, and Snhg9 respectively)
to have similar chromatin signatures.

The PolII signal of each of the eight indepen-
dently transcribed snoRNA had a distinct minimum
at ZT6, and for all except Rnu3a there was a dip in
nascent seq expression at ZT8 relative to ZT4, fol-
lowed by an increase at ZT12 (Fig S14) and variable
expression thereafter. The differing sampling times
of these data made the assessment of any correla-
tions unreliable. The minimum PolII signal was at
least twice the background, and the log2 fold change
of the maximum signal (relative to the same back-
ground) was at least 1.4 greater than the minimum
which again indicated a notable temporal variation.
Snord13 was the most circadian with a F24 FDR
0.12 (three other genes also had p values less than
0.2). Our Bayesian method could not be applied to
the chromatin data as there were no replicates. None
of these snoRNA had cyclic expression in the nascent
seq data. However, the log2 fold change in nascent
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Figure 6: Independently transcribed snoRNA have a distinct chromatin signature.
Normalised read depth in a 2kb region centered on the snoRNA gene start, and oriented in the direction
of transcription, is shown for selected independently transcribed snoRNA for RNA Polymerase II (top row)
and for H3K4me3 ChIP sequencing data (bottom row) data at seven time points. A peak in PolII over the
gene and an adjacent peak in H3K4me3 are characteristic chromatin features.

expression was in the range 0.9-2.9 when maximum
and minimum expression over the day were com-
pared, and therefore temporal variation was evident
in all cases. The H3K4me3 signal dipped at ZT14
or ZT18 in six cases but with less pronounced fold
changes over background than for PolII (Fig S14).
Applying the F24 FDR test, we found three snoRNA
to have p values for H3K4me3 expression less than
0.2 (Rnu3a, Snord104 and Gm22711).

3 Discussion

Using novel computational statistical techniques we
have uncovered previously unrecognised patterns in
the abundance of nuclear pre-rRNAs and snoRNAs,
and correlations between them. A population of
snoRNA that were at least ten times as abundant
as their nascent host gene, some with statistically
significant diurnally-varying (but not cyclical) ex-
pression was identified. The expression of snoRNA
that modify 18S and 28S was typically in antiphase

with that of the target rRNA precursor, as evidenced
by negative correlations in abundance.

We found the expression of ribosome precur-
sors 18S and 28S rRNA to follow a circadian
rhythm in mammalian liver, peaking at ZT16, and
that snoRNA including Snord14d, Snord35b, and
Snord57 also had cyclical expression patterns in this
tissue. Snord57 is known to modify 18S and the
protein of its host gene, Nop56, is a component of
the box C/D ribonucleoprotein complex. Thus there
may be common underlying regulation that we are
now beginning to unravel. The scope for confirma-
tion of our findings in other time course data was
limited as gene expression is typically measured by
microarray, or by poly A+ and rRNA depleted RNA
sequencing. However, a small number of microarray
probes in [8] did match snoRNA and the expression
of three cyclical snoRNA was reproduced (Fig S15).

The intersection between circadian snoRNAs and
circadian host genes was minimal as only two cases
were found. In the first, snoRNA and host expres-
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sion were in antiphase, in the second, expression was
in phase. Given the overall proportions of cyclic
genes in these categories, there was no enrichment
for cyclic host genes among cyclic snoRNAs, hence
no evidence for cyclic transcription as the key regu-
lator. As for messenger RNA [2, 5], mechanisms in
addition to transcription must contribute the regu-
lation of cyclic nuclear snoRNAs.

The correlation of snoRNA host gene and rRNA
expression may be the result of co-regulation with
rRNA as reported for ribosomal protein genes [8].
An antiphase relationship between many snoRNA
and their pre-rRNA target is more surprising, and
may show an upregulation of snoRNA biogenesis in
anticipation of the increased rRNA levels that peak
around ZT16, or may be due to a release (or relo-
cation) of snoRNA from the previous cycle of rRNA
maturation that restores their abundance in the nu-
cleus. The rapid recovery in the expression of many
snoRNA seen at ZT20 (Figs 1d, S3 and S5) argue
for the latter.

