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ABSTRACT Bayesian multiple-regression methods incorporating different mixture priors for marker effects are widely used in
genomic prediction. Improvement in prediction accuracies from using those methods, such as BayesB, BayesC and BayesCπ,
have been shown in single-trait analyses with both simulated data and real data. These methods have been extended to
multi-trait analyses, but only under a specific limited circumstance that assumes a locus affects all the traits or none of them. In
this paper, we develop and implement the most general multi-trait BayesCΠ and BayesB methods allowing a broader range of
mixture priors. Further, we compare them to single-trait methods and the “restricted” multi-trait formulation using real data. In
those data analyses, significant higher prediction accuracies were sometimes observed from these new broad-based multi-trait
Bayesian multiple-regression methods. The software tool JWAS offers routines to perform the analyses.
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Introduction11

Genomic prediction was proposed by Meuwissen et al. (Meuwis-12

sen et al. 2001) to incorporate whole-genome data into genetic13

evaluation. In genomic prediction, all the marker or haplotype14

effects are estimated simultaneously, and these estimates can15

then be used to predict breeding values of individuals not in the16

training population used to estimate the effects.17

Bayesian multiple-regression methods incorporating mixture18

priors for marker effects are widely used in genomic prediction.19

For example, BayesB with locus specific variances accommo-20

dates models where markers have zero effects with probability21

π (Meuwissen et al. 2001; Cheng et al. 2015). Another mixture22

model, BayesC, assumes a common locus variance for all mark-23

ers, and its extension known as BayesCπ further treats π as an24

unknown parameter with a uniform prior distribution (Habier25

et al. 2011).26

Bayesian multiple-regression methods were first proposed for27

single-trait analyses but have been extended to some particular28

forms of multi-trait analyses (Calus and Veerkamp 2011; Jia and29

Jannink 2012). Those extensions have pertained to a particular,30
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somewhat restrictive mixture model. The “restricted” multi-trait31

BayesCΠ presented by Jia et al. (Jia and Jannink 2012) assumes a32

variant affects none of the traits or has simultaneous effects on all33

traits. This assumption of genetic architecture in that multi-trait34

BayesCΠ circumstance is violated if some loci have no effect on35

at least one of the traits while having an effect on at least one of36

the other traits.37

In this paper, we present a more general class of multi-trait38

BayesCΠ and BayesB methods for which the previous multi-39

trait model is a special case. The new methods are compared40

to the previous multi-trait methods and to single-trait methods41

with real data.42

Materials and Methods43

Multi-trait Marker Effects Model44

For simplicity and without loss of generality, we will assume a45

general mean as the only fixed effect, and write the multi-trait46

model for individual i from n genotyped individuals as47

yi = µ +
p

∑
j=1

mijαj + ei,

where yi is a vector of phenotypes of t traits for individual i, µ is48

a vector of overall means for t traits, mij is the genotype covariate49
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at locus j for individual i, p is the number of genotyped loci, αj50

is a vector of allele substitution effects of t traits for locus j, and51

ei is a vector of random residuals of t traits for individual i. The52

fixed effects, or general mean in this case, are assigned flat priors.53

The residuals, ei, are a priori assumed to be independently and54

identically distributed multivariate normal vectors with null55

mean and covariance matrix R, which in turn is assumed to56

have an inverse Wishart prior distribution, W−1
t (Se, νe).57

Multi-trait BayesCΠ model58

Priors for marker effects The prior for αjk, the allele substitution59

or marker effect of trait k for locus j, is a mixture with a point60

mass at zero and a univariate normal distribution conditional61

on σ2
k :62

αjk | πk, σ2
k

{
∼ N

(
0, σ2

k
)

probability (1− πk)

0 probability πk

and the covariance between effects for traits k and k′ at the same63

locus, i.e., αjk and αjk′ is64

cov
(

αjk, αjk′ | σkk′
)
=

{
σkk′ i f both αjk 6= 0 and αjk′ 6= 0

0 otherwise
.

Employing the concept of data augmentation, the vector of65

marker effects at a particular locus αj can be written as αj = Djβj,66

where Dj is a diagonal matrix with elements diag
(

Dj

)
= δj =67 (

δj1, δj2, δj3 . . .
)

, where δjk is an indicator variable indicating68

whether the marker effect of locus j for trait k is zero or non-zero,69

and βj follows a multivariate normal distribution with null mean70

and covariance matrix G =


σ2

1 · · · σ1t
...

. . .
...

σ1t · · · σ2
t

. The covariance71

matrix G is a priori assumed to follow an inverse Wishart dis-72

tribution, W−1
t

(
Sβ, νβ

)
. Thus the multi-trait BayesCΠ model73

with data augmentation is written as74

yi = µ +
p

∑
j=1

mijDjβj + ei. (1)

In the most general case, any marker effect might be zero75

for any possible combination of t traits resulting in 2t possible76

combinations of δj. For example, in a t=2 trait model, there are77

2t = 4 combinations of δj, namely δ1 = (0, 0), δ2 = (0, 1), δ3 =78

(1, 0), δ4 = (1, 1). In the special case of this model described79

by (Jia and Jannink 2012), only δ1 = (0, 0) and δ4 = (1, 1)80

have non-zero probability. Suppose in general we use numerical81

labels “1”, “2”,. . ., “l” for the 2t possible outcomes for δj, then82

the prior for δj is a categorical distribution83

p
(

δj = “i”
)

