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Abstract

Background: We consider the detection of sleep spindles simultaneously across the frontal, central and occipital
channels of sleep EEG in a single run.
New Method: We propose a multichannel sleep spindle detection method utilizing a multichannel transient separation
algorithm based on a sparse optimization framework. The proposed transient separation algorithm decomposes the
multichannel EEG into the sum of an oscillatory and a transient component. Consecutive overlapping blocks of the
multichannel oscillatory component are assumed to be of low-rank whereas the transient component is assumed to be
piecewise constant with a zero baseline. We estimate both the components by minimizing a convex objective function
using an iterative algorithm. The multichannel oscillatory component is used in conjunction with the Teager operator
for detecting sleep spindles.
Results and comparison with other methods: The performance of the proposed method is evaluated using an
online single channel EEG database and compared with 7 state-of-the-art automated detectors. The by-event F1 scores
for the proposed spindle detection method averaged 0.67 ± 0.03. The average false discovery rate for the proposed
method was 31.3 ± 0.04%. For an overnight 6 to 8 channel EEG signal, the proposed algorithm takes on an average 2
minutes to detect sleep spindles.
Conclusions: Comparable F1 scores and fast run times make the proposed spindle detector a valuable tool in answering
the open question of studying the dynamics of sleep spindles and tracking their propagation overnight across the scalp
in sleep EEG.

Keywords: Sleep spindle detection, multichannel signal processing, sparse signal, convex optimization.

1. Introduction

Sleep spindles are short rhythmic oscillations visible
on an electroencephalograph (EEG) during non-rapid eye
movement (NREM) sleep. The center frequency of sleep
spindles is between 11 and 16 Hz [56]. The duration of
sleep spindles is defined to be at least 0.5 seconds, with
some studies imposing an upper limit on their duration
to 3 seconds [64]. Sleep spindles reflect a heritable set of
traits which is implicated in both sleep regulation and nor-
mal cognitive functioning [38]. Recent studies have linked
spindle density (number of spindles per minute), duration
and amplitude of spindles, and peak frequency of spindles
to memory consolidation during sleep [32, 15], cognition
in schizophrenia patients [38, 63], brain dysfunction in ob-
structive sleep apnea [14] and biomarkers for Alzheimer’s
disease [66]. As a result, understanding the characteris-
tics of sleep spindles is a key in studying their relation to
several neuropsychiatric diseases.
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Traditionally, sleep spindles are detected in clinics us-
ing visual heuristics: number of peaks or bumps of the
EEG signal are counted within a specified time window.
This process is not only subjective, but also prone to er-
rors and time-consuming. Moreover, visual inspection un-
derscores the fine details of putated spindles [50]. It is
not uncommon for studies to utilize more than one expert
for detecting spindles. However, the high variability of
inter-scorer agreement adds to the complexity of detecting
spindles: Cohen’s κ coefficient for manual scoring usually
ranges between 0.46 and 0.89 [58, 42]. The presence of
reliable automated spindle detectors may not only reduce
the scoring variability [68] but may also aid in complex
longitudinal studies that involve studying global or local
sleep spindle dynamics [50, 22, 43].

1.1. Single channel sleep spindle detectors

Broadly categorized, there exist two-types of automated
sleep spindle detectors for single channel EEG: filtering
based and non-linear signal decomposition based. Filter-
ing based approaches vary from basic methods, which uti-
lize a bandpass filter with constant or adaptive thresh-
olds, to advanced methods that use time-frequency infor-
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mation along with bandpass filtering. Most of the filter-
ing based methods involve pre-processing of the desired
channel of the EEG (usually a central channel) for arti-
fact removal [36]. One of the first automated detectors
to be proposed used a bandpass filter in conjunction with
an amplitude threshold [54]. This idea is still the basis of
a majority of the bandpass filtering-based automated de-
tectors [65, 23, 39, 31, 16, 33]. Advanced methods utiliz-
ing time-frequency information either use a wavelet trans-
form [37, 2, 4, 30, 61, 3] or a short-time Fourier transform
(STFT) [21, 45, 25] with adaptive thresholding to detect
spindles. Several machine-learning based spindle detectors
and sleep staging algorithms have also been proposed for
single channel EEG [1, 35].

Non-linear signal decomposition based methods [47, 48,
37, 27] attempt to separate the non-rhythmic transients
or artifacts from sinusoidal spindle-like oscillations in the
single channel sleep EEG. These methods make use of the
differing morphological aspects [57] of the transients and
spindles to overcome the drawbacks of filtering and Fast
Fourier Transform (FFT) based techniques [51]. As an
another example, Gilles et. al considered the removal of
ballistocardiogram (BCG) artifacts from EEG using low-
rank and sparse decomposition [34]. In addition to these
morphological component analysis (MCA) based methods,
independent component analysis (ICA) and principal com-
ponent analysis (PCA) have also been used to detect spin-
dles for single channel EEG [5]. However, note that ICA
assumes linearity and stability of the mixing process along
with statistical independence of input sources [28].

1.2. Multichannel sleep spindle detectors

Recent studies are increasingly looking at the global
spindle activity across all channels of scalp EEG in a 10-20
system as a measure to characterize individual sleep spin-
dle density [50, 9]. Automated spindle detection across all
the channels can not only help reduce the inter-rater vari-
ability among the experts [20] but may also aid in complex
studies involving spindle dynamics.

Although, single channel spindle detectors may be used
for studying global spindle activity and tracking their prop-
agation overnight, their usage comes at a cost. When de-
tecting spindles on a channel-by-channel basis using an
automated algorithm two key issues arise: combining the
resulting detection of spindles from all the channels and
parameter-tuning for each channel. While it is true that
a voting rule can be formulated to combine the spindles
detections across the channels, it adds an additional de-
gree of freedom for automated detectors. Moreover, such
a voting rule must also be used for expert detection for a
fair comparison. Further, since the amplitude of spindles
vary in each channel (see for example Fig. 1), amplitude-
based thresholds used by automated detectors need to be
tuned separately for each channel. Since sleep spindles
may occur in different channels or groups of channels at
different times [12], analyzing spindle networks (global or
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Figure 1: A multichannel EEG with one frontal, one central and one
occipital channel. Expert annotated sleep spindle at 26 seconds has
different amplitude in different channels.
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Figure 2: A sample multichannel EEG with two frontal, central and
occipital channels. Sleep spindle amplitude is different in left (F3,C3,
O1) and right (F4,C4, O2) channels. The EEG excerpt shown here
is not from the same dataset used for Fig. 1.

local) overnight is challenging with single channel spindle
detection methods.

Consider the 6-channel EEG shown in Fig. 1 and Fig. 2
respectively. Classifying spindles as either global or local
[15] is difficult using single channel based methods: spin-
dles that appear on the right channels (F4, C4, and O2
channels in Fig. 2) may be entirely missed by detectors us-
ing the left channels (F3, C3 and O1) or vice-versa, which
is the case with most detectors [64]. In fact, most detectors
utilize at the most two channels [44, 51]. Specifically, for
the EEG shown in Fig. 2 the spindle at about 26 seconds
is prominent only in C4 channel. The particular spindle
does appear in other channels but with significantly lower
amplitude. Hence, without careful parameter tuning an
automated detector may not be able to properly detect
the spindles.

Several studies have pointed to the benefit of separat-
ing the transients and oscillations sleep spindle detection
[48, 47, 20], though few have advocated the use of multi-
channel EEG [6]. An ICA based approach was studied for
the detection of spindles from multichannel EEG in [52].
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For sleep-staging and classification a machine learning ap-
proach utilizing multichannel EEG was proposed in [55]. A
matching pursuit (MP) based decomposition method was
proposed for multichannel EEG to relax the assumptions
of ICA [28]. The MP based method attempts to represent
the multichannel EEG as a linear combination of atoms or
coefficients with respect to a chosen basis. Estimating the
atoms, by solving an inverse problem, can enable detection
of sleep spindles with user chosen parameters [28]. Simi-
lar to the ICA approach, a multichannel Matching Pursuit
based method was also proposed for the decomposition of
the multichannel EEG signal [59]. An MP-based algorithm
using singular value decomposition (SVD) was shown to be
able to efficiently learn the different oscillatory waveforms
in multichannel EEG [11].

