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Abstract

Neurons in mouse primary visual cortex (V1) are selective for particular properties of visual stimuli.
Locomotion causes a change in cortical state that leaves their selectivity unchanged but strengthens their
responses. Both locomotion and the change in cortical state are initiated by projections from the mesen-
cephalic locomotor region (MLR), the latter through a disinhibitory circuit in V1. The function served
by this change in cortical state is unknown. By recording simultaneously from a large number of single
neurons in alert mice viewing moving gratings, we investigated the relationship between locomotion and
the information contained within the neural population. We found that locomotion improved encoding of
visual stimuli in V1 by two mechanisms. First, locomotion-induced increases in firing rates enhanced the
mutual information between visual stimuli and single neuron responses over a fixed window of time. Sec-
ond, stimulus discriminability was improved, even for fixed population firing rates, because of a decrease in
noise correlations across the population during locomotion. These two mechanisms contributed differently
to improvements in discriminability across cortical layers, with changes in firing rates most important in
the upper layers and changes in noise correlations most important in layer V. Together, these changes
resulted in a three- to five-fold reduction in the time needed to precisely encode grating direction and ori-
entation. These results support the hypothesis that cortical state shifts during locomotion to accommodate
an increased load on the visual system when mice are moving.

Significance Statement. This paper contains
three novel findings about the representation of infor-
mation in neurons within the primary visual cortex
of the mouse. First, we show that locomotion reduces
by at least a factor of three the time needed for infor-
mation to accumulate in the visual cortex that allows
the distinction of different visual stimuli. Second, we
show that the effect of locomotion is to increase in-
formation in cells of all layers of the visual cortex.
Third we show that the means by which information
is enhanced by locomotion differs between the upper
layers, where the major effect is the increasing of fir-
ing rates, and in layer V, where the major effect is
the reduction in noise correlations.

1 Introduction

Behaviors such as locomotion, attention, and arousal
have been shown to modulate cortical state (Niell
and Stryker, 2010; Harris and Thiele, 2011; Ayaz et
al., 2013; Bennett et al., 2013; Polack et al., 2013;
Erisken et al., 2014; Reimer et al., 2014; Vinck et al.,
2015). Locomotion, for example, increases stimulus-
evoked neural firing in primary visual cortex of mice
(Niell and Stryker, 2010) and possibly in the lateral
geniculate nucleus (Niell and Stryker, 2010; Erisken
et al., 2014). In mouse V1, the increase in firing rates
is thought to be produced by disinhibiting pyrami-
dal cells via a circuit separate from that which con-
veys visual input to V1, but see (Polack et al., 2013;
Pakan et al., 2016; Dipoppa et al., 2016). Locomotion
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can be elicited via descending projections from the
mesencephalic locomotor region (MLR) (Shik et al.,
1966), which also send ascending projections to excite
neurons in the basal forebrain (Nauta and Keypers,
1964), from which cholinergic projections to V1 acti-
vate a specific disinhibitory circuit (Fu et al., 2014;
Pfeffer et al., 2013; Lee et al., 2014; Reimer et al.,
2014). Importantly, stimulation of MLR can drive a
change in cortical state even in the absence of overt
locomotion (Lee et al., 2014), and could thus coordi-
nate the initiation of locomotion and the change of
cortical state.

What are the ethological and computational func-
tions of this coordination? We hypothesize that the
purpose of coupling cortical-state modulation with
locomotion is to increase visually-relevant informa-
tion encoded in the V1 neural population during
periods in which visual information is expected to
rapidly change, such as during locomotion. Consis-
tent with this hypothesis, locomotion not only in-
creases single-neuron firing rates but also, via height-
ened arousal, decorrelates neural spiking (Erisken et
al., 2014; Vinck et al., 2015), both of which may con-
tribute to increasing information within V1. Studies
of single cells and mouse behavior further support
this hypothesis: locomotion increases the rate with
which mice detect low-contrast stimuli (Bennett et
al., 2013) and depolarizes neural membrane voltages
while decreasing their variability (Pinto et al., 2013;
Polack et al., 2013).

These results strengthen our expectation that lo-
comotion should increase the information content of
V1 activity. However, increasing information in sin-
gle neurons during electrical stimulation or behavior
does not ensure that locomotion will increase infor-
mation in the population of V1 neurons. For exam-
ple, spontaneous transitions from low to high popula-
tion firing rates in monkey V1 only shift information
content among cells and do not increase information
(Arandia-Romero et al., 2016).

Here, we use high-density microelectrode recording
to test the hypothesis that populations of neurons
in mouse V1 contain more information about visual
stimuli during locomotion by decoding the direction
and orientation of drifting gratings from single-trial
population responses in different behavioral condi-

tions. We find that locomotion does increase the in-
formation content of a neural population by at least
two mechanisms, raising the firing rates of individ-
ual neurons and reducing noise correlations between
neurons. These two mechanisms act cooperatively,
and are present across all cortical layers, though to
different extents. Increasing neural firing rates en-
hanced the information content of individual neurons
and improved visual stimulus discriminability in pop-
ulation responses. Furthermore, even for trials with
the same population firing rate, a decrease in pair-
wise noise correlations during locomotion further dif-
ferentiated the representation of different gratings by
V1. Together, these results suggest a computational
function for the locomotion-induced modulation of
neural firing and explain how this function is imple-
mented. Our findings are consistent with a recent re-
port that used 2-photon calcium imaging to study the
responses of upper-layer excitatory neurons, which
found increased information about the orientation of
grating stimuli during locomotion as a result of in-
creased firing rates, in particular for stimuli with high
spatial resolution (Mineault et al., 2016).

2 Methods

Animal procedures. Experiments were per-
formed on adult C57/B16 mice (age 2-6 months) of ei-
ther sex. The animals were maintained in the animal
facility at the University of California, San Francisco
(UCSF) and used in accordance with protocols ap-
proved by the UCSF Institutional Animal Care and
Use Committee. Animals were maintained on a 12 hr
light/12 hr dark cycle. Experiments in four mice were
performed during the light phase of the cycle, and in
four mice were performed during the dark phase of
the cycle. We found no consistent differences in the
results obtained from recording in animals in either
light phase, and so pooled results from all animals.

Preparation of mice for extracellular record-
ing on the spherical treadmill. Our spherical
treadmill was modified from the design described
in (Niell and Stryker, 2010). Briefly, a polystyrene
ball formed of two hollow 200 mm diameter halves
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(Graham Sweet Studios) was placed on a shallow
polystryene bowl (250 mm in diameter, 25 mm thick)
with a single air inlet at the bottom. Two optical
USB mice, placed 1 mm away from the edge of the
ball, were used to sense rotation of the floating ball
and transmitted signals to our data analysis system
using custom driver software.