Mature snoRNA are concentrated in the nucle-
olus, however they undergo extensive intranuclear
trafficking during biogenesis [28]. Indeed, the box
C/D motif functions as the nucleolar localisation sig-
nal [29]. In addition, snoRNAs have been found to
be involved in splicing outside of the nucleolus [30].
Human U8 (SNORD118) snoRNA precursors have
been found in cytoplasmic extracts in levels com-
parable with those in nuclear extracts [31] but this
does not appear to be a typical biogenesis pathway
[32]. Thus for a number of snoRNA, variation in
abundance may be attributed in part to cytoplas-
mic trafficking, and possibly to trafficking between
nuclear structures, as well as to their established role
in rRNA biogenesis.

Little is known about the role of the chromatin en-
vironment as a potential regulator of independently
transcribed snoRNA. We found peaks in RNA poly-
merase II over the gene locus and adjacent peaks
in H3K4me3 to be signatures of independently tran-
scribed snoRNA, and, in addition, mean PolII and
H3K4me3 levels correlated with mean snoRNA tran-
script abundance. Time-varying but noncyclic pat-
terns were found in these chromatin marks, with a
distinct dip in PolII at ZT6 that may indicate a com-
mon regulatory input for this class of snoRNA.

Differences in phase of clock-regulated genes in
different organs have been reported [3, 11, 33], offer-
ing insights into the coordination of the peripheral
clocks. Our methodology is particularly suited to

such investigations as it yields standard deviations
for key model parameters such as phase, and the po-
tential to model multiple data sets in an integrative
manner.

Materials and methods

Definition of cosine models
Circadian rhythms were modelled by a cosine func-
tion that varied between 0 and the maximum expres-
sion a, with peak expression (i.e. phase) p minutes
after time 0, raised to the power q (Eq 1).

y(t) = ((a(cos(p− 2πt/1440) + 1)/2)q (1)

Parameters a, p and q were constrained by the
following prior ranges:

1 ≤ a ≤ 10

0 ≤ p ≤ 2π or − π ≤ p ≤ π
0.8 ≤ q ≤ 3

All time series data were scaled such that the min-
imum median value was 0 and the maximum median
was 10, hence a could be at most 10. Two alterna-
tive constraints on p were used to ensure that the
fitted value of this parameter did not lie at the end
of the prior range. This might occur for p close to
0 or 2π in which case the alternative prior centered
on 0 (2π) was used −π ≤ p ≤ π.

The fit between the cosine models and expression
data was assessed using the nested sampling algo-
rithm to calculate the log of Bayesian evidence (also
known as the marginal likelihood), log Z [23] from
the likelihood function and the prior. All priors were
selected uniformly from a range bounded by maxi-
mum and minimum values given above. A likelihood
based on the l1-norm was defined by Eqs. 2 and 3
[34]. Equation 2 defines the normalising constant εt
as the expected value of the moduli of the difference
between the replicate observations at time t (xt) and
the value predicted by the kinetic model (µt). The
product of the probabilities of the median observa-
tion at time t (x̃t) defines the likelihood function for
a time series x of m samples (Eq. 3). Maximisation
of this likelihood minimises the sum of the moduli of
the residuals (rather than their squares) on the ba-
sis that the testable information is restricted to the
expected value of the modulus of the difference be-
tween theory and experiment. Should we know both
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the mean and variance, maximum entropy considera-
tions would lead instead to the Gaussian distribution
[34].

εt = 〈|xt − µt|〉 =

∫
|xt − µt|p(x)dNx (2)

p(x|{µt, εt}) =
m∏
t=1

1

2εt
exp

(
|x̃t − µt|

εt

)
(3)

Bayesian evidence values and model parameter es-
timates (and their standard deviations) were com-
puted using nested sampling for each time series
that passed an initial FDR test (the F24 test [21]
with p≤0.2). A cosine model with a 12 hour pe-
riod and a linear model were also fitted to each time
series. Time series where the log Z for the 24 hr co-
sine model was ten times greater than that for the
alternative models were considered circadian if, in
addition, they passed a test on the standard devia-
tion of phase and L1 error. The threshold for the
final radial score test was derived empirically from
genes found to be circadian in earlier studies [5]. R
code for nested sampling is provided in Supplemen-
tary File 4.

Processing of sequencing data

The gene annotation file for GRCm38 was down-
loaded from Ensembl (version 84) and processed
with bedtools [35] and in R to identify snoRNA, their
locus, snoRNA host genes and their locus, and gene
biotypes. SnoRNA - host gene assignments were
reviewed manually using the IGV genome browser.
Additional data on RFam families was downloaded
from the EBI, and data from the snoPY database
[18] was also utilised.