=Π1 I
(

δj = “1”
)
+ Π2 I

(
δj = “2”

)
+ ... + Πl I

(
δj = “l”

)
,

where Πi is the probability that the vector δj = “i” and84

∑l
i=1 Πi = 1.85

A Dirichlet distribution with all parameters equal to one,86

i.e., a uniform distribution, can be used for the prior for Π =87

(Π1, Π2, ..., Πl). As shown below, a Gibbs sampler can be used88

to draw samples for all the parameters in this model.89

Gibbs sampler I for multi-trait BayesCΠ Suppose the prior for
δj is a categorical distribution whose support is for all 2t possible
outcomes of δj. For convenience, from now on let “1” denote
trait k and “2” the other t− 1 traits. In our sampling scheme,
β j1 and δj1 are sampled from their joint full conditional distribu-
tions, which can be written as the product of the full conditional
distribution of β j1 given δj1 and the marginal full conditional
distribution of δj1. Let θ denote all other parameters except δj1
and β j1, then our sampling scheme can be written as

f
(

β j1, δj1 | θ, y
)
= f

(
β j1 | δj1, θ, y

)
f
(

δj1 | θ, y
)

.

The full conditional distributions of β j1, δj1, Π, G and R for90

Gibbs sampler I, which were derived in the Appendix, are given91

below.92

The full conditional distributions of β j1is93

p
(

β j1 | δj1, θ, y
)
=


N
(

β̂0
j1,
(
G11)−1

)
when δj1 = 0

N
(

β̂1
j1,
(

C1
j,11

)−1
)

when δj1 = 1
,

with

β̂0
j1 = −

(
G11

)−1
G12βj2,

β̂1
j1 =

(
C1

j,11

)−1 (
rj1 − C1

j,12βj2

)
,

C1
j,11 = G11 + R11

n

∑
i=1

m2
ij

C1
j,12 = G12 + R12Dj2

n

∑
i=1

m2
ij,

rj1 =

(
n

∑
i=1

w
′

imij

)R11

R21

 ,

where wi = yi − µi −∑j′ 6=j mij′Dj′ βj′ .94

The marginal full conditional probability of δj1 = 1 is

f
(

δj1 = 1 | θ, y
)
=

1 +

Pr
(

δj1 = 0, δj2|Π
)

Pr
(

δj1 = 1, δj2|Π
)H

−1
−1

,

where H = exp
{
− 1

2

(
logC1

j,11 − β̂1
j1

2
C1

j,11

)
−
(
− 1

2

(
logG11 − β̂0

j1
2G11

))}
.95

The full conditional distribution for Π can be written as

f (Π|β, D, G, R, y) ∝ Dirichlet (n1 + 1, n2 + 1, . . .) ,

where ni is the number of markers with δj = “i”.96

The full conditional distributions for R, the covariance97

matrix for residuals, is an inverse Wishart distribution,98

W−1
t (Se + e′e, νe + n), where e is the n × t matrix for residu-99

als with the ith row as e
′

i. The full conditional distribution for G100

, the covariance matrix for β j, is an inverse Wishart distribution,101

W−1
t

(
Sβ + β′β, νβ + p

)
, where β is the p× t matrix with the ith102

row as β
′

i.103
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Figure 1 Comparison of single-trait and multi-trait methods for Rust_bin and Rust_gall_vol traits.

Gibbs sampler II for multi-trait BayesCΠ The Gibbs sampler104

above requires that all 2t outcomes for δj have non-zero prior105

probabilities, i.e. none of Πi can be zero. If some Πi are zero,106

the markov chain generated from Gibbs sampler I may not be107

irreducible. Another more general Gibbs sampler that does not108

require all Πi to be non-zero is proposed below.109

The full conditional distributions of βj, δj, Π, G, R for Gibbs110

sampler II, which were derived in the Appendix, are given be-111

low.112

Let θ denote all other parameters except βj and δj, then our113

sampling scheme can be written as114

f
(

βj, δj | θ, y
)
= f

(
δj | θ, y

)
f
(

βj | δj, θ, y
)

.

The full conditional distribution of βj is115

f
(

βj | δj, θ, y
)

∝ N
(

C−1
j r j, C−1

j

)
,

where C j = D
′

jR
−1Dj ∑n

i=1 m2
ij + G−1 and r

′

j =116 (
∑n

i=1 w
′

imij

)
R−1Dj.117

The marginal full conditional probability of δj = “i” is118

f
(

δj = “i” | θ, y
)

=
f
(

y | δj = “i”, θ
)

f
(

δj = “i” | Π
)

∑i∈{“1”,“2”,...,“l”} f
(

y | δj = “i”, θ
)

f
(

δj = “i” | Π
) ,

where119

f
(

y | δj, θ
)
=| C−1

j |
1
2 exp

{
1
2

r
′

jC
−1
j r j

}
.