During experiments, the animals head was fixed in
place by a steel headplate that was screwed into a
rigid crossbar above the floating ball. The headplate,
comprised of two side bars and a circular center with
a 5 mm central opening, was cemented to the skull
a week before recording using surgical procedures as
described in (Niell and Stryker, 2010). Briefly, ani-
mals were anesthetized with isoflurane in oxygen (3%
induction, 1.5% maintenance) and given a subcuta-
neous injection of carprofen (5 mg/kg) as a postop-
erative analgesic, and a subcutaneous injection of 0.2
mL of saline to prevent postoperative dehydration.
After a scalp incision, the fascia was cleared from the
surface of the skull and a thin layer of cyanoacrylate
(Vet-Bond, WPI) was applied to provide a substrate
to which the dental acrylic could adhere. The metal
headplate was then attached with dental acrylic, cov-
ering the entire skull except for the region in the
center of the headplate, which was covered with a
0.2% Benzethonium chloride solution (New-Skin Liq-
uid Bandage) to protect the skull. The animal was
then allowed to recover. Three to seven days follow-
ing headplate attachment, the animal was allowed to
habituate to the recording setup by spending progres-
sively more time on the floating ball over the course
of two to three days (15 minutes to 1 hour), during
which time the animal was allowed to run freely on
the floating ball.

Extracellular Recording in Awake Mice. The
recording was performed as described previously
(Niell and Stryker, 2010) with little modification.
On the day of recording, the animal was again anes-
thetized as described above. The liquid bandage was
removed, and the skull was thinned and removed to
produce a craniotomy approximately 1-2 mm in di-
ameter above the monocular zone of V1 (2.5 - 3 mm
lateral to lambda). This small opening was enough

to allow insertion of a 1.1 mm long single-shank
64-channel or double-shank 128-channel probe with
tetrode configuration (Du et al. 2011; fabricated by
the Masmanidis lab, UCLA, and assembled by the
Litke lab, UCSC). The electrode was placed at an
angle of 30-45 degrees to the cortical surface and in-
serted to a depth of 500-1000 µm below the cortical
surface. A period of 30 minutes - 1 hour was allowed
to pass before recording began. For each animal, the
electrode was inserted only once.

Visual Stimuli, Data Acquisition, and Analy-
sis. Visual stimuli were presented as described pre-
viously (Niell and Stryker, 2008). Briefly, stimuli
were generated in Matlab using Psychophysics Tool-
box (Brainard, 1997; Pelli, 1997) and displayed with
gamma correction on a monitor (Nanao Flexscan, 30
x 40 cm, 60 Hz refresh rate, 32 cd/m2 mean lumi-
nance) placed 25 cm from the mouse, subtending
60-75◦ of visual space. For Current Source Density
(CSD) analysis, we presented a contrast-reversing
square checkerboard (0.04 cpd, square-wave reversing
at 0.5 Hz). To characterize neural responses with sin-
gle unit recordings, we presented drifting sinusoidal
gratings of 1.5 s duration at 100% contrast, with tem-
poral frequency of 1 Hz, spatial frequency of 0.04 cy-
cles/degree (cpd). We presented 12 evenly spaced
directions in random order, interleaving a 0.5 s gray
blank screen.

Movement signals from the optical mice were ac-
quired in an event-driven mode at up to 300Hz, and
integrated at 100 msec intervals. We then used these
measurements to calculate the net physical displace-
ment of the top surface of the ball. A mouse was said
to be running on a single trial if his average speed
for the first 500 ms of the trial fell above a thresh-
old, found individually for each mouse (1-3 cm/s),
depending on the noise levels of the mouse tracker.
To make fair comparisons across behavior, we used
an equal number of still and running trials in our
analysis. This was done by finding the behavioral
condition with the minimum number of trials (say N
trials), and keeping only N trials (randomly chosen)
from the other behavioral condition.

Data acquisition was performed using an Intan
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Technologies RHD2000-Series Amplifier Evaluation
System, sampled at 20 kHz; recording was triggered
by a TTL pulse at the moment visual stimulation
began.

Single-neuron analysis. To find single-unit activ-
ity, the extracellular signal was filtered from 700 to
7 kHz, and spiking events were detected by voltage
threshold crossing. Single units were identified using
Vision Software (Litke lab, UCSF (Litke et al., 2004))
Typical recordings yielded 35-73 single units across
the electrode. Neurons whose firing rates were un-
stable across the recoding session, characterized by a
change of 75% in mean firing rate from the first third
to the last third of the session, were excluded from
further analysis. Units were classified as narrow- (pu-
tative inhibitory) or broad-spiking (putative excita-
tory) based on the shape of their average waveforms,
which were clustered into two groups using k-means
on the first two principal components of waveform
shape. Single-trial responses to visual stimuli were
characterized as the number of spikes evoked during
the first 500 ms after stimulus onset.

Cortical layer. Cell layer was estimated by
performing current source density analysis (CSD)
on data collected during presentations of contrast-
reversing square checkerboard. Raw data sampled at
20 kHz was first bandpass filtered between 1 and 300
Hz and then averaged across all 1 s positive-phase
presentations of the checkerboard. Data from chan-
nels at the same depth were averaged together within
a shank of the electrode; two mice had recordings
from two-shank electrodes. CSD for each channel, Ci

was computed from the average LFP traces, P (t) us-
ing Eqn. 1, four site spacing, s, equal to a distance
of 100 µm).

Ci =
P (i− 2s) + P (i+ 2s)− 2P (i)

s2
(1)

The borders between layers II/III-IV, IV-V, V-VI
were identified by spatio-temporal patterns of sinks
and sources in the CSD plot (Mitzdorf, 1985). The
plot included in Figure 1c is of a 10x up-sampled CSD
from mouse 1.

Cell tuning. Tuning curves for each neuron were
found by taking a cell’s mean response across repeti-

tions of a single visual stimulus. The change in spike
count with locomotion was calculated as a function
of mean spike count at rest:

∆r =
rrun − rstill

rstill
, (2)

where r is the mean firing rate of the cell averaged
across all stimulus conditions.

Additive and multiplicative modulation. Additive
and multiplicative components of neural modulation
were calculated by performing linear regression be-
tween the tuning curves fit separately to running and
still data, treating the tuning curve in the still condi-
tion as the independent variable. The multiplicative
coefficient obtained from the linear regression was
taken to be the multiplicative component of modula-
tion; the additive coefficient was further scaled by the
mean firing rate across the tuning curves to compute
the additive component of modulation. Modulation
was assessed for significance using a re-sampling pro-
cedure, repeating the regression described above 1000
times on trials which were randomly assigned to the
”still” or ”run” categories. If the original regression
coefficients fell outside of the 95% of the re-sampled
distribution, they were considered significant.