1.3. Contribution

In this paper we propose a multichannel spindle de-
tection method that detects sleep spindles across all the
channels of human scalp EEG in a single run. To this end,
we propose a non-linear signal model for the multichannel
EEG where we represent the multichannel sleep EEG as a
sum of two components: a transient component and an os-
cillatory component. The transient component is modeled
as the sum of a low-frequency signal and a sparse piecewise
constant signal. We model the blocks of the multichannel
oscillatory component as low-rank arrays. The non-linear
signal model proposed in this paper aids in the detection
of sleep spindles in multichannel EEG by separating the
non-rhythmic transients and the oscillations. Similar sig-
nal models have been used to detect sleep spindles directly
for single channel [48, 47] and indirectly for multichannel
EEG [6].

We estimate the two components of the proposed non-
linear signal model by proposing an optimization problem
consisting of a convex objective function. We derive a
fast matrix-inverse-free algorithm to obtain the solution
of the optimization problem. The estimated oscillatory
component is then used for detection of sleep spindles.
Specifically, an envelope of the bandpass filtered oscillatory
component is used to generate a binary signal where 1
indicates a spindle and 0 otherwise. The proposed method
does not require the EEG epochs (30 second segments) to
be scored for sleep stages in comparison to some state-of-
the-art methods [45].

The separation of the transients in the multichannel
EEG using the proposed method enables a bandpass fil-
ter to display the spindle activity more prominently than
simply applying the bandpass filter to the EEG signal.
Moreover, separating the transient component effectively
attenuates the electrocardiogram (ECG) and other cardiac
artifacts from the oscillatory component, which is used for
spindle detection. The cardiac artifacts have shown to
greatly interfere in spindle density overnight [50]. Since
the oscillatory component mostly contains rhythmic oscil-
lations, a low-order bandpass filter suffices for sleep spindle
detection [48, 47].

The rest of the paper is organized as follows. In Sec-
tion 2 we detail the notation used throughout the paper
and introduce the block low-rank operator. In Section 3
we propose a non-linear signal model for the EEG and
formulate a convex objective function for estimating the
transient and oscillatory components in the proposed EEG
signal model. We derive an iterative algorithm for obtain-
ing the solution to the proposed convex objective func-
tion and show how to obtain a binary detection vector
using the estimated oscillatory component in Section 3.
We show several examples for detection of sleep spindles
using the proposed method in Section 4. We evaluate the
performance of the proposed detection method using an
online EEG database in Section 5 and finally conclude in
Section 6.

2. Preliminaries

2.1. Notation

We denote vectors and matrices by lower and upper
case letters respectively. An n-point signal y is represented
by the vector

y := [y(0), . . . , y(n− 1)] , y ∈ Rn. (1)

We represent the multichannel signal X ∈ Rk×n, with k
channels as

X := [x1, . . . , xk]
T
, xi ∈ Rn, i = 1, . . . , k (2)

where [·]T represents the transpose. The `1 and `2 norm
of the vector y are defined as

‖y‖1 :=

n∑
i=1

|y(i)|, ‖y‖22 :=

n∑
i=1

|y(i)|2. (3)

The nuclear norm of the matrix X ∈ Rm×n is defined as

‖X‖∗ : = tr(XTX) (4)

=

m∑
i=1

σi(X), (5)

where tr(·) represents the trace and σi(X) is the ith sin-
gular value of X.

We define the matrix D ∈ R(n−1)×n as

D :=


−1 1

−1 −1
. . .

. . .

−1 1

 . (6)

Using the matrix D, the first-order difference of a discrete
signal y ∈ Rn is given by Dy. The soft-threshold function
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Figure 3: Top: Blocks of multichannel EEG (each of 1 second in
length) that contain transients and spindles are highlighted. Bottom:
Block 2, which contains expert annotated spindle has higher singular
values than Blocks 1 and 3 that do not contain spindles.

[26] for λ > 0 is defined as

soft(x;λ) :=

x− λ
x

|x|
, |x| > λ

0, |x| 6 λ,
x ∈ R. (7)

Note that the soft-threshold function in (7) is applied ele-
ment wise to a vector with threshold λ > 0.

The Teager-Kaiser energy operator for a discrete-time
signal y denoted by T (·) is defined as

[T (y)]n := y2(n)− y(n− 1) · y(n+ 1). (8)

Note that, unless stated otherwise, applying the Teager
operator to a multichannel signal X implies that the Tea-
ger operator is applied to the channel mean of X.

2.2. Block Low-Rank Operator

In order to extract the non-transient oscillations (i.e.,
sleep spindles) from the multichannel EEG, we propose
the following sparse optimization framework. Consider
the sample multichannel EEG shown in Fig. 3, with three
blocks highlighted (each of 1 second in length). The blocks
are highlighted in a non-consecutive fashion to emphasize
the difference in their corresponding singular values. Fig-
ure 3 shows the singular values corresponding to each of
the three blocks. The block that contains the sleep spin-
dles (Block 2) has larger singular values than the blocks
which are free of spindle-like waveforms. Consequently, in
order to estimate the multichannel oscillatory component
we propose a sparse optimization framework wherein we
regularize the sum of singular values of the overlapping
blocks formed of the input EEG signal. Minimizing the

sum of singular values of a matrix results in a low-rank
estimate of the matrix [13, 46].

We define the operator Φ: Rk×n → Rk×l×m, which
extracts m blocks, each of an even length l, from the
k−channel input signal as

[Φ(X)]i :=

 x1(i) . . . x1(i+ l − 1)
...

xk(i) . . . xk(i+ l − 1)

 , (9)

for i = 1, . . . ,m. The operator Φ can be defined with a
certain overlap between consecutive blocks. Further, Let
the adjoint operator be denoted by ΦT : Rk×l×m → Rk×n.
The adjoint operator forms the k−channel signal by aggre-
gating the m blocks, where by aggregating we mean that
the blocks are added in an overlap-add way. Note that
in the case of distinct blocks, i.e., no overlap between the
blocks, the operator Φ is orthogonal (ΦTΦ = I).

In this paper, we use the operator Φ with 50% overlap
between blocks of 1 second in length, implemented to ob-
tain perfect reconstruction. As an example, for an EEG
signal sampled at 256 Hz, the block length is fixed at 256
samples. In order to perfectly reconstruct the input signal
X ∈ Rk×n from Φ(X), we use a diagonal weight matrix
W ∈ Rn×n. Since the blocks are aggregated in an overlap-
add way, the samples of signal X that are contained in
the overlap occur twice in the signal formed using the ad-
joint operator ΦT . As a result, appropriately weighting
the samples can lead to perfect reconstruction1.