This Gibbs sampler can accommodate the restricted multi-120

trait BayesCΠ that was proposed by Jia et al. (Jia and Jannink121

2012), which only allows δj to be a vector of all ones or a vector122

of all zeros.123

Multi-trait BayesB Model124

The multi-trait BayesCΠ model proposed above can be modified125

to accommodate the multi-trait BayesB model. Model equation126

(1) can also be used for the multi-trait BayesB method. The127

differences in multi-trait BayesB method is that the prior for128

βj is a multivariate normal distribution with null mean and129

locus-specific covariance matrix Gj. The locus-specific covari-130

ance matrix Gj is a priori assumed to follow an inverse Wishart131

distribution, W−1
t

(
Sβ, νβ

)
.132

The derivations of the full conditional distributions of pa-133

rameters of interest for Gibbs samplers are shown in the Ap-134

pendix. In the multi-trait BayesB model, the full conditional135

distributions for all parameters except Gj are similar to the multi-136

trait BayesCΠ model. The full conditional distribution for Gj,137

the covariance matrix for β j, is a inverse Wishart distribution,138

W−1
t

(
Sβ + βjβ

′

j, νβ + 1
)

.139

Data analyses140

Published genotypic and deregressed phenotypic data for141

Loblolly Pine (Pinus Taeda L.) were used (Resende et al. 2012).142

Two disease traits, namely Rust_bin and Rust_gall_vol were an-143

alyzed. The reported heritability was 0.21 for Rust_bin and 0.12144

for Rust_gall_vol. Loci with missing genotypes were imputed as145

the mean of the observed genotype covariates at that locus and146

loci with a missing rate >50% were excluded. After these quality147

control edits, 4,828 SNPs on 807 individuals with phenotypes148

and genotypes on both traits remained.149

Prediction accuracy was calculated as the correlation be-150

tween the vector of deregressed phenotypes and the vector151

of estimated breeding values. Cross-validation using 10-folds152

formed the basis for comparing our general multi-trait BayesCΠ153

model (MT-BayesCΠ) to a similar model where the prior for154

βj is a multivariate normal rather than a mixture of multivari-155

ate normals (MT-BayesC0), the restricted multi-trait BayesCΠ156

proposed by Jia at al. (MT-BayesCΠ-R), multi-trait BayesB157

with known Π (MT-BayesB) and the usual single trait formu-158

lations of the mixture models (ST-BayesC0, ST-BayesCπ, ST-159

BayesB). The constant Π used in BayesB were estimated using160

BayesCΠ methods. All analyses were performed using JWAS161

(Cheng et al. 2016), a publicly-available package for single-trait162

and multi-trait whole-genome analyses written in the freely-163

multi-trait Bayesian methods with mixture priors 3
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available Julia language. Since BayesC0 is equivalent to ran-164