Mutual Information. In the context of visually-
evoked neural activity, a cell’s responses are consid-
ered informative if they are unexpected. For example,
if a neuron in primary visual cortex consistently pro-
duces two spikes per second, the knowledge that the
cell produced two spikes in response to a picture of a
zebra does not provide any information. This notion
can be formalized by a measure of information called
the Shannon entropy (Shannon, 1948), the expected
value of the information content of a particular vari-
able, H(X) = EX [I(x)] = −

∑
x∈X p(x) log2 p(x),

computed here in units of bits. A neuron that has
high variability of responses has high entropy, and
is therefore said to be informative. The concept is
further extended to mutual information, I(X1, X2),
which quantifies how much information one variable
contains about another. I(X1, X2) calculates the av-
erage reduction in uncertainty (entropy) about the
first variable gained from knowing a particular in-
stance of the second. Intuitively, a single response
from a cell that is well tuned for visual grating ori-
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entation will leave little uncertainty as to the visual
stimulus that evoked each response, whereas know-
ing the response of a poorly-tuned cell will result in
little reduction in uncertainty. Mutual information
between visual stimuli (S) and evoked single-neuron
responses (R) is calculated as:

(3)

I(S,R) = H(S)−H(S|R)

=
∑
s∈S

∑
r∈R

p(s, r) log2

(
p(s, r)

p(s)p(r)

)
,

where r and s are particular instances from the set
of neural responses (measured as spike counts) and
stimuli (grating movement directions) respectively.
The change in mutual information with locomotion
was calculated as a function of I(S,R) at rest:

∆I(S,R) =
I(R,S)run − I(R,S)still

I(R,S)still
. (4)

Stimulus-specific information. Stimulus-specific
information, SSI(s), tells us how much information
an average response carries about a particular vi-
sual stimulus, s (Butts 2003). Or, rephrased, it is
the average reduction in uncertainty gained from one
measurement of the response r ∈ R given a stimulus
s ∈ S. The SSI of stimulus s is:

SSI(s) ≡
∑
r∈R

p(r|s) (H[S]−H[S|r]) (5)

where s,r,S, and R are defined as above, and H[S] =
−
∑

s∈S p(s) log2 p(s) is the entropy of the visual
stimuli and H[S|r] = −

∑
s∈S p(s|r) log2 p(s|r) is the

entropy of the visual stimuli associated with a par-
ticular response.

Population-based analysis.
Decoding visual stimulus from single-trial popula-

tion responses. Data trials were separated into equal
numbers of running and still trials, randomly sub-
sampling from each 25 times to get a distribution
of decoding errors based on the data included. We
trained a linear discriminant analysis classifier to
classify single-trial neural responses, assuming inde-
pendence between neurons (a diagnonal covariance
matrix), using a leave-one-out approach to train and

test classification separately for the data from each
behavioral state (LDA-LOOCV). The classifier was
trained and tested using MATLAB’s fitcdiscr and
predict functions. To decode only grating orienta-
tion and not movement direction, we grouped stimuli
moving 180◦ apart into the same class.

Decoding from trials with equal population spike
counts. To determine if firing rates are the sole deter-
minants of information encoded within a neural pop-
ulation, we compared decoding accuracy from trials
in running and still conditions with equal population
spike counts, the sum of spikes from all neurons on a
single trial. Although the distribution of population
spike counts overlapped between rest and running,
high population spike counts were more common dur-
ing running and low population spike counts were
more common at rest. To compare the two, we con-
structed a dataset that retained higher-order struc-
ture between neural activity with the population, but
had many samples of running and still trials with the
same population spike count. This was accomplished
by performing LDA-LOOCV on different subsets of
neurons from the population: 1 to 70 neurons were
randomly sub-sampled from the population, yielding
single-trial population spike counts that ranged from
0 to 275. For each number of neurons (e.g. 1, 5,
etc.), we sub-sampled with replacement 100 times
from the population, yielding 100 combinations of
neurons. Classifiers were trained separately on each
sub-sample and for each behavioral state (running vs.
rest).

Signal and noise correlations. Using single-trial
spike counts from the first 500 ms after stimulus on-
set, we calculated Pearson correlation coefficients for
each pair of neurons recorded from a single mouse,
ρtot. These coefficients were assumed to be the sum
of signal and noise correlations. Signal correlations,
ρs, measure similarity of tuning curves between neu-
rons and were calculated by shuffling neurons’s re-
sponses to each visual stimulus. Noise correlations,
ρn, measure similarities in neural spiking across pre-
sentations of the same visual stimulus, and were cal-
culated by taking the difference between total and
signal pairwise correlations (ρn = ρtot − ρs).

Decorrelating neural responses. Neural responses
were decorrelated by randomly shuffling single cell re-
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sponses to a particular stimulus across trials, where
each trial was an instance of a single stimulus. For
example, assume that X is an n ×m matrix of neu-
ral responses, where n is the number of trials during
which stimulus 1 was presented, and m is the num-
ber of neurons that were recorded. Shuffling ran-
domly moves around entries in each column, so a sin-
gle row will end up with neural responses from sepa-
rate instances of a stimulus, and preserves the mean
response of the cell to each stimulus while removing
any correlations between neurons in time.

Stimulus discriminability, d’. Stimulus discrim-
inability was calculated by taking all pairs of neigh-
boring visual stimuli (θ ± π/4, movement in both
directions) and plotting the population responses to
each pair in n-dimensional space, where n is the num-
ber of neurons recorded from each mouse. We found
the mean response for each stimulus, and projected
each cloud of responses onto the vector between the
two means. A d′ was calculated as:

d′ =
µ1 − µ2(

1
2 (σ2

1 + σ2
2)
) 1

2

, (6)

where µ1 and µ2 were the means of the projected
data for each stimulus, and σ2

1 and σ2
2 were the vari-

ances. Discriminability was computed separately for
each behavioral state.

3 Results

Locomotion-induced modulation of evoked vi-
sual activity. We made stable simultaneous extra-
cellular recordings from 36-73 single neurons in the
primary visual cortex of each of eight awake, head-
fixed mice that were presented with moving grat-
ings in the monocular visual field contralateral to the
recording site. Mice were free to run or stand sta-
tionary on a spherical treadmill floating on an air
stream (Figure 1a) while their movements were mon-
itored. Neuron spike times were extracted from raw
data traces and sorted using custom software (Vision
Software, Litke lab, UCSC). Experimental trials con-
sisted of 1.5 s presentation of a moving grating follow-
ing by 0.5 s of gray screen. Gratings could take one
of 12 movement directions (two directions for each

of 6 orientations), evenly spaced between 0 and 360
degrees. We characterized a neuron’s single-trial re-
sponse to a visual stimulus by counting the number of
spikes evoked in the first 500 ms after stimulus onset,
labeling each trial as a ”Run trial” or a ”Still trial”
based on the mouse’s average running speed during
that period. Separate tuning curves of response as a
function of grating movement direction for the Run
and Still trials were calculated for each cell.