An example will help clarify the proposed block low-
rank operator. Consider the single channel signal X =
[x1, x2, x3]. Using a block length of 2 samples with 50%
overlap leads to

Φ(X) =
{

[x1, x2], [x2, x3]
}
. (10)

Reconstructing the signal from the individual blocks by
overlapping and adding we get

O
(
Φ(X)

)
= [x1, 2x2, x3], (11)

where O(·) defines the overlap-add operator. Note that
by ‘overlap-add’ we imply that the individual blocks of
size k × l are overlapped and added to construct a mul-
tichannel signal of size k × n. In order to achieve perfect
reconstruction, i.e., ΦT (Φ(X)) = X, we use the weight
matrix W ∈ R3×3, given by

W =

 1 0 0
0 1/2 0
0 0 1

 , (12)

and define

ΦT (Φ(X)) = O
(
Φ(X)

)
·W (13)

1Note that using a generic amount of overlap does not guarantee
perfect reconstruction i.e., ΦT Φ 6= I.
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= X. (14)

Note that the weight matrix W associated with the oper-
ator Φ with 50% overlap can be pre-computed based on
the input signal length and the user chosen block length.
In particular, for an input signal X ∈ Rk×n, n > 3, the di-
agonal weight matrix associated with the operator Φ with
50% overlap and an even block length of l is given by

diag(W ) =
{

1, . . . , 1︸ ︷︷ ︸
l/2

, 1/2, . . . , 1/2︸ ︷︷ ︸
n−l

, 1, . . . , 1︸ ︷︷ ︸
l/2

}
. (15)

A suitable optimization problem for estimating the os-
cillatory component with a block low-rank structure is
given by

C∗ := arg min
C

{
1

2
‖Y − ΦT (C)‖22 + λ

m∑
i=1

‖ci‖∗,

}
, (16)

where C = [c1 . . . , cm], ci ∈ Rk×l, C∗ ∈ Rk×l×m, and
λ > 0 is the regularization parameter. Note that the op-
timization problem in (16) estimates the blocks ci from
which the multichannel signal S can be calculated using
ΦT (i.e., S = ΦT (C∗)). The optimization problem in (16)
is a sum of convex functions (nuclear norm) and a strictly
convex function (`2 norm squared) and hence is a convex
optimization problem. As a result, well developed princi-
ples of convex optimization can be leveraged to obtain a
global minimum.

The solution to the optimization problem in (16) can be
obtained using the iterative shrinkage/thresholding algo-
rithm (ISTA) [7] and its variants. The ISTA algorithm, for
the optimization problem in (16), entails soft-thresholding
the singular values of each block of the multichannel sig-
nal Y . For an overnight multichannel EEG signal, roughly
30000 blocks of length 1 second are obtained using the op-
erator Φ and as such the ISTA algorithm involves comput-
ing 30000 singular value decompositions (SVD). However,
since the number of channels is much less than the length
of the block, we need compute only the first k (number of
channels) singular values and their corresponding left and
right singular vectors. As an example, for the multichan-
nel EEG signal shown in Fig. 3 or for the one in Fig. 2
it suffices to compute only the first 3 or 6 singular values
respectively.

3. Sleep Spindle Detection for Multichannel EEG

3.1. Non-linear signal model

We propose the following non-linear signal model for
the multichannel EEG denoted by Y :

Y := X + S +W, Y,X, S,W ∈ Rk×n, (17)

where X represents the transient component, S represents
the oscillatory component andW represents additive white
Gaussian noise (AWGN) (i.e., W ∼ N (0, σ)). We assume

that the transient component X is sparse and piece-wise
constant and the blocks of the oscillatory component S are
low-rank as described in Sec. 2.2.

The signal model presented in this paper contains cer-
tain similarities to the one presented in [48], in particu-
lar, the transient component is modeled in a similar way.
Moreover, in both models, sparsity of the block structure
of the spindle component is exploited. Although, the prop-
erties of the spindle component presented in this paper are
different, the overall theme of non-linear signal models pre-
sented in this paper, in [48] and in [47] is similar: the input
EEG signal is modeled as a sum of transient and oscillatory
components. Note that in this paper we do not estimate
the low-frequency transient component of the EEG, which
was shown to be of particular interest when detecting K-
complexes [48].

3.2. Estimating Transient and Oscillatory Components

In order to detect spindles, we first estimate the tran-
sient and the oscillatory components in the proposed sig-
nal model (17) from the recorded multichannel EEG. To
this end, we utilize a sparse optimization framework and
propose to solve the following objective function

{X∗, C∗} = arg min
X,C

{
1

2
‖Y −X −H(C)‖22 + λ0

k∑
i=1

‖xi‖1

+ λ1

k∑
i=1

‖Dxi‖1 + λ2

m∑
i=1

‖ci‖∗

}
, (18)

where X = [x1, . . . , xk], C = [c1, . . . , cm], ci ∈ Rk×l and
λi > 0 are the regularization parameters. We let H =
ΦT , where Φ is the block low-rank operator (see Sec. 2.2).
Recall thatD is the first-order difference matrix, as defined
in (6), and C is the coefficient array obtained using the
operator Φ as defined in (9).

The proposed objective function seeks the optimal so-
lution X∗ which is sparse and piecewise constant. The
`1 norm on X penalizes non-sparse solutions and the `1
norm on Dxi, for i = 1, . . . , k, penalizes non piecewise
constant solutions. These two penalties combined are gen-
erally termed as the ‘fused-lasso’ penalty [60, 49] and have
been shown to model the transient component [48] with
relative accuracy.

The nuclear norm on each of the coefficients ci in (18)
penalizes solutions C∗ that do not exhibit the block low-
rank property as described in Sec. 2.2. Using the solution
C∗ from the optimization problem in (18), we estimate the
oscillatory component using the operator H = ΦT , i.e.,

S = ΦT (C∗). (19)

The estimate for the oscillatory component S can then
used to detect sleep spindles.
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Algorithm 1 McSleep algorithm for solution to (18)

1: inputs: Y ∈ Rk×n, µ > 0, λi > 0, i = 0, 1, 2.

2: initialize: D1, X,D2, C ← 0

3: repeat

4: f1 ← 1
µY +X +D1

5: f2 ← 1
µH

TY + C +D2

6: U ← f1 − 1
µ+2

(
f1 +Hf2

)
7: V ← f2 − 1

µ+2H
T
(
f1 +Hf2

)
8: xi ← soft

(
tvd(ui − d(1,i), λ1/µ), λ0/µ

)
9: [Ũ , Σ̃, Ṽ ]← svd

(
vi − d(2,i)

)
10: ci ← Ũ · soft(Σ̃, λ2/µ) · Ṽ T

11: D1 ← D1 − (U −X)

12: D2 ← D2 − (V − C)

13: until convergence

14: X = [x1, . . . , xk], X ∈ Rk×n

15: S = ΦT (C), C ∈ Rk×l×m, C = [c1 . . . , cm]

16: return X,S

3.3. Transient Separation Algorithm

We develop a fast iterative algorithm to obtain the op-
timal solution for X∗ and C∗ using the proposed objective
function (18). Note that the objective function proposed
is convex and hence well developed theory of convex opti-
mization algorithms can be leveraged to obtain the opti-
mal solution. We apply Douglas-Rachford splitting [18] to
solve (18), which results in an instance of the alternating
direction method of multipliers (ADMM) method. The
convergence of the iterative ADMM algorithm is guaran-
teed for the proposed objective function (18) under suit-
able assumptions [29, 10].

We write the objective function (18) using variable-
splitting as

arg min
X,U,C,V

{
1

2
‖Y − U −H(V )‖22 + λ0

k∑
i=1

‖xi‖1

+ λ1

k∑
i=1

‖Dxi‖1 + λ2

m∑
i=1

‖ci‖∗

}
such that U = X, V = C. (20)

Using the scaled augmented Lagrangian, minimizing (20)
results in solving the following three sub-problems:

U, V ← arg min
U,V

{
1

2
‖Y −

(
U +H(V )

)
‖22

+
µ

2
‖U −X −D1‖22 +

µ

2
‖V − C −D2‖22

}
, (21a)

X ← arg min
X

{
µ

2
‖U −X −D1‖22 + λ0

k∑
i=1

‖xi‖1

+ λ1

k∑
i=1

‖Dxi‖1

}
, (21b)

C ← arg min
C

{
µ

2
‖V − C −D2‖22 + λ2

m∑
i=1

‖ci‖∗

}
,

(21c)

where µ > 0 is the Lagrangian step-size parameter.
The first term in sub-problem (21b) can be written as

the energy over each channel of U,X and D1, i.e.,

x∗i ← arg min
xi

{
k∑
i=1

µ

2
‖ui − xi − d(1,i)‖22 + λ0‖xi‖1

+ λ1‖Dxi‖1

}
, (22)

with X∗ = [x∗1, . . . , x
∗
k]. The terms ui, xi and d(1,i), for

i = 1, . . . , k represent the k−channels of U,X and D re-
spectively. The solution to (22), for each x∗i , is readily
obtained by applying the fused-lasso method [60] to each
channel of the underlying signal, i.e.,

x∗i = soft(tvd(ui − d(1,i), λ1/µ), λ0/µ), (23)

where ui and d(1,i) are the ith channel of U and D1 re-
spectively. Note that tvd(·) represents the solution of to-
tal variation denoising method [53] obtained using a fast
solver [19] and soft(·) represents the soft-thresholding func-
tion (7).