dom regression best linear unbiased prediction (RR-BLUP), ST-165

BayesC0 and MT-BayesC0 are denoted as ST-RR-BLUP and MT-166

RR-BLUP below. The prior for the residual covariance matrix167

R in all multi-trait methods was an inverse Wishart distribu-168

tion, W−1

0.003 0

0 0.003

 , 6

, for which the mean of R is169 0.001 0

0 0.001

. The prior for the marker effects covariance170

matrix G in MT-BayesCΠ and MT-BayesCΠ-R was an inverse171

Wishart distribution, W−1

0.003 0

0 0.003

 , 6

, for which the172

mean of G was

0.001 0

0 0.001

. The priors for the residual vari-173

ance and marker effects variance in single-trait analyses were a174

scaled inverted chi-squared distribution with scale parameter175

S2 = 0.0005 and degrees of freedom ν = 4 , for which the mean176

of the prior was also 0.001. Marker effect variances estimated177

from BayesCΠ were used to construct the priors for marker178

effect variances in the BayesB methods.179

Results180

The prediction accuracies from all methods for Rust_bin and181

Rust_gall_vol are in figure 1. The prediction accuracies from all182

single-trait analyses using JWAS are similar to those in (Resende183

et al. 2012). ST-BayesCπ showed higher prediction accuracies184

than ST-RR-BLUP for both traits (Resende et al. 2012). The pre-185

diction accuracies from ST-BayesB were similar to those from186

ST-BayesCπ, when both marker effect variances and π estimated187

from ST-BayesCπ were used in ST-BayesB.188

The analyses of Rust_bin exhibited no significant difference189

between multi-trait and single-trait analyses within each method190

(ST-RR-BLUP versus MT-RR-BLUP; ST-BayesCπ versus MT-191

BayesCΠ; ST-BayesCπ versus MT-BayesCΠ-R; ST-BayesB ver-192

sus MT-BayesB).193

In contrast, analyses for the lower heritability Rust_gall_vol194

with MT-BayesCΠ showed significantly higher accuracies than195

ST-BayesCπ. MT-BayesCΠ and MT-BayesCΠ-R showed similar196

prediction accuracies. The posterior means of Π for both meth-197

ods were shown in table 1. The performance of MT-BayesB were198

similar to MT-BayesCΠ, when both marker effect variances and199

Π estimated from MT-BayesCΠ were used. Similar prediction200

accuracies were observed in MT-RR-BLUP and ST-RR-BLUP for201

trait Rust_gall_vol.202

Discussion203

In the single trait analyses, accuracies from ST-BayesCπ and204

ST-BayesB were higher than those from ST-RR-BLUP, suggesting205

that these two traits are influenced by a few QTL with large206

effects. The effect of genetic architecture on the performance207

of multi-trait analyses has been studied in previous simulation208

analyses (Jia and Jannink 2012). Using simulated data they found209

that multi-trait Bayesian variable selection methods outperform210

multi-trait RR-BLUP in the presence of major QTL. This observa-211

tion was confirmed in our real data analyses that MT-BayesCΠ212

and MT-BayesB outperformed MT-RR-BLUP for both traits.213

Significant differences between multi-trait and single-trait214

analyses were only observed for Rust_gall_vol within BayesCπ215

and BayesB methods (MT-BayesCΠ versus ST-BayesCπ; MT-216

BayesB versus ST-BayesB). MT-BayesCΠ and MT-BayesCΠ-R217

outperformed ST-BayesCπ for Rust_gall_vol, and the accuracy218

gain was 26% (from 0.287 to 0.364). The lower-heritability trait219

Rust_gall_vol may borrow information from the other corre-220

lated trait Rust_bin. Thus higher prediction accuracy from221

MT-BayesCΠ were observed in trait Rust_gall_vol instead of222

Rust_bin. Results in (Jia and Jannink 2012) showed no difference223

between MT-BayesCΠ-R and ST-BayesCπ because a reduced224

marker panel (500 markers) was used. The performance of MT-225

BayesB was similar to MT-BayesCΠ, when both marker effect226

variances and Π estimated from MT-BayesCΠ were used. Fur-227

ther analyses may be required to study the effects of priors in228

MT-BayesB.229

The fact that RR-BLUP showed no improvement in multi-trait230

analyses suggested that benefits from MT-BayesCΠ may caused231

by the estimation of hyper-parameter Π. In the MT-BayesCΠ,232

the mean of the posterior probability that a marker has a null233

effect on Rust_gall_vol was about 0.97, calculated as the summa-234

tion of posterior mean of Π for categories (0, 0) and (1, 0). The235

posterior mean of π, the probability that a marker has a null236

effect, in ST-BayesCπ for Rust_gall_vol was 0.74, different from237

the equivalent value, 0.97, in MT-BayesCΠ showed above. Thus238

ST-BayesCπ with constant π, equal to 0.97, were performed. Pre-239

diction accuracies from ST-BayesCπ with constant π = 0.97 was240

0.361, which was similar to the accuracies from MT-BayesCΠ.241

This suggests that high-heritability traits may help with variable242

selection in correlated low-heritability traits.243

The difference between MT-BayesCΠ and MT-BayesCΠ-R is244

that MT-BayesCΠ-R assumes a locus has an effect on all traits245

or none of them. This assumption of genetic architecture is246

always violated. MT-BayesCΠ and MT-BayesCΠ-R, however,247

showed similar prediction accuracies. This can be explained248

by the estimation of Π in MT-BayesCΠ and MT-BayesCΠ-R249

in table 1. The posterior probability means for (0, 1) and (1, 0)250

were almost zero in MT-BayesCΠ and for (0, 0) and (1, 1) are251

similar in MT-BayesCΠ and MT-BayesCΠ-R, suggesting that the252

assumption of genetic architecture for MT-BayesCΠ-R is valid253

for these two traits.254

In practice, genetic variances from previous conventional255

analyses are always used to construct priors for marker ef-256

fect variances. For single trait analyses, under some assump-257

tions, it can be shown that the marker effect variance σ2
α =258

σ2
g

(1−π)∑ 2pj(1−pj)
, where σ2

g is the genetic variance, pj is the al-259

lele frequency for locus j and π is the probability that a marker260

has a null effect. Following similar strategies, the marker effect261

covariance matrix G in two-trait analyses can be obtained as262

G =
1

∑ 2pj(1− pj)

 Q11

p(δ=(1,1))+p(δ=(1,0))
Q12

p(δ=(1,1))
Q21

p(δ=(1,1))
Q22

p(δ=(1,1))+p(δ=(0,1))

 ,

(2)

where Q =

Q11 Q12

Q21 Q22

 is the genetic covariance matrix and263

p (δ = (0, 1)), p (δ = (1, 0)), p (δ = (1, 1)) are the probability a264

marker has null effects on the first trait but not the second trait,265

on the second trait but not the first trait and on no traits. Thus266

the probability that a marker has an effect on the first trait can267

be obtained as p (δ = (1, 1)) + p (δ = (1, 0)), which is the de-268

nominator of the upper left element in (2). This strategy relating269
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Different Categories of δ

(0, 0) (1, 1) (0, 1) (1, 0)

MT-BayesCΠ 0.966 0.029 0.002 0.003

MT-BayesCΠ-R 0.971 0.029 NA NA

Table 1 Estimation of π for alternative multi-trait BayesCΠ methods. Posterior mean of Π were given for different categories of
δ. Different categories of δ are denoted as (k1, k2), where k1 = 0 if a marker has a null effect on Rust_bin, otherwise k1 = 1, and
similarly for k2 representing sampled effects for Rust_gall_vol. Combinations listed as NA do not exist in the restricted model.

genetic covariance matrix to marker effect covariance matrix270

can also be used for analyses with more than two traits. Note271

that positive definite matrix Q may result in negative definite272

matrix G using (2), especially when the prior for the probability273

a marker has null effects violates the truth.274
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Appendix300

Gibbs sampler algorithm for multi-trait BayesCΠ301

Single-site Gibbs sampler for multi-trait BayesCΠ302

The full conditional distribution of β j1 can be written as303

f
(

β j1 | δj1, β−j1, D−j1, G, R, y
)