Single cell evoked responses are more infor-
mative during locomotion. Average firing rates
and mutual information (I(S,R), Eqn. 3) for single
neurons were computed separately for each behav-
ioral state, using a total of 240 to 961 trials (20 to 78
per stimulus), depending on the mouse. Fractional
changes in firing rates and mutual information were
calculated by dividing the change from rest to loco-
motion and normalizing it by the average value at
rest. Locomotion strengthened average single-cell re-
sponses to the stimuli (mean increase of 62±93%, p
= 1E-47, Wilcoxon signed-rank test; Figure 1b). The
cortical layer in which a cell was located, found us-
ing current-source density analysis (Figure 1c), was
related to the magnitude of a cell’s evoked responses,
with cells in layers II/III and VI having the lowest
evoked spike counts and those in layers IV and V hav-
ing the highest (Figure 1d). The fractional changes in
spike count were inversely proportional to the mag-
nitude of evoked spike rates, but only the difference
between layers II/III and layer V was significant (Fig-
ure 1e, Equation 2).

Running also increased mutual information be-
tween the responses and the set of visual stimuli,
including the information encoded by a single spike
(mean gain of 47±72%, p = 8E-31, Wilcoxon signed-
rank test; Figure 2a-b), calculated by diving I(S,R)
by the mean spike rate of the cell, but the results
across individual mice were more variable. While
cells from all mice had significant shifts in I(S,R)
per spike (p < 0.02, Wilcoxon signed rank test, Bon-
ferroni correction for multiple comparisons), three of
the eight mice actually had significant decreases in
mutual information per spike with locomotion. Over-
all, 314 of 409 cells across all layers had increased
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Figure 1: Cortical state change during locomotion. a) The activity of 35 to 73 single neurons was recorded
from the primary visual cortex of freely-moving mice. Moving gratings (6 orientations, each moving in one of
two possible directions) were displayed for 1.5s in the visual field contra-lateral to the recording site. Mouse
movement was tracked over the course of the experiment. b) Evoked mean spike count, averaged over all
visual stimuli, across behavioral conditions (N = 409 cells in 8 mice, p = 1E-47, Wilcoxon signed-rank test).
Gray line is unity. c) Current-source density plot for one mouse overlaid with inferred laminar boundaries
(thick gray lines). Distances at left refer to electrode location relative to the center of the array. d) Mean
spike counts of cells by layer, averaged across all stimulus presentations. Layer II: N = 112, Layer IV: N
= 90, Layer V: N = 84, Layer VI: N = 123. Error bars are bootstrapped estimates of standard error. ∗
indicates p < 0.05, ∗∗ indicates p < 0.01, ∗ ∗ ∗ indicates p < 1.3E-5, Wilcoxon rank-sum test. P-values
were corrected for multiple comparisons using the HolmBonferroni method. e) Change in mean spike count
during running as a fraction of mean spike count at rest, using data from d. Numbers of samples as in d.
Error bars are bootstrapped estimates of standard error. ∗ indicates p < 0.05, Wilcoxon rank-sum test.
P-values were corrected for multiple comparisons using the HolmBonferroni method.

I(S,R) with locomotion. The lower layers had the
highest mutual information in both behavioral condi-
tions (Figure 2c), possibly driven by high firing rates
in layer V and the presence of a population of well-
tuned cells in layer VI (Velez-Fort et al., 2014), but
layers II/III had the largest fractional increase in mu-
tual information during locomotion (Figure 2d). We
next calculated a measure of stimulus-specific infor-
mation (SSI(s), as defined in Equation 5) to deter-
mine if a cell’s information was directly proportional
to its firing rate or if it depended on factors such as
response variability. The amount of information a
cell carried about each stimulus increased with the

natural logarithm of mean spike count (Figure 2e),
as is predicted by a Poisson encoder (see Appendix
in (Ringach et al., 2002)).

As has been reported previously (Niell et al. 2010,
Ayaz et al. 2013, Saleem et al. 2013, Fu et al. 2014,
Lee et al. 2014, Erisken et al. 2014, Mineault et
al. 2016), the responses of V1 neurons were modu-
lated by locomotion. Response modulation consisted
of both additive and multiplicative components (Fig-
ure 2f-h), which were computed by linearly regressing
a neuron’s tuning curve during locomotion against
its tuning curve at rest. The multiplicative coeffi-
cient obtained from linear regression was taken to
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Figure 2: Cortical state affects single-neuron activity. a. Single cell mutual information, I(S,R), during
running and rest (N = 409, p = 8E-31, Wilcoxon signed-rank test). Gray line indicates unity. b. I(S,R) per
spike. (N = 409, p = 6E-12, Wilcoxon signed-rank test). Gray line indicates unity. c. Average behaviorally-
dependent I(S,R), within each cortical layer. Layer II: N = 112, Layer IV: N = 90, Layer V: N = 84, Layer
VI: N = 123. Error bars are bootstrapped estimates of standard error. ∗ indicates p = 0.012, ∗∗ indicates p =
0.002, ∗ ∗ ∗ indicates p = 0.0007, Wilcoxon rank-sum test. P-values were corrected for multiple comparisons
using the HolmBonferroni method. d. Fractional change in mutual information, ∆I(S,R), within each
cortical layer during running. Error bars are bootstrapped estimates of standard error. ∗∗ indicates p =
0.002, ∗ ∗ ∗ p < 0.0005, Wilcoxon rank-sum test. P-values were corrected for multiple comparisons using the
HolmBonferroni method. e. Relationship between average spike count and stimulus-specific information,
SSI(s). Each point is the SSI of a single cell to a particular grating movement direction (N = 4908).
Blue line is fit of linear regression (R2 = 0.85, p = 0). f. Schematic of multiplicative (top) and additive
(bottom) tuning curve shifts from rest (black) to locomotion (red). g. Sample single-cell tuning curves for
evoked responses at rest (black) and during locomotion (red), with values of additive and multiplicative
modulation printed above each. Bold indicates significant modulation. h. Relationship between additive
and multiplicative components of modulation for each cell (N = 409, ρ = -0.315, p = 1.2E-7). Gray points
are cells with no significant modulation, colors indicate significant modulation for multiplicative (blue),
additive (black) or both (magenta) components. Gray represent null hypotheses that no modulation occurs.
Open circles indicate data points outside of plot range. i. Average modulation across cortical layers during
locomotion for cells that are significantly modulated. Error bars are bootstrapped estimates of standard
error. j. ∆I(S,R) as a function of multiplicative (left; ρ = 0.58, p = 2.4E-38) and additive (right; ρ=-0.16,
p =0.001) components of modulation (N = 409). Lines as described in e.
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be the multiplicative component of modulation; the
additive coefficient was further scaled by mean firing
rate across the tuning curves to compute the additive
component of modulation.