We write the sub-problem (21c) as

c∗i ← arg min
ci

{
m∑
i=1

µ

2
‖vi − ci − d(2,i)‖22 + λ2‖ci‖∗

}
, (24)

where vi, ci and d(2,i) are the ith channel of V,C and D2

respectively. The solution to (24) is obtained using the
singular value thresholding (SVT) algorithm [13], i.e.,

[Ũ , Σ̃, Ṽ ] = svd(vi − d(2,i)), (25)

c∗i = Ũ · soft(Σ̃, λ2/µ) · Ṽ T , (26)

where svd(·) represents the singular value decomposition.
The SVT algorithm computes the singular values of the
input matrix and thresholds them using the soft-threshold
function [13].

The objective function in the sub-problem (21a) can be
solved exactly using a suitable substitution via the least
squares method. Note that the objective function in the
sub-problem (21a) is similar to objective function (20a) in
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Figure 4: Separation of transients and oscillations using the pro-
posed objective function in (18) for an example EEG segment from
DREAMS Database [24]. The transient component is modeled as
the sum of a low-frequency signal and a sparse piecewise constant
signal.

[48], and hence a similar derivation can be used for (21a)
in this paper. We detail the derivation in Appendix 8.1.
The iterative algorithm for (18) is listed in Algorithm 1
and the MATLAB code is made available online2.

Figure 4 shows the estimated transient and oscillatory
components for a three channel EEG (FP1-A1, CZ-A1,
O1-A1) from the Devuyst Database3. It can be seen in
Fig. 4 that the spindles in the three EEG channels are cap-
tured by their respective oscillatory components, whereas
the non-oscillatory waveforms are captured by the tran-
sient components. Also shown in Fig. 5 is the separation
of transients and oscillations for a sample 6-channel EEG.

3.4. Detection of Spindles Post Separation of Transients

We use the estimated multi-channel oscillatory compo-
nent to detect the sleep spindles. In order to suppress non-
spindle like waveforms captured by the oscillatory compo-
nent, we use a 4th order Butterworth bandpass filter with
a passband of 11 Hz to 16 Hz. Specifically the bandpass fil-
ter is applied to each channel of the estimated oscillatory
component. We denote the bandpass filtered oscillatory
components as BPF(S), where S is the oscillatory compo-
nent.

The usage of the proposed transient-separation algo-
rithm allows for the oscillatory activity in the EEG to

2https://github.com/aparek/mcsleep.git
3University of MONS - TCTS Laboratory (S. Devuyst, T. Du-

toit) and Universite Libre de Bruxelles - CHU de Charleroi Sleep
Laboratory (M. Kerkhofs)

Figure 5: Decomposition of a 6-channel EEG (Y ) into its transient
(X) and oscillatory (S) components. Also shown is the the residual
W , where (W = Y −X − S).

appear prominently. As a result, post separation of the
transients the detection of sleep spindles becomes rela-
tively simpler. We use the Teager Operator, as defined
in Sec. 2, to construct an envelope of the oscillatory activ-
ity and consequently detect spindles. The Teager operator
has been commonly used to obtain an envelop of the band-
pass filtered signal for spindle detection [45, 3, 30, 21, 64].
Moreover, a similar framework using a Butterworth band-
pass filter and TKEO was used to detect spindles and K-
complexes simultaneously [48]. The Teager operator de-
noted by T (·), is applied to the channel mean of the multi-
channel bandpass filtered oscillatory component (BPF(S))
to detect the spindles. Using a constant threshold, we de-
fine a binary signal bspindle(t) as

bspindle(t) :=

{
1, T

(
BPF(S)

)
> c

0, T
(
BPF(S)

)
6 c,

(27)
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Figure 6: Proposed detection method for multichannel EEG using
McSleep as a multichannel transient separation algorithm.
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Figure 7: Detection of sleep spindles using the proposed method.
The envelope of the bandpass filtered oscillatory component, ob-
tained using the Teager operator, is also shown.

where 1 denotes a spindle present and 0 otherwise.
Figure 6 summarizes the proposed multichannel sleep

(McSleep) spindle detection method using the derived tran-
sient separation algorithm for sleep EEG. Figure 7 shows
the detection of sleep spindles using the proposed McSleep
detection method for a 3-channel EEG. Also shown in
Fig. 7 is the envelope obtained by applying the TKEO
on the mean (across the channels) of the bandpass filtered
oscillatory component.

4. Examples

We illustrate the proposed multichannel sleep spindle
detection (McSleep) and compare it to other state-of-the-
art automated spindle detectors. Recall that the proposed
method estimates an oscillatory component that exhibits
the block low-rank structure described in Sec. 2.2. The
higher the difference in singular values of the blocks that
contain spindles and the ones that do not, the better the
estimation of the oscillatory component. As such, the pro-
posed method for spindle detection can be run on either
the entire EEG montage in a 10-20 system or only the
left or the right frontal, central and occipital channels.
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Figure 8: The value of objective function in (18), for each iteration
k, is shown for several values of the step-size parameter µ.

For the examples that follow, we run the proposed Mc-
Sleep method on all the recorded channels of scalp EEG
- one central channel (CZ-A1), one frontal channel (FP1-
A1) and one occipital channel (O1-A1).

4.1. Parameters

The proposed spindle detection method requires the
user to set several parameters which are either algorithm-
specific or task-specific. Algorithm specific parameters are
the regularization parameters λi > 0, for i = 0, 1, 2., in
(18) and the step-size µ for the scaled augmented La-
grangian. The regularization parameters influence the spar-
sity of their respective components. For example, a high
value for λ0, relative to the other parameters, enforces the
transient component X to be sparse (i.e., with a baseline
of zero).

We use λ0 = 0.3 and λ1 = 6.5 in order to separate the
transients from the spindle-like oscillations for an EEG
signal at a sampling frequency of 200 Hz. The values for
λ0 and λ1 were found empirically for the examples that
follow. We find that the same λ0 and λ1 work well for
different EEG signals having the same sampling frequency.
Thus for a dataset that contains EEG signals sampled at
the same frequency we can preset the values for λ0 and
λ1. In case an EEG contains relatively more transients,
the values of λ0 and λ1 may be increased. We set λ2 to
be in the range (25, 35) for an EEG signal sampled at 200
Hz. For EEG signals sampled at a different rate, we scale
the parameters λ0, λ1, λ2 proportionally.

The step-size parameter µ on the other hand controls
the rate of convergence for the proposed algorithm. Note
that µ influences the speed at which the algorithm con-
verges and not the solution to which it converges. Fig-
ure 8 shows the value of the proposed objective function
(18) at each iteration for several values of µ. For the ex-
amples that follow and for the experiments in Sec. 5, we
fix µ = 0.5. Even though a value of µ < 0.5 can be chosen,
we observe that for the number of iterations required for
convergence (usually 40), all values of µ < 0.5 yield the
same objective function value. It can be seen in Fig. 8

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 10, 2017. ; https://doi.org/10.1101/104414doi: bioRxiv preprint 

https://doi.org/10.1101/104414
http://creativecommons.org/licenses/by-nc-nd/4.0/


that the lowest value of the objective function is achieved
after 40 iterations for µ = 0.5 and µ = 0.3.