∝ f (y | µ, β, D, G, R) f
(

β j1, βj2 | G
)

∝ exp

[
−1

2

n

∑
i=1

(
wi −mijDjβj

)′
R−1

(
wi −mijDjβj

)]
exp

(
−1

2
β
′

jG
−1βj

)
,

where wi = yi − µi −∑j′ 6=j mij′Dj′ βj′ . Further, by dropping factors that do not involve β j1,304

f
(

β j1 | δj1, β−j1, D−j1, G, R, y
)

∝ exp

{
−1

2

[
β
′

j

(
D
′

jR
−1Dj

n

∑
i=1

m2
ij + G−1

)
βj − 2

n

∑
i=1

w
′

imijR
−1Djβj

]}

∝ exp
{
−1

2

[
β
′

jC jβj − 2r
′

jβj

]}

∝ exp

−1
2

[β j1 β
′

j2

] Cj,11 C j,12

C j,21 C j,22

β j1

βj2

− 2
[
rj1 r

′

j2

] β j1

βj2


∝ exp

{
−1

2

(
Cj,11β2

j1 +
(

2C j,12βj2 − 2rj1

)
β j1

)}
∝ exp

{
−

Cj,11

2

(
β j1 +

(
C j,12βj2 − rj1

)
C−1

j,11

)2
}

∝ N
(

C−1
j,11

(
rj1 − C j,12βj2

)
, C−1

j,11

)
∝ N

(
β̂ j1, C−1

j,11

)
where C j = D

′

jR
−1Dj ∑n

i=1 m2
ij + G−1 and r

′

j =
(

∑n
i=1 w

′

imij

)
R−1Dj.305

Note that when δj1 = 0,306

Cj =

C0
j,11 C0

j,12

C0
j,21 C0

j,22


=

G11 G12

G21 G22 + D
′

j2R22Dj2 ∑n
i=1 m2

ij


r
′

j =
[
r0

j1 r0
j2

′]
=

0
(

∑n
i=1 w

′

imij

) R12

R22

Dj2


When δj1 = 1,307

Cj =

C1
j,11 C1

j,12

C1
j,21 C1

j,22


=

 G11 + R11 ∑n
i=1 m2

ij G12 + R12Dj2 ∑n
i=1 m2

ij

G21 + D
′

j2R21 ∑n
i=1 m2

ij G22 + D
′

j2R22Dj2 ∑n
i=1 m2

ij


r
′

j =
[
r1

j1 r1
j2

′]
=

(∑n
i=1 w

′

imij

) R11

R21

 (
∑n

i=1 w
′

imij

) R12

R22

Dj2


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Thus when δj1 = 0, the full conditional distribution of β j1 is

f
(

β j1 | δj1 = 0, β−j1, D−j1, G, R, y
)

∝ N
(

β̂0
j1,
(

C0
j,11

)−1
)
= N

(
−
(

G11
)−1

G12βj2,
(

G11
)−1

)
.

When δj1 = 1, the full conditional distribution of β j1 becomes

f
(

β j1 | δj1 = 1, β−j1, D−j1, G, R, y
)

∝ N
(

β̂1
j1,
(

C1
j,11

)−1
)
= N

((
C1

j,11

)−1 (
rj1 − C1

j,12βj2

)
,
(

C1
j,11

)−1
)

.

The marginal full conditional distribution of δj1 can be written as308

f
(

δj1 = 1 | θ, y
)
=

f
(

δj1 = 1, θ, y
)

∑δj1∈(0,1) f
(

δj1, θ, y
)

=
f
(

y | δj1 = 1, θ
)

f
(

δj1 = 1, δj2 | Π
)

∑δj1∈(0,1) f
(

y | δj1, θ
)

f
(

δj | Π
) .

=

1 +
f
(

y | δj1 = 0, θ
)

f
(

δj1 = 0, δj2 | Π
)

f
(

y | δj1 = 1, θ
)

f
(

δj1 = 1, δj2 | Π
)

−1

The factor f
(

y | δj1, θ
)

can be written as309

f
(

y | δj1, θ
)

∝
∫

f
(

y | µ, βj1, β−j1, D, G, R
)

f
(

βj1, βj2 | G
)

dβ j1

∝
∫

exp

[
−1

2

n

∑
i=1

(
wi −mijDjβj

)′
R−1

(
wi −mijDjβj

)]
exp

(
−1

2
β
′

jG
−1βj

)
dβ j1

∝ exp

{
−1

2

(
∑

i
w
′

iR
−1wi − 2r

′

j2βj2 + β
′

j2C j,22βj2 −
(

rj1 − C j,12βj2

)2
C−1

j,11

)}

×
∫

exp
[
−1

2

(
β j1 − β̂ j1

)2
Cj,11

]
dβ j1

∝
(

Cj,11

)− 1
2 exp

{
−1

2

(
∑

i
w
′

iR
−1wi − 2r

′

j2βj2 + β
′

j2C j,22βj2 −
(

rj1 − C j,12βj2

)2
C−1

j,11

)}

∝
(

Cj,11

)− 1
2 exp

{
−1

2

(
∑

i
w
′

iR
−1wi − 2r

′

j2βj2 + β
′

j2C j,22βj2 − β̂ j1
2Cj,11

)}
.