Across eight mice, 38% of neurons had signifi-
cant multiplicative modulation (154/409, average of
1.5±1.3), 27% of neurons had significant additive
modulation (110/409, average of 0.8±1), and 13% of
neurons had both (54/409). Significance was com-
puted using a resampling procedure (see Methods
: Single-neuron analysis : Additive and multiplica-
tive modulation). Average additive and multiplica-
tive components varied across cortical layers, with
layers II/III having the greatest multiplicative mod-
ulation and layer V the least (Figure 2i), although
the difference was no longer significant after correct-
ing for multiple comparisons. The change in the mu-
tual information of cells with behavior was predicted
by the multiplicative component of modulation, and
was weakly inversely related to the additive compo-
nent of modulation (ρ = 0.58, p = 2.4E-38 and ρ =
-0.16, p = 0.001 respectively; Figure 2j). Although
this change was necessarily driven by cells that were
modulated, many of the most informative cells in the
population were not modulated, and there was no sig-
nificant relationship between the degree of additive or
multiplicative modulation and mutual information in
either behavioral state (p = 0.17 and p = 0.36 re-
spectively, F-test of significance in regression).

Populations of neurons encode more informa-
tion about visual stimuli during locomotion.
As single cell responses shift to encode more infor-
mation about visual stimuli during locomotion, we
might expect that the population as a whole would
follow suit. Computing the mutual information be-
tween a neural population’s evoked responses and a
visual stimulus would describe how well a population
of neurons represents a visual stimulus; however, an
accurate calculation of this value would require a vast
number of trials. Instead, mutual information was es-
timated indirectly, by training a linear decoder (Lin-
ear Discriminant Analysis) on the data and asking
how well visual stimuli could be predicted for single
trials excluded from the training set. The classifier is

linear, and makes several assumptions, including that
evoked responses are independent across neurons and
that they have a gaussian distribution. By comparing
the accuracy with which single-trial responses could
be classified, this technique allows comparison of how
informative neural responses are about both the ori-
entation and direction of the moving gratings during
rest and locomotion.

Single-trial neural responses were classified more
accurately during locomotion, both for the direction
of grating movement (32% decrease in error, p = 3E-
19, Wilcoxon sign test) and for grating orientation
(44% decrease in error, p = 1E-18, Wilcoxon rank-
sum test; Figure 3a). Grating orientation was clas-
sified with higher accuracy than movement direction
in both behavioral states, and the fractional improve-
ment in its classification during locomotion was larger
(44% vs. 32% decrease in error). The cells that
were driving the change in information during run-
ning were not localized within a particular cortical
layer: repeating the decoding analysis separately in-
cluding only cells in layers II/II, IV, V, and VI yielded
similar, significant changes in classification accuracy
for each. (Figure 3a).

Next, to determine whether a particular subset of
cells were most informative, we performed classifica-
tion either by using only responses from that subset
of cells or by using all cells in the population but
that subset. Groups of interest included cells that
had significant multiplicative gain greater than one
(SMG), significant additive gain greater than zero
(SAG), multiplicative gain greater than one (MG),
and additive gain greater than zero (AG). Exclud-
ing cells with multiplicative gain eliminated the dif-
ference in classification error between rest and loco-
motion (Figure 3b.), revealing that these cells con-
tributed most to this effect. When we excluded only
SMG cells, the result was similar but less dramatic,
presumably because many cells in which modulation
did not reach significance by our criteria were actu-
ally modulated on most trials, leading to a difference
in encoding accuracy across behavioral states. On
their own, SMG and MG cells became far more in-
formative during locomotion, statistically matching
the fractional change in error observed when using
the entire population of cells. In contrast, cells with
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Figure 3: Classification of single-trial neural responses recorded during locomotion is more accurate than
of those recorded at rest. a) Error in LOOCV-LDA classification of visual stimulus movement direction
and orientation, as a population (All), and within particular layers. Numbers above layer labels denote the
fraction of the total population included in the decoding. Error bars are bootstrapped estimates of standard
error. b) Fractional change in decoding error with behavior (Errorrun - Errorstill / Errorstill). More negative
values indicate greater improvement during locomotion. All: all cells, SMG: significant multiplicative gain
> 1, SAG: significant additive gain > 0, MG: multiplicative gain > 1, AG: additive gain > 0. ’∼’ indicates
the entire population excluding the category specified. Numbers above layer labels denote the fraction of
the total population included. Error bars are bootstrapped estimates of standard error. Horizontal gray line
indicates no change.

significant additive modulation alone had no gain in
information during running.

Firing rates contribute to, but are not nec-
essary for increased information content in a
population. In the cortical state produced by lo-
comotion, the information about the visual stimulus
increases along with the visual responses of most neu-
rons. Does the extra information available during lo-
comotion result solely from the increase in neuronal
firing rates, or does it also involve a change in the
pattern of stimulus-evoked neural responses? Loco-
motion leads to higher population spike counts (the
sum of spikes from all recorded neurons) on average,
but the distributions of population spike counts dur-
ing locomotion and rest have some overlap (Figure
4a). Comparing decoding accuracy in the two states
for trials with equal population spike counts would
preserve any higher order structure that might dis-
tinguish them, and would reveal whether informa-
tion is exclusively determined by population spike
counts. However, as the fraction of trials that directly
overlapped is small, we generated a larger dataset
with overlapping spike count by sub-sampling neu-

rons from the population (see Methods : Population-
based analysis : Decoding from trials with equal pop-
ulation spike counts.) When few neurons were sam-
pled, the population spike count was forced to be low,
and when many were sampled, it was high. There-
fore, decoding accuracy was ultimately compared for
equal population spike counts during rest and loco-
motion by including fewer cells in the locomotion
classifier than in the rest classifier. LOOCV-LDA
was performed separately for data collected during
rest and during locomotion, after which the results
from all mice were pooled together to generate aver-
age decoding error as a function of population spike
count for each behavioral state. Classification error
decreased with increasing spike count in both states,
but the errors were lower for running trials than for
still trials, even for equal population spike counts
(Figure 4b), and particularly so at high population
spike counts. These findings held both when classify-
ing grating movement direction (left) and orientation
(right). Thus, not just the amount but also the pat-
tern of activity across the population is important
for the accurately encoding visual stimuli, and loco-
motion shifts the population into a more informative
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state.