The task-specific parameters are the block length for
the block low-rank operator H, the overlap between con-
secutive blocks and the threshold c for the binary vector
bspindle(t). The average duration of a sleep spindle is be-
tween 1 and 1.5 seconds [64, 4, 50]. As a result, we set the
block length to be fixed at 1 second with a 50% overlap
between consecutive blocks. The threshold c is set to be in
the range (1, 2). This range for the threshold value is simi-
lar to the range observed in recent studies that use TKEO
for spindle detection [44]. For the experimental validation
in Sec. 5, the EEG segments that contain body movement
artifacts were discarded for analysis visually as in [23].
Furthermore, we discard all detected spindles which are
either less than 0.5 seconds or greater than 3 seconds [64].

The passband for the Butterworth filter used in this pa-
per is in fact an additional parameter to be set when using
the proposed method. We select the passband to be 11 Hz
to 16 Hz based on spindle frequency range reported in [23]
and the American Academy of Sleep Medicine (AASM)
manual [56]. However, increasing number of studies are
reporting spindle frequencies to be in a variety of ranges,
such as 11–15 Hz [41], 10–17 Hz [64]. As such, there seems
to be a lack of consensus among the sleep medicine com-
munity regarding the range of spindle frequency.

Recall that the proposed spindle detection method can
be broken down into two major steps: transient separation
and envelope detection using a bandpass filter followed by
the Teager operator with a threshold. As a result, studies
that may be interested in slow spindles (spindle frequency
less than 13 Hz [64]) can set the passband to say 10 Hz to
13 Hz or alternatively set the passband to 13 Hz to 16 Hz
for fast spindles. In this manner, the proposed method of-
fers flexibility for the study of spindles, fast and slow alike.
Moreover, since the computationally heavy transient sep-
aration algorithm needs to be run only once (for a fixed
set of regularization parameters), the additional runtime
in detecting slow and fast spindles separately is not signif-
icant.

Although the list of parameters required to be set by
the user for the proposed method is not short, it is worth
noting that only λ2 and c are the parameters that may
need to be changed; all other parameters can be fixed
for EEG signals that share the same sampling frequency.
In Sec. 5.3 we explain how to tune parameters for large
datasets in a semi-supervised fashion.

4.2. Example comparison with existing detection methods

We compare the proposed multichannel sleep (McSleep)
spindle detection method with the following state-of-the-
art automated detectors: Devuyst [23], Wendt [65], Martin
[39], and DETOKS [48]. Note that for the proposed Mc-
Sleep method, we apply the transient separation algorithm
on three channels of the scalp EEG (FP1-A1, CZ-A1, O1-
A1). We apply the Teager operator on the channel mean
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Figure 9: Comparison of proposed McSleep method for spindle de-
tection with existing spindle detectors. Expert annotated sleep spin-
dles are highlighted in black. Bandpass filter output is also shown in
background for several methods.

of the bandpass filtered oscillatory component to detect
spindles.

Figure 9 shows the detection of sleep spindles for an
example 3-channel EEG using the Devuyst, Wendt, Mar-
tin, DETOKS and the proposed McSleep methods. Also
shown in Fig. 9 is the bandpass filter result for the differ-
ent methods. Due to the absence of the implementation
details for the bandpass filter used by Devuyst, we do not
show the bandpass filter result in Fig. 9. Note that the
experts have annotated three spindles at 357, 358 and 361
seconds visually for the central (CZ-A1) channel only.

The Devuyst, Wendt and Martin detection methods
are not able to detect all the three spindles, with the
Wendt method detecting a false positive spindle. The
DETOKS method does detect all three spindles, but the
estimated durations do not closely resemble the expert an-
notated spindle duration. Note that it is possible to in-
crease the value of the Teager threshold for the DETOKS
method to better match the duration of detected spindles.
However, it is likely that this will discard previously de-
tected spindles. On the other hand, the proposed McSleep
method detects all three spindles and their estimated du-
ration is similar to the expert detection. Moreover, the
bandpass filter output for McSleep (only the central chan-
nel) shows the spindles much more prominently than the
other methods.

Figure 10 shows the bandpass filtered EEG signal us-
ing the filter used by the Wendt algorithm [65]. As seen
in Fig. 9, and reported in [48], the Wendt method detects
false positive spindles due to the presence of transients. In
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Figure 10: Bandpass filtered sleep EEG using Wendt algorithm [65].
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false detections.

23 24.5 26 27.5 29

Time (s)

-25

0  

25 

-25

0  

25 

-25

0  

25 

A
m
p
li
tu
d
e
(µ

V
)

BPF(s
1

)

BPF(s
2

)

BPF(s
3

)

Figure 11: Bandpass filtered oscillatory component estimated using
the proposed method. Due to separation of transients, the spindle
activity is displayed more prominently.

particular, the transients in the sleep EEG excite the band-
pass filter and as such the spindle activity does not appear
prominent. This leads to the algorithm detecting false pos-
itive spindles in areas where non-oscillatory transients are
present. It may also generally lead to a high number of
false negatives. On the other hand, the proposed method
seeks to first separate the transients and then use the es-
timated oscillatory component to detect spindles, thereby
resulting in a much more prominent spindle activity in the
bandpass filtered signal as seen in Fig. 11.

5. Evaluation of McSleep for Spindle Detection

In this section, we apply the proposed multichannel
sleep spindle detection method (McSleep) to an online
EEG database wherein the sleep spindles are annotated
by experts using only the central (C3-A1) channel. To
the best of our knowledge, currently there are no publicly
available EEG datasets which contain expert spindle an-
notation across all channels of the scalp EEG.

5.1. Database and existing automated detectors

In order to evaluate the performance of the proposed
method for detecting sleep spindles, we apply the proposed
method and the state-of-the-art automated detection algo-
rithms on an online EEG database4. We use the following
state-of-the-art automated detection algorithms: Wendt
[65], Martin [39], Bodizs [8], Wamsley [63], Mölle [33], De-
vuyst [24], and DETOKS5 [48]. We refer the reader to
[64, 47], and [48] for a review and the source code of the
detection methods. We base the choice of detection al-
gorithms for comparison on the availability of the source
code for each of the algorithms.

The online EEG database, used for spindle detection
in this paper, was acquired using a 32-channel polygraph
(BrainnetTM System of MEDATEC, Brussels, Belgium)
[23]. The subjects possessed different pathologies (dysom-
nia, restless legs syndrome, insomnia and apnoea /hypop-
noea syndrome) [24]. The online database provides 8 ex-
cerpts of 30 minutes from the whole-night recording. The
excerpts contain three EEG channels (FP1-A1, C3-A1 or
CZ-A1, and O1-A1), two EOG channels and one submen-
tal EMG channel. These excerpts were scored indepen-
dently by two experts for sleep spindles. Out of the 8
excerpts, we evaluated the performance of the proposed
method on only 5 of the excerpts as these were scored by
both the experts.

5.2. Measure of performance

We use the expert detection (visually annotated spin-
dles using the central channel) as a gold standard for eval-
uating the performance of the automated detection algo-
rithms. We use two methods of analyzing the performance
of the automated detectors: by-sample and by-event anal-
ysis [64]. Specifically, for the ‘by-sample’ rule, a time sam-
ple of the EEG is marked as a true positive (TP) if it
was marked as a spindle by either of the experts and the
automated detection algorithm. In this way, we calcu-
late the true negative (TN), false positive (FP) and false
negative (FN) values which lead to a 2 by 2 contingency
table. These values are then used to evaluate the recall
and precision scores of each of the detectors. The recall
and precision scores are further used to calculate the F1

score, where the F1 score is defined as the harmonic mean
of recall and precision. Note that the F1 score ranges from
0 to 1, with 1 indicating a perfect detector. Similar to the
F1 score, we also calculate Cohen’s κ [17] and Matthews
Correlation Coefficient (MCC) [40].