Nascent and RNA sequencing time series data
was downloaded from GEO GSE36916 [5]. Cod-
ing and non-coding transcripts for mouse genome
GRCm38 were downloaded from Ensembl to which
the 5.8S, 18S and 28S pre-rRNA sequences were
added from [18] to create an index file for quantifi-
cation in TPM using Kallisto [17]. TPM values for
genes were summed from those of their transcripts.
Reads were also mapped to Ensembl GRCm38 using
bowtie2 (using parameters -L 18 -N 1 -k 20; Fig S2)
[36]. Uniquely-mapping reads were extracted using
samtools [37], and unique read counts for snoRNA
genes found using htseq-count [38]. These counts
were used to determine snoRNA identifiability. Read

pileups (Fig 2) were created from multiply-mapped
reads using bedtools with output files subsequently
processed in R.

Following [5], the F24 test [21] was applied to the
Nascent and RNA time series data by concatenating
first and second replicates to create a series from ZT0
to ZT44. We constructed the replicated time series
in the same manner in order to have a sample at
ZT24 while not duplicating the ZT24 sample alone
(Figs S3 and S5 show ZT0-ZT24 only).

PolII, H3K4me3 and input time series data was
downloaded from GEO GSE35790 [13]. Reads were
mapped to Ensembl GRCm38 using bowtie2 (using
parameters -k 2) and uniquely-mapping reads were
extracted using samtools. MACS2 [26] was used to
find peaks in uniquely-mapping PolII and H3K4me3
reads at each time point, and in the combined data.
Peaks found in the combined data appeared most ro-
bust and were intersected with snoRNA locus using
bedtools. Read counts and pileups for genomic fea-
tures were obtained using bedtools and output files
were subsequently processed in R (Figs S6, S9, S10
and S11).

Authors contributions

SA and CAS designed the study. SA performed
the computational analysis. SA and CAS wrote the
manuscript. All authors gave final approval for pub-
lication.

Competing interests

We declare we have no competing interests.

Funding

SA and CAS were funded by the MRC Human Ge-
netics Unit core grant.

Acknowledgments

We acknowledge the assistance of Prof. Naoya Ken-
mochi of the Frontier Science Research Center, Uni-
versity of Miyazaki, Japan, with the functional an-
notation of mouse snoRNA sequences in the snOPY
database.

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2017. ; https://doi.org/10.1101/102533doi: bioRxiv preprint 

https://doi.org/10.1101/102533
http://creativecommons.org/licenses/by-nc-nd/4.0/


References
[1] Staiger, D., Shin, J., Johansson, M., and Davis,

S. J. (2013) The circadian clock goes genomic.
Genome Biology , 14, 208.

[2] Benegiamo, G., Brown, S. A., and Panda, S.
(2016) RNA dynamics in the control of circa-
dian rhythm. Yeo, G. W. (ed.), RNA Process-
ing , pp. 107–122, Springer.

[3] Yan, J., Wang, H., Liu, Y., and Shao, C. (2008)
Analysis of gene regulatory networks in the
mammalian circadian rhythm. PLoS Computa-
tional Biology , 4, e1000193–.

[4] Rey, G., Cesbron, F., Rougemont, J., Reinke,
H., Brunner, M., and Naef, F. (2011) Genome-
wide and phase-specific DNA-binding rhythms
of BMAL1 control circadian output functions in
mouse liver. PLoS Biology , 9, e1000595–.

[5] Menet, J. S., Rodriguez, J., Abruzzi, K. C., and
Rosbash, M. (2012) Nascent-Seq reveals novel
features of mouse circadian transcriptional reg-
ulation. eLife, 1, e00011–.

[6] McGlincy, N. J., Valomon, A., Chesham, J. E.,
Maywood, E. S., Hastings, M. H., and Ule, J.
(2012) Regulation of alternative splicing by the
circadian clock and food related cues. Genome
Biology , 13, R54.

[7] Reddy, A. B., et al. (2006) Circadian orchestra-
tion of the hepatic proteome. Current Biology ,
16, 1107–1115.

[8] Jouffe, C., Cretenet, G., Symul, L., Martin, E.,
Atger, F., Naef, F., and Gachon, F. (2012) The
circadian clock coordinates ribosome biogenesis.
PLoS Biology , 11, e1001455–.

[9] Bachellerie, J.-P., Cavaillé, J., and Hüttenhofer,
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