Locomotion decreases noise correlations.
Stimulus discriminabilty, the extent to which
visually-evoked neural responses differentiate visual
stimuli, can be magnified or diminished by correla-
tions between neurons (Cohen and Maunsell, 2009;
Moreno-Bote et al., 2014). Correlated activ-
ity among neurons consists of two components:
stimulus-dependent (signal) correlations that mea-
sure similarities in cell tuning, and correlated
trial-to-trial fluctuations in response strength that
are stimulus-independent (noise correlations). A
reduction in pairwise noise correlations, as is ob-
served during attention and locomotion via arousal
(Cohen and Maunsell, 2009; Erisken et al., 2014;
Vinck et al., 2015), could explain the improvement
in classification that we observe during locomo-
tion. Therefore we calculated Pearson pairwise
correlations from trial-by-trial spike counts for each
pair of neurons, separately for running and still
conditions, and parsed these values into signal and
noise correlations.

Locomotion had only a minor effect on average
signal pairwise correlations (mean decrease of 0.003,
p = 8E-7, Wilcoxon signed-rank test), but it sub-
stantially reduced mean noise correlations between
all neurons (mean decrease of 0.014, p = 2.2E-
50, Wilcoxon signed-rank test; Figure 4c). Noise
correlations between putative excitatory-excitatory,
inhibitory-inhibitory, and excitatory-inhibitory pairs
significantly decreased, though pairs of inhibitory
cells tended to have high, positive noise correlation
in both behavioral states (Figure 4c). Pairs of puta-
tive excitatory cells with significant modulation were
most decorrelated during locomotion (Figure 4d).
Furthermore, excitatory cells across all cortical layers
were decorrelated during running (Figure 4e). Layer
V cells had the highest levels of noise correlations
at rest, and were most decorrelated during running
(mean decrease of 0.035, p = 3E-7, Wilcoxon signed-
rank rest), followed by layer IV cells (mean decrease
of 0.017, p = 0.002, Wilcoxon signed-rank test). The
upper layers, layer II/III cells, were only moderately
decorrelated during running (mean decrease of 0.01,

p = 0.02, Wilcoxon signed-rank test), and layer VI
cells were not significantly decorrelated (p = 0.17,
Wilcoxon signed-rank rest). Furthermore, across lay-
ers, pairs of cells in layers II/III-IV, IV-V, IV-VI, and
V-VI were decorrelated during locomotion.

Increased firing rates and decorrelation im-
prove stimulus discriminability. As noise cor-
relations can either aid or hinder neural encod-
ing (Averbeck et al., 2006; Ruff and Cohen, 2014;
Moreno-Bote et al., 2014), the effect of reduced noise
correlations on the population representation of vi-
sual stimuli is not obvious. However, it can be as-
sessed indirectly by comparing the discriminability
of population representations of two similarly ori-
ented gratings, e.g. 0◦ and 30◦, when single trial
responses are decorrelated by shuffling (see Methods
: Population-based analysis : Decorrelating neural
responses) to when correlations are preserved. The
discriminability of a pair of stimuli can be measured
by calculating d′ of response distributions (the dif-
ference in their mean responses divided by the root
mean square of their standard deviations; Cohen et
al. 2009; Figure 5a; see Methods : Population-
based analysis : Stimulus discriminability, d’). We
applied this analysis to the neural representations
of oriented gratings, calculating d′ for neighboring
pairs of grating movement directions, θ with θ ± pi

6

and θ with θ + π ± pi
6 . As expected, d′ values

were higher for pairs of stimulus representations ob-
served during locomotion than during rest, imply-
ing that visual stimuli should be better separated in
the neural response space during locomotion (average
d′still =2.62, d′run =3.64, mean increase of 47%, p =
3E-17, Wilcoxon signed-rank test; Figure 5b-c).

To isolate the separate effects of increased spik-
ing and decorrelation, we examined the change in
d’ when one factor was held constant. First, to as-
sess the effect of an increase in spike count when
noise correlations were held fixed, we calculated d’
for populations whose responses had been decorre-
lated by shuffling. These shuffled populations lack
any noise correlations, so comparing d’ across behav-
ior reveals only the effect of increasing spike counts.
Decorrelating responses in this way substantially re-
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Figure 4: Noise correlations influence population representation of visual stimuli. a) The distribution of
population spike counts, the sum of spikes from all neurons on a single trial, overlap in the running and rest
conditions. b) Classification error for grating movement direction (left) and orientation (right) as a function
of population spike count. Error bars are bootstrapped estimates of standard error. Dashed gray line denote
chance levels of performance. c) Stimulus-independent (noise) pairwise correlations shift with behavior.
Error bars are bootstrapped estimates of standard error. All: all pairs of cells, E-E: pairs of putative
excitatory cells, I-I: pairs of putative inhibitory cells, E-I: pairs of one putative excitatory and inhibitory
cells. Values below layer labels are number of pairs included in analysis. ∗∗ indicates significant change
during running, p < 1E-5, Wilcoxon signed-rank test. d) Noise correlations between excitatory cells by cell
modulation. Error bars are bootstrapped standard error of the mean. All: all pairs of excitatory cells, SMG:
significant multiplicative gain > 1, SAG: significant additive gain > 0, MG: multiplicative gain > 1, AG:
additive gain > 0. ∗ and ∗∗ indicate significant change during running, p < 1E-3 and p < 1E-6 respectively,
Wilcoxon signed-rank test. Values below labels are number of pairs included in analysis. e) Noise correlations
between excitatory cells within a single layer and across layers. Error bars are bootstrapped estimates of
standard error. Values below layer labels are number of pairs included in analysis. For significant changes
during running, ∗ indicates p < 0.02 and ∗∗ indicates p < 0.005, Wilcoxon signed-rank test.
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drawn in lower right. Values for d’ are calculated from these overlapping distributions using Eqn. 6. b.
Discriminability of grating movement direction, calculated on pairs of neighboring stimuli across behavioral
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improvement in d’ with decorrelated data: 31%, p = 1E-12, Wilcoxon signed-rank test. Error bars are
bootstrapped confidence intervals of the mean. ∗∗ indicate p < 5E-8, for difference between correlated and
decorrelated d’ values.

duced the effect of behavior on discriminability but
did not eliminate it (average d′still,decor =3.14, av-
erage d′run =3.84, mean increase of 23%, p = 6E-
16, Wilcoxon signed-rank test; Figure 5c). There-
fore locomotion improves stimulus discriminability
not only by increasing the distance between the mean
responses to different stimuli through increases in fir-
ing rates, but also by reducing variability in responses
through decorrelating responses.