Note that ∑i w
′

iR
−1wi, r

′

j2βj2, βj2
′
C j,22βj2 are same when δj1 = 0 or 1. Thus the ratio

f (y|δj1=1,θ)
f (y|δj1=0,θ)

becomes310

H =
(

C1
j,11

)− 1
2
(

G11
) 1

2 exp
(
−1

2

(
β̂0

j1
2G11 − β̂1

j1
2
C1

j,11

))
= exp

{
−1

2

(
logC1

j,11 − β̂1
j1

2
C1

j,11

)
−
(
−1

2

(
logG11 − β̂0

j1
2G11

))}
Thus the conditional probability of δj1 = 1 is311

1 +
f
(

y | δj1 = 0, θ
)

f
(

δj1 = 0, δj2 | Π
)

f
(

y | δj1 = 1, θ
)

f
(

δj1 = 1, δj2 | Π
)

−1

=

1 +

(
Πj0

Πj1
H

)−1

−1

,

where Πj0 = Pr
(

δj1 = 0, δj2|Π
)

and Πj1 = Pr
(

δj1 = 1, δj2|Π
)

.312

The full conditional distribution for Π can be written as313

f (Π|β, D, G, R, y) ∝ f (δ|Π) f (Π)

∝ Πn1
1 Πn2

2 ...Πnl
l

∝ Dirichlet (n1 + 1, n2 + 1, . . .) ,

where ni is the number of markers with δj = “i”.314
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Joint Gibbs sampler for multi-trait BayesCΠ315

Let θ denote all other parameters except βj and δj, then our sampling scheme can be written as

f
(

βj, δj | θ, y
)
= f

(
δj | θ, y

)
f
(

βj | δj, θ, y
)

The marginal full conditional distribution of δj can be written as

f
(

δj | θ, y
)
=

f
(

δj, θ, y
)

∑δj
f
(

δj, θ, y
)

=
f
(

y | δj, θ
)

f
(

δj | Π
)

∑δj
f
(

y | δj, θ
)

f
(

δj | Π
) .

Denote wi = yi − µi −∑j′ 6=j mij′Dj′ βj′ , then316

f
(

y | δj, θ
)

∝
∫

f (y | β, D, R) f
(

βj | G
)

dβj

∝
∫

exp

[
−1

2

n

∑
i=1

(
wi −mijDjβj

)′
R−1

(
wi −mijDjβj

)]
exp

(
−1

2
β
′

jG
−1βj

)
dβj

∝
∫

exp

{
−1

2

[
β
′

j

(
D
′

jR
−1Dj

n

∑
i=1

m2
ij + G−1

)
βj − 2

n

∑
i=1

w
′

imijR
−1Djβj +

n

∑
i=1

w
′

iR
−1wi

]}
dβj

∝
∫

exp

{
−1

2

[
β
′

jC jβj − 2r
′

jβj +
n

∑
i=1

w
′

iR
−1wi

]}
dβj

∝
∫

exp

{
−1

2

[(
β
′

j − r
′

jC
−1
j

)
C j

(
βj − C−1

j r j

)
+

n

∑
i=1

w
′

iR
−1wi − r

′

jC
−1
j r j

]}
dβj

∝ exp

{
−1

2

[
n

∑
i=1

w
′

iR
−1wi − r

′

jC
−1
j r j

]}

× | C−1
j |

1
2

∫
| C−1

j |
− 1

2 exp
[
−1

2

(
β
′

j − r
′

jC
−1
j

)
C j

(
βj − C−1

j r j

)]
dβj

∝| C−1
j |

1
2 exp

{
−1

2

[
n

∑
i=1

w
′

iR
−1wi − r

′

jC
−1
j r j

]}
,

where C j = D
′

jR
−1Dj ∑n

i=1 m2
ij + G−1 and r

′

j =
(

∑n
i=1 w

′

imij

)
R−1Dj.317

Note that ∑i w
′

iR
−1wi is same for different δj. Thus the marginal full conditional distribution of δj can be written as

f
(

δj | θ, y
)
=

f
(

y | δj, θ
)

f
(

δj | Π
)

∑δj
f
(

y | δj, θ
)

f
(

δj | Π
) ,

where

f
(

y | δj, θ
)

∝| C−1
j |

1
2 exp

{
1
2

r
′

jC
−1
j r j

}
.

The full conditional distribution of βj is318

f
(

βj | δj, θ, y
)

∝ exp

[
−1

2

n

∑
i=1

(
wi −mijDjβj

)′
R−1

(
wi −mijDjβj

)]
exp

(
−1

2
β
′

jG
−1βj

)
,

∝ exp

{
−1

2

[
β
′

j

(
D
′

jR
−1Dj

n

∑
i=1

m2
ij + G−1

)
βj − 2

n

∑
i=1

w
′

imijR
−1Djβj

]}

∝ exp
{
−1

2

[
β
′

jC jβj − 2r
′

jβj

]}
∝ exp

{
−1

2

(
β
′

j − r
′

jC
−1
j

)
C j

(
βj − C−1

j r j

)}
∝ N

(
C−1

j r j, C−1
j

)
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Gibbs sampler algorithm for multi-trait BayesB319

Single-site Gibbs sampler for multi-trait BayesB320

For convenience, from now on let “1” denote trait k and “2” the other traits. Thus, βj can be denoted as

β j1

βj2

 and Dj can be denoted

as

δj1 0

0 Dj2

 . The Gibbs sampler for β jk and δjk is derived as below. In our sampling scheme, β j1 and δj1 are sampled from their joint

full conditional distributions, which can be written as the product of the full conditional distribution of β j1 given δj1 and the marginal
full conditional distribution of δj. Let θ denote all other parameters except δj1 and β j1, then our sampling scheme can be written as

f
(

β j1, δj1 | θ, y
)
= f

(
β j1 | δj1, θ, y

)
f
(

δj1 | θ, y
)

.