In the ‘by-event’ analysis, a unit of measurement is a
single sleep spindle. Specifically, an overlap value is calcu-
lated based on the following formula [42, 64]

Othreshold :=
E ∩D
E ∪D

, (28)

4http://www.tcts.fpms.ac.be/~devuyst/#Databases
5https://github.com/aparek/detoks
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Figure 12: By-sample F1 score as a function of threshold c and λ2.
For visibility only the c values that yield the highest F1 scores are
shown. The test data is chosen from Excerpt 2 of the online database
described in Sec. 5.

where E denotes the expert detection and D denotes the
automated detection. A TP is counted if Othreshold > 0.3,
where 0.3 is user chosen threshold value. All matched
event detection (ED) pairs are counted as TP, all un-
matched events (E) are counted as FN and all un-matched
detections (D) are counted as FP [64]. Since non-spindle
events are not meaningful, TN values are not calculated in
the by-event analysis. Using the contingency matrix, we
calculate the recall and precision values which are future
used for calculating the F1 score. Due to the absence of
true negative values, we cannot calculate the MCC score
in the by-event analysis. We use an overlap-threshold of
0.3 seconds in order to resolve less-than-perfect overlap
and multiple-overlap problems between spindle events and
detections. For a pseudo-code of the by-event scoring rule,
we refer the reader to [64]. An implementation is provided
online with source code of the proposed method.

As a simple example to clarify the differences between
the two modes of analyses, consider the following. Let
V = [0, 1, 1, 0, 1, 0] represent a binary vector indicating
the expert annotation, where 1 represents a spindle and 0
otherwise. Let A = [0, 1, 1, 0, 0, 1] represent the detection
via an automated spindle detector. Considering only per-
fect matches for the by-event analysis, we have TP = 1,
FP = 1 and FN = 1, leading to a recall value of 0.5, preci-
sion value of 0.5 and an F1 score of 0.5. In comparison, for
the by-sample method of analysis we have TP = 2, FP =
1, and FN = 1, leading to a recall value of 0.67, precision
value of 0.67 and an F1 score of 0.67.

5.3. Parameter Tuning

The evaluation of the proposed McSleep spindle de-
tection method on the Devuyst database requires a set of
optimal parameters to be chosen. Recall that the proposed
McSleep method is a two-step detection process: first we
estimate the transient and the oscillatory component and
then use the oscillatory component to detect spindles by
using a combination of bandpass filter and the Teager op-
erator. While the parameters for the McSleep method are
described in Sec. 4.1, four key parameters need to be set:

Table 1: By-event analysis of proposed method for sleep spindle
detection as described in Sec. 5. Average values for the F1 score,
recall and precision over 5 excerpts are listed. Standard deviation
values are shown in parenthesis.

Methods By-Event Performance

F1 score Recall Precision

Wendt [65] 0.43 (0.11) 0.56 (0.08) 0.36 (0.12)

Martin [39] 0.51 (0.11) 0.51 (0.16) 0.53 (0.05)

Bodizs [8] 0.32 (0.14) 0.70 (0.15) 0.21 (0.14)

Mölle [33] 0.32 (0.26) 0.30 (0.07) 0.34 (0.27)

Devuyst [24] 0.57 (0.07) 0.56 (0.09) 0.58 (0.09)

DETOKS [48] 0.64 (0.03) 0.61 (0.06) 0.69 (0.11)

McSleep 0.67 (0.04) 0.65 (0.05) 0.71 (0.05)

λ0, λ1, λ2 and c (threshold for the Teager operator). The
parameters λ0 and λ1 are set manually to a fixed value
for all the excerpts in the Devuyst database. The fixed
value of λ0 and λ1 (given in Sec. 4.1) is chosen so as to
ensure that the oscillatory component is relatively free of
transient activity such as BCG or other cardiac artifacts.
Note that we run only the transient separation algorithm,
and not the entire proposed spindle detection method in
order to fix λ0 and λ1

Once the transient component is estimated the remain-
ing parameters that need to be fixed are λ2 and c. For each
subject, we choose a segment of the multichannel EEG
(usually between 5-10 epochs) and run the proposed Mc-
Sleep spindle detection method for a grid of values for λ2

and c. We select the set of parameters that yield the high-
est F1 score. The process of selecting λ2 and c is repeated
for another subject in the database. Figure 12 shows the
F1 score as a function of λ2 and c for a 10 epoch segment
for Excerpt 2 from the Devuyst Database. Note that for
visual clarity, we only show the F1 curves associated for
four values c. It can be seen from Fig. 12 that the optimal
set of parameters is λ2 ≈ 26.5 and c = 1.5. Selecting the
optimal parameters based on a small segment of the EEG
may seem as over-fitting. As such, we run the proposed
method on the entire EEG few times with parameters sur-
rounding the optimal set obtained above.

5.4. Results

The average F1, recall and precision values for the pro-
posed McSleep method in comparison with the other state-
of-the-art methods, using the by-event analysis, is listed in
Table 1. Table 2 lists the average F1 score, MCC score,
recall and precision values using the by-sample analysis.
Detailed statistical measures are listed in Table 3 and Ta-
ble 4, for the by-event and by-sample methods of analysis
respectively, in Appendix 8.2.

The proposed detection method on a 30 minute excerpt
from the online database with three EEG channels (sam-
pling frequency of 200 Hz) takes on an average 10 seconds
on an Intel Core i7 cpu-based machine. This consists of 40
iterations of the transient separation algorithm, followed
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Table 2: Evaluation of proposed method for sleep spindle detection
as described in Sec. 5. Average values for the F1 score Matthews
Correlation Coefficient (MCC), recall and precision over 5 excerpts
are listed. Standard deviation values are shown in parenthesis.

Methods By-Sample Performance

F1 score MCC [40] Recall Precision

Wendt [65] 0.49 (0.07) 0.47 (0.06) 0.57 (0.08) 0.44 (0.10)

Martin [39] 0.50 (0.08) 0.50 (0.07) 0.43 (0.11) 0.64 (0.06)

Wamsley [63] 0.06 (0.12) 0.07 (0.16) 0.04 (0.07) 0.18 (0.36)

Bodizs [8] 0.34 (0.15) 0.27 (0.15) 0.75 (0.30) 0.22 (0.10)

Mölle [33] 0.40 (0.26) 0.32 (0.26) 0.28 (0.23) 0.50 (0.33)

Devuyst [24] 0.62 (0.03) 0.60 (0.03) 0.71 (0.07) 0.63 (0.08)

DETOKS [48] 0.70 (0.02) 0.68 (0.02) 0.71 (0.02) 0.68 (0.05)

McSleep 0.66 (0.02) 0.64 (0.02) 0.63 (0.02) 0.69 (0.04)

by bandpass filtering the oscillatory component and apply-
ing the TKEO operator for spindle detection. The average
runtime for the single channel detectors varied from 10 to
100 seconds with the most time taken by the Mölle detec-
tor [33]. For a sample overnight (approx. 8 hours) EEG
with 6 channels (as shown in Fig. 5) the proposed method
takes on an average 2 minutes. In comparison, a bandpass-
filter-based single channel detection method takes on an
average 0.5 minutes to 3 minutes, while a transient sepa-
ration based algorithm, such as DETOKS [48], takes on an
average 6 minutes (run in parallel over all the 30 second
epochs of all the 6 channels).

The proposed McSleep detection method can be run
in two ways: either in parallel on 30 second epochs or on
the entire overnight EEG (aprrox. 8 hours). We choose the
former for the analysis presented in this paper. The epoch-
by-epoch method of execution is done solely for faster
run-times. The spindle detection is not affected whether
the proposed method is run in parallel or on the entire
overnight EEG. Furthermore, the proposed method can
be run on user-chosen epochs as well.

5.5. Discussion

The proposed McSleep detection method achieved bet-
ter average F1 scores compared to other state-of-the-art
detectors using by-event analysis. The highest F1 scores
for the by-sample analysis, however, were obtained by the
DETOKS [48] method. The Martin [33] and Devuyst [23]
methods performed relatively better than other detectors,
in terms of the average F1 scores. The lowest false discov-
ery rates were obtained for the proposed McSleep method.
The average false discovery rate (FDR) for the proposed
method was 31.3 ± 0.04% using the by-sample analysis.
In comparison, the average FDR for the DETOKS method
was 31.8 ± 0.08% and the average FDR for the Devuyst
method was 37.1 ± 0.05%.