Time course of Information. When the mouse
is at rest, the brain has unlimited time to integrate
information from the stable visual scene, but during
locomotion the visual system must encode the scene
swiftly. In both cases, visually-evoked responses are
dynamic, beginning with a sharp onset around 50 ms
after stimulus presentation, then falling to a stable,
elevated rate for the remainder of the stimulus pre-
sentation. How much information about the visual
stimulus do cells contain at different points over the
course of the response, and at what relative stimulus
durations are the information content of these two
states equivalent (e.g. at what stimulus duration will
decoding from responses at rest yield the same de-

coding accuracy as decoding from the first 100 ms
during locomotion)?

To determine if single cell responses were more in-
formative during locomotion throughout the dura-
tion of the evoked response, we computed mutual
information in ten millisecond bins. Average single-
cell I(S,R) closely followed the time course of spike
rates (not shown), and I(S,R) during locomotion was
higher than that at rest for the entirety of the evoked
neural response (≈50-500 ms; Figure 6a). Therefore,
in single cells, cortical state change during locomo-
tion confers a persistent, not transient, advantage in
representing visual stimuli. We next compared the
amount of information in the entire neural popula-
tion at different time points, using LDA-LOOCV to
estimate grating direction and orientation from spike
counts during four sequential 100 ms periods, begin-
ning with the time of response onset, some 50 ms
after the stimulus was first presented. Consistent
with single-cell mutual information, the population
of neurons was most informative during the first 100
ms after neural response onset, with smaller decoding
errors than during subsequent 100-ms periods (Fig-
ure 6b). Unsurprisingly, using data from the entire
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Figure 6: Stimulus information as a function of time. a. Mutual information between cell spiking and
stimulus per 10 ms time bin, averaged across all recorded cells. Error bars are bootstrapped estimates of
standard error. b. Classification error over sequential 100 ms time periods after stimulus onset. Error bars
are bootstrapped estimates of 95% confidence intervals. c. Classification error over various time ranges after
stimulus onset. Red is locomotion; black is still. Error bars are bootstrapped estimates of 95% confidence
intervals. Shaded bars represent 95% confidence intervals of the mean during the first 100 ms after neural
response onset.

500 msec period was superior to even the most infor-
mative 100 ms period, revealing that information is
gained with longer periods of integration, regardless
of cortical state.

In order to find a point of equivalence between de-
coding errors in the two behavioral states, we com-
pared classification errors on population responses
over a range of stimulus durations: 50-150 ms, 50-
250, 50-350 ms, and 50-550 ms (Figure 6c). Clas-
sification accuracy achieved using spike counts from
the first 100 ms of run trials was equal to that using
spike counts from the first 300 ms (for stimulus orien-
tation) or 500 ms (for stimulus movement direction)
of still trials. It therefore takes vastly different times
for the two states to yield similar net information.

Are cortical states binary? The information en-
coded in the population grows with spike count, but
single-cell spike counts are only slightly modulated
by the running speed. Indeed, in only 72 of 409
cells was more than 1% of the variance in spiking
explained by linearly regressing spike counts against
run speeds. Furthermore, residual spike counts, cal-
culated by subtracting each cells’s mean response to
a visual stimuli from its evoked response, were only
weakly related to running speed (Figure 6a). Sim-
ilar, but qualitative, observations were reported in

excitatory neurons in V1 (Niell and Stryker, 2010)
and in the inhibitory neurons thought to convey in-
formation about locomotion to V1 (Fu et al., 2014).
Then, to what extent is population-level information
proportional to mouse running speed?

To answer this question, we repeated the LDA-
LOOCV analysis on just running trials and examined
the relationship between run speed, population spike
counts, and classification error. As shown above,
single-trial population spike counts were predictive
of classification error (Fig. 4b). However, popula-
tion spike count was only weakly predicted by a lin-
ear function of run speed or the natural logarithm
of run speed (Figure 7b). Instead, more than 99%
of the variability single-trial population spike counts
was left unexplained, even though the relationship
between variables was significant in all of the mice.
As forecast by the preceding results, run speed was
not significantly predictive of average classification
error in individual mice (Figure 7c). Classification
error saturated with increases in running speed over
1-2 cm/sec when we considered responses during the
first 500 msec after stimulus onset (Figure 7c). In
only 3 of the 8 mice did error decrease significantly
(p ≤ 0.04) with running speed, suggesting that, at
least in most mice, the effect of locomotion on stim-
ulus encoding is more nearly binary than graded.
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Figure 7: Relationship between running speed and spike counts, population responses, and classification
error. a. Residual spike counts as a function of run speed for fifteen sample cells after mean visually-evoked
responses were subtracted. Cells were chosen randomly from the population in a single mouse; responses
shown are from run trials. Blue bar: speed of visual stimulus, 30 cm/s. b. Population spike counts as a
function of the natural logarithm of mouse running speed on single running trials (black dots). Red lines,
R2 values, and p-values indicate fit of linear regression. Panels are individual mice. c. Average LOOCV
error with increasing mouse running speed for stimulus orientation (blue) and movement direction (red).
Numbers of samples at each mean speed are listed at top of each panel.
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4 Discussion

Summary. Our data demonstrate that mouse V1
represents visual information with higher accuracy
during locomotion than at rest, reducing the time
required to correctly portray visual inputs. This is
accomplished by a change in cortical state across the
depth of the cortex that both increases firing rates
of single cells and decorrelates non stimulus-related
spiking among cells. Not only does the amount of in-
formation conveyed by V1 increase with locomotion,
but, on average, the information conveyed by each
spike within the population increases, although the
process by which this is accomplished varies across
cortical layers. Furthermore, the effect does not seem
to be graded by movement speed and instead is closer
to a binary switch in cortical state. Together, these
changes should allow the mouse visual system to pro-
cess the dynamic visual scenery experienced during
running accurately and rapidly.

Behavioral modulation of the neural code.
Behaviorally-induced, rather than random, fluctua-
tions in cortical state may have greater effects on
population-wide encoding in V1. For example, in
a recent report on monkey primary visual cortex
(Arandia-Romero et al., 2016), spontaneous transi-
tions from low to high population activity did not al-
ter the total information available about grating ori-
entation. Instead, it appeared that the gain in infor-
mation from neurons that were multiplicatively mod-
ulated was offset by the loss from neurons that were
additively modulated. In contrast, but in agreement
with our present result, a study examining the effect
of locomotion on neurons in layers II/III of mouse vi-
sual cortex found that grating orientation was easier
to read from population activity during locomotion,
and that the greatest gains were made for stimuli
with high spatial frequency (Mineault et al., 2016).
The present study additionally shows that decoding
accuracy of both grating orientation and movement
direction (for stimuli at a fixed spatial frequency) is
enhanced for neurons in deeper layers of cortex, even
though these neurons tend to have lower multiplica-
tive gain values (Erisken et al., 2014) and a smaller
fractional change in mutual information. These find-

ings suggest that spontaneous shifts in population ac-
tivity may have little significance, but behaviorally-
elicited changes affect information transmission in the
animal models studied.