The full conditional distribution of β j can be written as

f
(

β j1 | δj1, β−j1, D−j1, Gj, G−j, R, y
)

∝ f
(

y | µ, β, D, Gj, G−j, R
)

f
(

β j1, βj2 | Gj

)
∝ exp

[
−1

2

n

∑
i=1

(
wi −mijDjβj

)′
R−1

(
wi −mijDjβj

)]
exp

(
−1

2
β
′

jG
−1
j βj

)
,

where wi = yi − µi −∑j′ 6=j mij′Dj′ βj′ . Further, by dropping factors that do not involve β j1,

f
(

β j1 | δj1, β−j1, D−j1, Gj, G−j, R, y
)

∝ exp

{
−1

2

[
β
′

j

(
D
′

jR
−1Dj

n

∑
i=1

m2
ij + G−1

j

)
βj − 2

n

∑
i=1

w
′

imijR
−1Djβj

]}

∝ exp
{
−1

2

[
β
′

jC jβj − 2r
′

jβj

]}

∝ exp

−1
2

[β j1 β
′

j2

] Cj,11 C j,12

C j,21 C j,22

β j1

βj2

− 2
[
rj1 r

′

j2

] β j1

βj2


∝ exp

{
−1

2

(
Cj,11β2

j1 +
(

2C j,12βj2 − 2rj1

)
β j1

)}
∝ exp

{
−

Cj,11

2

(
β j1 +

(
C j,12βj2 − rj1

)
C−1

j,11

)2
}

∝ N
(

C−1
j,11

(
rj1 − C j,12βj2

)
, C−1

j,11

)
∝ N

(
β̂ j1, C−1

j,11

)
where C j = D

′

jR
−1Dj ∑n

i=1 m2
ij + G−1

j and r
′

j =
(

∑n
i=1 w

′

imij

)
R−1Dj.321

Note that when δj1 = 0,322

Cj =

G11
j G12

j

G21
j G22

j + D
′

j2R22Dj2 ∑n
i=1 m2

ij


r
′

j =

0
(

∑n
i=1 w

′

imij

) R12

R22

Dj2


When δj1 = 1,323

Cj =

C1
j,11 C1

j,12

C1
j,21 C1

j,22


=

 G11
j + R11 ∑n

i=1 m2
ij G12

j + R12Dj2 ∑n
i=1 m2

ij

G21
j + D

′

j2R21 ∑n
i=1 m2

ij G22
j + D

′

j2R22Dj2 ∑n
i=1 m2

ij


r
′

j =
[
r1

j1 r1′
j2

]
=

(∑n
i=1 w

′

imij

) R11

R21

 (
∑n

i=1 w
′

imij

) R12

R22

Dj2


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Thus when δj1 = 0, the full conditional distribution of β j1 is

f
(

β j1 | δj1 = 0, β−j1, D−j1, Gj, G−j, R, y
)

∝ N
(
−
(

G11
j

)−1
G12

j βj2,
(

G11
j

)−1
)

.

When δj1 = 1, the full conditional distribution of β j1 becomes

f
(

β j1 | δj1 = 1, β−j1, D−j1, Gj, G−j, R, y
)

∝ N
(

C1−1
j,11

(
rj1 − C1

j,12βj2

)
, C1−1

j,11

)
.

The marginal full conditional distribution of δj1 can be written as324

f
(

δj1 = 1 | θ, y
)
=

f
(

δj1, θ, y
)

∑δj1∈(0,1) f
(

δj1, θ, y
)

=
f
(

y | δj1 = 1, θ
)

f
(

δj1 = 1, δj2 | Π
)

∑δj1∈(0,1) f
(

y | δj1, θ
)

f
(

δj | Π
) .

=

1 +
f
(

y | δj1 = 0, θ
)

f
(

δj1 = 0, δj2 | Π
)

f
(

y | δj1 = 1, θ
)

f
(

δj1 = 1, δj2 | Π
)

−1

The factor f
(

y | δj1, θ
)

can be written as325

f
(

y | δj1, θ
)

∝
∫

f
(

y | µ, βj1, β−j1, D, G, R
)

f
(

βj1, βj2 | Gj

)
dβ j1

∝
∫

exp

[
−1

2

n

∑
i=1

(
wi −mijDjβj

)′
R−1

(
wi −mijDjβj

)]
exp

(
−1

2
β
′

jG
−1
j βj

)
dβ j1

∝ exp

{
−1

2

(
∑

i
w
′

iR
−1wi − 2r

′

j2βj2 + β
′

j2C j,22βj2 −
(

rj1 − C j,12βj2

)2
C−1

j,11

)}

×
∫

exp
[
−1

2

(
β j1 − β̂ j1

)2
Cj,11

]
dβ j1

∝
(

Cj,11

)− 1
2 exp

{
−1

2

(
∑

i
w
′

iR
−1wi − 2r

′

j2βj2 + β
′

j2C j,22βj2 −
(

rj1 − C j,12βj2

)2
C−1

j,11

)}

∝
(

Cj,11

)− 1
2 exp

{
−1

2

(
∑

i
w
′

iR
−1wi − 2r

′

j2βj2 + β
′

j2C j,22βj2 − β̂ j1
2Cj,11

)}
.