The receiver operating characteristic (ROC) curve is
generally used to measure the performance of a binary
classifier, such as a spindle detector. However, since the
spindle detection problem is asymmetric, i.e., TN values
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Figure 13: Precision-Recall (PR) curve for proposed McSleep method
and the DETOKS method based on the by-event method of analysis.
The point closest to the curve from the top-right corner represents
the maximum F1 score obtained.

are significantly larger than TP and FP values due to the
sparsity of spindle events overnight, the ROC curve is per-
haps not the best tool for assessing the performance of a
spindle detector [44]. As an alternative, a precision-recall
(PR) curve can be used to visually describe the perfor-
mance of a spindle detector. Since the F1 scores for the
proposed method and the DETOKS method are relatively
close for the by-event and the by-sample analysis, we plot
the PR curve for these two methods in Fig. 13 to gain more
insight into their overall performance. The PR curve is ob-
tained for the by-event analysis by varying the values of
the threshold (c) and λ2 for the proposed method (similar
parameters are changed for the DETOKS method). It can
be seen in Fig. 13 that the proposed McSleep method and
the DETOKS method perform similarly with the McSleep
method obtaining a better average F1 score. A similar PR
curve is observed when using the by-sample analysis.

The transient separation algorithm for the proposed
McSleep method and the one proposed in DETOKS [48]
are quite similar. In particular, the regularization terms
used for the transient component are same in both the
methods, with the only difference being that the proposed
method uses a multichannel input whereas DETOKS uses
a single channel input. The notable difference between
the McSleep and DETOKS method is in the use of the
regularization term for the oscillatory component with the
former using a low-rank regularization and the latter us-
ing a sparse STFT regularization. For the case of a single
channel input, the proposed objective function in (18) pe-
nalizes sum of absolute values of overlapping blocks. In
comparison, DETOKS penalizes sum of absolute values of
overlapping STFT blocks. As such, the proposed McSleep
method and DETOKS are expected to perform similarly,
especially for a dataset where the gold-standard is expert
annotated spindle detection on a single channel of the scalp
EEG. However, the proposed method is more precise as it
utilizes information from all channels, as seen in Table. 1
and Table 2.

The inter-rater agreement for the dataset we consider
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Figure 14: Comparison of the proposed McSleep detection method
and the DETOKS detection method. The DETOKS method detects
a false positive when run on either a single central channel or on all
the channels. The EEG is obtained from excerpt 2 of the online EEG
database [24].

in this paper is relatively low (on average 44.2% [42]). The
relatively low performance of the single channel methods,
as well as the proposed method, on the dataset used in
this paper may be attributed to the low inter-rater agree-
ment. As a result, using a dataset where the inter-rater
agreement is high, may result in a better performance for
the automated detectors. We claim that applying the pro-
posed method to a dataset where the experts viewed and
annotated all channels of scalp EEG (frontal, central and
occipital) will result in a significantly better performance
than existing single channel detectors.

A simple method for detecting sleep spindles across
all the channels of scalp EEG is to run the existing sin-
gle channel detectors sequentially channel-by-channel and
combine the resulting detections. However, such a mul-
tichannel detection method gives rise to two key issues:
the high computational complexity associated with run-
ning single channel detectors and combining the result-
ing binary detections. As noted in the preceding subsec-
tion, on an average a simple bandpass-filter based spindle
detector takes 10 to 100 seconds for a single channel of
an overnight EEG, while the MCA based methods take
5 to 6 minutes. The run-time is eight to ten-fold for an
overnight EEG acquired using the 10-20 system. On the
other hand, the proposed method detects spindles across
all the recorded channels of scalp EEG within 2 minutes.
Moreover, as spindles may have different amplitudes in
different channels, the existing single channel detectors re-
quire a separate parameter tuning for each channel. In
comparison, with a single set of optimal parameters the
proposed method is able to detect spindles across all the

Figure 15: Proposed McSleep detection in comparison with
DETOKS method run sequentially on all channels. The proposed
detection contains fewer false positive spindles due to better separa-
tion of transients.

channels. Note that the proposed McSleep method can
be run on 30 second epochs thus enabling its utility in an
online mode6.

In order to combine the single channel detections a
majority-vote type method may be used. However, ignor-
ing detected spindles on the basis that they do not pass
a majority vote can possibly lead to a high type II error,
especially for studies that are investigating the spatial dis-
tribution of sleep spindles overnight (for e.g., see [9], [50]
and the references therein). Moreover, ensuring that the
gold standard adheres to such a voting rule can be chal-
lenging. Another method, perhaps simpler than majority
voting, for combining the detection is to use a ‘union’ rule:
a sleep spindle detected in any one channel is a valid de-
tected spindle. However, such a union rule generally leads
to high type I error (high false positives are reported).

Consider the EEG segment shown in Fig. 14, where
the expert annotated spindle is at 109.3 seconds. Fig-
ure 14 shows the spindle detection obtained using three
methods: DETOKS run on only the central EEG channel,
DETOKS run on all three channels sequentially with sepa-
rate parameter tuning, and the proposed McSleep method.
The single channel DETOKS method detects a false posi-
tive whereas using the union rule the all-channel DETOKS
run with separate parameter tuning detects the true pos-
itive spindle but also retains the false positive spindle. In
contrast, the proposed method, due to a better separa-
tion of transients and oscillations, does not detect the false
positive spindle while correctly detecting the expert anno-
tated spindle. Moreover, the AASM manual [56] suggests

6An online algorithm is able to process the input data in a piece-
by-piece fashion without requiring the presence of an entire signal.
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experts to annotate spindles only on the central channel,
as such a voting rule wherein higher weight is given to
the central channel may not be able to discard the false
positive spindle detected in Fig. 14. Similar behavior is
observed in another EEG segment shown in Fig. 15.

6. Conclusion

We propose a multichannel transient separation algo-
rithm for detecting sleep spindles (McSleep) simultane-
ously across the frontal, central and occipital channels of
sleep EEG. The proposed method attempts to aid in an-
swering the open question regarding the spatial distribu-
tion of sleep spindles. The transient separation algorithms
assumes a non-linear signal model for the multichannel
EEG. We assume the multichannel EEG to be a sum of
a transient and an oscillatory component. The transient
component is modeled as a piece-wise constant signal with
a baseline of zero whereas the oscillatory component is
considered to exhibit block similarity. Specifically, fixed
width blocks of the multichannel oscillatory component
are of low-rank.

We propose a sparse optimization framework to esti-
mate the transient and oscillatory components. The frame-
work proposed involves minimizing a convex objective func-
tion. A fast matrix-inverse-free algorithm is proposed to
estimate the transient and oscillatory components. The
oscillatory component is then used to detect spindles. A
fourth order Butterworth bandpass filter and the Teager
operator are used to detect spindles following the transient
separation process.

A fast run-time and F1 scores in the vicinity of the
scores attained by visual experts on a crowd-sourced spin-
dle data [64], enable the proposed multichannel sleep spin-
dle detector to be a valuable tool for studying the archi-
tecture of sleep spindles and tracking their behavior in
sleep EEG. Future work includes the setting up of an EEG
database wherein sleep spindles are annotated across the
scalp in human sleep EEG.
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8. Appendix

8.1. Solution to the Least-Squares step of the proposed tran-
sient separation algorithm

We derive the solution to the least-squares sub-problem
in (21a), which is written below for clarity to the reader.

U, V ← arg min
U,V

{
1

2
‖Y − (U +H(V ))‖22

+
µ

2
‖U −X −D1‖22 +

µ

2
‖V − C −D2‖22

}
.