Specificity of results to cortical layers. Al-
though locomotion increased the accuracy with which
visual stimuli were decoded from evoked neural activ-
ity in every cortical layer (Figure 3a), these changes
seem to have been driven by distinct mechanisms in
each: cells in layers II/III underwent a large increase
in mean firing rates relative to baseline and a small
but significant decrease in noise correlations, cells in
layer V had only a small increase in fractional firing
rates but experienced a large decrease in noise corre-
lations, and cells in layers IV and VI fell somewhere
in-between, and probably result from some combina-
tion of the processes described below.

The increase in layer II/III firing rates has been
explained by a disinhibitory circuit model, where
cholinergic inputs from the basal forebrain ex-
cite VIP-positive interneurons that in turn inhibit
somatostatin-positive interneurons (SST), effectively
disinhibiting excitatory neurons in V1 (Fu et al.,
2014). In contrast, layer V VIP cells are fewer (Lee
et al., 2010) and morphologically distinct (Pronneke
et al., 2015) from those in layers II/III, and they
only weakly inhibit SST cells (Pfeffer et al., 2013).
Therefore, in layer V, only a small change in fir-
ing rates can be expected during locomotion. Note,
however, that contradictory reports of SST behavior
in mouse V1 during locomotion (Polack et al., 2013;
Fu et al., 2014; Reimer et al., 2014; Pakan et al., 2016)
has led to the development of an alternative model
of interneuron activity in layers II/III: VIP and SST
cells are mutually inhibitory and their relative activ-
ity is dependent on the type of visual input available.
The disinhibitory circuit described previously is pre-
sented as a sub-case that occurs when visual inputs
are small, thus strongly exciting VIP cells but only
weakly activating SST cells, leading to disinhibition.
Large visual inputs, as were used in the experiments
described here, robustly drive both cells types; how-
ever, as SST cells receive greater net input, they dom-
inate and inhibit both VIP and pyramidal cells. It is
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not clear under such a model how pyramidal neurons
increase firing rates during locomotion.

The second mechanism, a decrease in noise cor-
relations during locomotion (Erisken et al., 2014;
Vinck et al., 2015), is driven by heightened arousal
(Reimer et al., 2014; Vinck et al., 2015). In gen-
eral, pairwise noise correlations in pyramidal cells
are thought to result from fluctuations in drive to
neurons by non-sensory factors (Ecker et al., 2010;
Goris et al., 2014; Reimer et al., 2014; McGinley et
al., 2015; Vinck et al., 2015), which shift the mag-
nitude of feedback inhibition to increase (less inhi-
bition) or decrease (more inhibition) noise correla-
tions (Stringer et al., 2016). For example, cholinergic
projections from the basal forebrain can decorrelate
neural population responses (Goard and Dan, 2009)
by directly exciting SST neurons (Chen et al., 2015).
If this circuit explains the shift in noise correlations
with locomotion, layers that exhibit substantial re-
ductions during locomotion should have SST cells as
a significant portion of interneurons and should re-
ceive cholinergic inputs from the basal forebrain. In-
deed, SST cells comprise just under half of all in-
terneurons in layer V (Lee et al., 2010), where noise
correlations were profoundly reduced during locomo-
tion (Figure 4e), and the lower portion of this layer
receives cholinergic inputs (Kitt et al., 1994). The
relative balance of cholingeric inputs and interneuron
distribution and connectivity may explain the differ-
ences observed in noise correlations across cortical
layers. Overall, quick shifts in wakefulness of the an-
imal could have inflated our estimates of noise corre-
lations, both while mice are at rest and during loco-
motion (Reimer et al., 2014; McGinley et al., 2015;
Vinck et al., 2015).

Computational goal of cortical state change.
Two additional explanations have been advanced for
behaviorally-driven shifts in neural firing patterns.
The first posits that neurons in layers II/III of mouse
V1 are encoding sensory mismatch signals, the dif-
ference between expected and true visual flow given
the mouse’s run speed (Keller et al., 2012), while the
second suggests that neurons in V1 represent an in-
tegrated estimate of visual flow and running speed

of the mouse (Saleem et al., 2013). They both sug-
gest that motor information, perhaps efference copy,
is transmitted to mouse V1, either to differentiate
between self-generated and external visual flow or to
help the mouse estimate his own movement speed.
The object of this paper is not to refute either of
these hypotheses, but to argue for an additional,
third purpose for the modulation of neural firing rates
in mouse V1 during locomotion. As both studies used
a virtual reality environment to manipulate the rela-
tionship between visual flow and running speed, our
results cannot be directly compared. However, these
hypotheses make specific predictions, and we can ask
if the explanations they pose towards elevated firing
rates during locomotion can explain the pattern of
results in the present study.

If neurons were encoding sensory mismatch, the
most vigorous neural responses would be elicited
when the difference between movement speed and vi-
sual speed were largest. Instead, we found that neu-
rons, including those in layers II/III, had visually-
evoked responses that were only weakly modulated
by mouse running speed above 1-2 cm/sec (Figure
7a), and were not minimal at around 30 cm/s (the
movement speed of the visual stimulus), contradict-
ing the notion that sensory mismatch explains our
results.

If neurons were integrating visual speed and lo-
comotor speed, neural responses would be best ex-
plained by a function of both. As our data were gen-
erated using a fixed visual stimulus speed, we could
only study the effect of running speed on neural re-
sponses in V1. As described above, the neural pop-
ulation became more informative at higher running
speeds in only a minority of the mice in the present
study, and only weakly so (Figure 7). Furthermore,
neither at the level of single neurons nor at the level
of population activity did spike count substantially
rise with running speed, which is an important de-
terminant of information content at both the single
cell and population levels.

We propose that enhanced information processing,
representation of sensory mismatch, and sensorimo-
tor integration, may all be taking place simultane-
ously in V1. Perhaps motor input to V1, in the form
of efference copy from sensorimotor areas, allows mice

17

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2017. ; https://doi.org/10.1101/102673doi: bioRxiv preprint 

https://doi.org/10.1101/102673
http://creativecommons.org/licenses/by-nd/4.0/


to differentiate between internally- and externally-
generated visual flow, while cholinergic inputs from
the basal forebrain modulate the gain of neuronal re-
sponses to improve information coding. A similar
heterogeneity exists in primary somatosensory cortex
of macaques, which has cells that primarily respond
to sensory input, others that respond to motor sig-
nals, and others that are modulated by a combination
of the two (London and Miller, 2013). We may ex-
pect a comparable mixture in mouse primary visual
cortex.
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