Note that ∑i w
′

iR
−1wi, r

′

j2βj2, βj2
′
C j,22βj2 are same when δj1 = 0 or 1. Thus the ratio

f (y|δj1=1,θ)
f (y|δj1=0,θ)

becomes326

H =
(

C1
j,11

)− 1
2
(

G11
j

) 1
2 exp

(
−1

2

(
β̂0

j1
2G11

j − β̂1
j1

2
C1

j,11

))
= exp

{
−1

2

(
logC1

j,11 − β̂1
j1

2
C1

j,11

)
−
(
−1

2

(
logG11

j − β̂0
j1

2G11
j

))}

Thus the conditional probability of δj1 = 1 is327

1 +
f
(

y | δj1 = 0, θ
)

f
(

δj1 = 0, δj2 | Π1, Π2...

)
f
(

y | δj1 = 1, θ
)

f
(

δj1 = 1, δj2 | Π1, Π2...

)

−1

=

1 +

(
Πj0

Πj1
H

)−1

−1

,

where Πj0 = Pr
(

δj1 = 0, δj2|Π
)

and Πj1 = Pr
(

δj1 = 1, δj2|Π
)

.328
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Joint Gibbs sampler for multi-trait BayesB329

Let θ denote all other parameters except βj and δj, then our sampling scheme can be written as330

f
(

βj, δj | θ, y
)
= f

(
δj | θ, y

)
f
(

βj | δj, θ, y
)

The marginal full conditional distribution of δj can be written as331

f
(

δj | θ, y
)
=

f
(

δj, θ, y
)

∑δj
f
(

δj, θ, y
)

=
f
(

y | δj, θ
)

f
(

δj | Π
)

∑δj
f
(

y | δj, θ
)

f
(

δj | Π
) .

Denote wi = yi − µi −∑j′ 6=j mij′Dj′ βj′ , then332

f
(

y | δj, θ
)

∝
∫

f (y | β, D, R) f
(

βj | Gj

)
dβj

∝
∫

exp

[
−1

2

n

∑
i=1

(
wi −mijDjβj

)′
R−1

(
wi −mijDjβj

)]
exp

(
−1

2
β
′

jG
−1
j βj

)
dβj

∝
∫

exp

{
−1

2

[
β
′

j

(
D
′

jR
−1Dj

n

∑
i=1

m2
ij + G−1

j

)
βj − 2

n

∑
i=1

w
′

imijR
−1Djβj +

n

∑
i=1

w
′

iR
−1wi

]}
dβj

∝
∫

exp

{
−1

2

[
β
′

jC jβj − 2r
′

jβj +
n

∑
i=1

w
′

iR
−1wi

]}
dβj

∝
∫

exp

{
−1

2

[(
β
′

j − r
′

jC
−1
j

)
C j

(
βj − C−1

j r j

)
+

n

∑
i=1

w
′

iR
−1wi − r

′

jC
−1
j r j

]}
dβj

∝ exp

{
−1

2

[
n

∑
i=1

w
′

iR
−1wi − r

′

jC
−1
j r j

]}

× | C−1
j |

1
2

∫
| C−1

j |
− 1

2 exp
[
−1

2

(
β
′

j − r
′

jC
−1
j

)
C j

(
βj − C−1

j r j

)]
dβj

∝| C−1
j |

1
2 exp

{
−1

2

[
n

∑
i=1

w
′

iR
−1wi − r

′

jC
−1
j r j

]}
,

where C j = D
′

jR
−1Dj ∑n

i=1 m2
ij + G−1

j and r
′

j =
(

∑n
i=1 w

′

imij

)
R−1Dj.333

Note that ∑i w
′

iR
−1wi is same for different δj. Thus the marginal full conditional distribution of δj can be written as

f
(

δj | θ, y
)
=

f
(

y | δj, θ
)

f
(

δj | Π
)

∑δj
f
(

y | δj, θ
)

f
(

δj | Π
) ,

where

f
(

y | δj, θ
)

∝| C−1
j |

1
2 exp

{
1
2

r
′

jC
−1
j r j

}
.

The full conditional distribution of βj is334

f
(

βj | δj, θ, y
)

∝ exp

[
−1

2

n

∑
i=1

(
wi −mijDjβj

)′
R−1

(
wi −mijDjβj

)]
exp

(
−1

2
β
′

jG
−1
j βj

)
,

∝ exp

{
−1

2

[
β
′

j

(
D
′

jR
−1Dj

n

∑
i=1

m2
ij + G−1

j

)
βj − 2

n

∑
i=1

w
′

imijR
−1Djβj

]}

∝ exp
{
−1

2

[
β
′

jC jβj − 2r
′

jβj

]}
∝ exp

{
−1

2

(
β
′

j − r
′

jC
−1
j

)
C j

(
βj − C−1

j r j

)}
∝ N

(
C−1

j r j, C−1
j

)
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