We make the following substitutions

Û = [U, V ]T , D̂ = [D1, D2]T , (29a)

X̂ = [X,C]T , M = [I,H], (29b)

and re-write the objective function as

Û ← arg min
Û

{
1

2
‖Y −MÛ‖22 +

µ

2
‖Û − X̂ − D̂‖22

}
. (30)

The solution to (30) can be written explicitly as

Û =
[
MTM + µI

]−1
[
MTY + µ(X̂ + D̂)

]
. (31)

The inverse in (31) results in inverting a dense matrix
consisting of MTM . In order to efficiently compute the
explicit solution, we use the Matrix Inverse lemma [67, 62].
As such, the solution in (31) can be written as[

MTM + µI
]−1

=
1

µ

(
I −MT

(
µI +MMT

)−1
M
)
.

(32)

Note that the operator H, where H = ΦT , is implemented
in this paper for perfect reconstruction. Hence, we have

MMT = [I H]

[
I
HT

]
(33)

= 2I. (34)

As a result, the inverse in (31) can be written as

[
MTM + µI

]−1
=

1

µ

(
I − 1

µ+ 2
MTM

)
, (35)

which leads to the following explicit solution for Û ,

Û =
1

µ
MTY + X̂ + D̂

− 1

µ+ 2

(
MTY + µMTM(X̂ + D̂)

)
. (36)

Combining (36) and (29), we get the following steps for
obtaining the solution to the objective function in (21a).

f1 =
1

µ
Y +X +D1 (37a)

f2 =
1

µ
HTY + C +D2 (37b)

U = f1 −
1

µ+ 2

(
f1 +Hf2

)
(37c)

V = f2 −
1

µ+ 2
HT
(
f1 +Hf2

)
(37d)
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Note that HTY can be pre-computed outside the iterative
loop for speed.

8.2. Performance evaluation of McSleep for sleep spindle
detection

We compare the proposed McSleep spindle detection
method with the state-of-the-art automated detectors us-
ing the online EEG database [23]. We label the automated
detectors as follows: A1 (Wendt et. al [65]), A2 (Martin
et. al [39]), A3 (Wamsley et. al [63]), A4 (Bodizs et. al
[8]), A5 (Mölle et. al [33]), A6 (Devuyst et. al [23]), A7
(DETOKS [48]) and A8 (proposed McSleep method). The
results obtained using the by-event analysis method are
summarized in Table 3, while the results obtained using
the by-sample analysis are summarized in Table 4 below.
For a detailed summary of each of the measure of perfor-
mance, we refer the reader to [64].

Table 3: By-Event performance of automated sleep spindle detectors
in comparison with McSleep. TP = True Positive, TN = True Nega-
tive, FP = False Positive, FN = False Negative. A8 is the proposed
McSleep method.

Measure Automated Sleep Spindle Detection Algorithms

A1 [65] A2 [39] A4 [8] A5 [33] A6 [23] A7 [48] A8

Ex. 1
TP 77 43 40 52 92 72 78
FP 125 41 70 33 67 21 25
FN 57 91 94 82 42 62 56
Recall 0.57 0.32 0.30 0.39 0.69 0.54 0.58
Precision 0.38 0.51 0.36 0.61 0.58 0.77 0.76
F1 0.46 0.39 0.33 0.47 0.63 0.63 0.66
Ex. 2
TP 45 47 13 41 41 48 52
FP 178 50 44 43 53 24 31
FN 32 30 64 36 36 29 25
Recall 0.58 0.61 0.17 0.53 0.53 0.62 0.68
Precision 0.20 0.48 0.23 0.49 0.44 0.67 0.63
F1 0.30 0.54 0.19 0.51 0.48 0.64 0.65
Ex. 3
TP 18 13 0 0 20 32 26
FP 55 13 0 0 19 33 12
FN 26 31 44 44 24 12 18
Recall 0.41 0.30 0.00 0.00 0.45 0.73 0.59
Precision 0.25 0.50 0.00 0.00 0.51 0.49 0.68
F1 0.31 0.37 0.00 0.00 0.48 0.59 0.60
Ex. 5
TP 58 65 37 0 57 67 80
FP 67 57 63 0 27 19 29
FN 45 38 66 103 46 50 37
Recall 0.56 0.63 0.36 0.00 0.55 0.57 0.68
Precision 0.46 0.53 0.37 0.00 0.68 0.78 0.73
F1 0.51 0.58 0.36 0.00 0.61 0.66 0.71
Ex. 6
TP 76 77 73 69 67 64 72
FP 71 45 130 54 33 23 24
FN 41 40 104 48 50 43 31
Recall 0.65 0.66 0.41 0.59 0.57 0.60 0.70
Precision 0.52 0.63 0.36 0.56 0.67 0.74 0.75
F1 0.58 0.64 0.38 0.58 0.62 0.66 0.72

Table 4: By-Sample performance of automated sleep spindle detec-
tors in comparison with the proposed method McSleep. TP = True
Positive, TN = True Negative, FP = False Positive, FN = False
Negative, NPV = Negative Predictive Value. A8 is the proposed
McSleep method.

Measure Automated Sleep Spindle Detection Algorithms

A1 [65] A2 [39] A3 [63] A4 [8] A5 [33] A6 [23] A7 [48] A8

Ex. 1
TP 8357 4121 2374 9550 4991 9692 9354 8548
TN 156774 164771 166242 137540 164911 159737 162632 16826
FP 9751 1754 283 28985 1614 6788 3892 3699
FN 5118 9354 11101 3925 8484 3783 4121 4927
Recall 0.62 0.31 0.18 0.71 0.37 0.72 0.69 0.63
Precision 0.46 0.70 0.89 0.25 0.76 0.59 0.71 0.70
F1 0.53 0.43 0.29 0.37 0.50 0.65 0.70 0.66
Specificity 0.94 0.99 1.00 0.83 0.99 0.96 0.98 0.98
NPV 0.97 0.95 0.94 0.97 0.95 0.98 0.98 0.97
Accuracy 0.92 0.94 0.94 0.82 0.94 0.94 0.96 0.95
Cohen’s κ 0.49 0.40 0.28 0.29 0.47 0.62 0.68 0.64
MCC 0.49 0.44 0.38 0.34 0.51 0.62 0.68 0.64
Ex. 2
TP 9881 7954 0 11045 7006 9862 10307 9569
TN 320771 339807 344818 268002 340517 336140 339091 341242
FP 24754 5718 707 77523 5008 9385 6433 4283
FN 4594 6521 14475 3430 7469 4613 4168 4906
Recall 0.68 0.55 0.00 0.76 0.48 0.68 0.71 0.66
Precision 0.29 0.58 0.00 0.13 0.58 0.51 0.62 0.69
F1 0.40 0.57 0.00 0.21 0.53 0.59 0.67 0.68
Specificity 0.93 0.98 1.00 0.78 0.99 0.97 0.98 0.99
NPV 0.99 0.98 0.96 0.99 0.98 0.99 0.99 0.99
Accuracy 0.92 0.97 0.96 0.78 0.97 0.96 0.97 0.97
Cohen’s κ 0.37 0.55 0.00 0.16 0.51 0.57 0.65 0.66
MCC 0.41 0.55 0.01 0.25 0.51 0.57 0.65 0.66
Ex. 3
TP 1005 680 12 0 0 1400 1707 1380
TN 86050 87234 86741 0 87717 86882 86772 86976
FP 1667 483 976 0 0 835 944 741
FN 1278 1603 2271 0 2283 883 576 903
Recall 0.44 0.30 0.01 0.00 0.00 0.61 0.75 0.60
Precision 0.38 0.59 0.01 0.00 0.00 0.63 0.64 0.65
F1 0.41 0.40 0.01 0.00 0.00 0.62 0.69 0.63
Specificity 0.98 0.99 0.99 0.00 1.00 0.99 0.99 0.99
NPV 0.99 0.98 0.97 0.00 0.98 0.99 0.99 0.99
Accuracy 0.97 0.98 0.96 0.00 0.98 0.98 0.98 0.98
Cohen’s κ 0.39 0.38 0.01 0.00 0.00 0.61 0.68 0.62
MCC 0.39 0.41 0.01 0.00 0.00 0.61 0.69 0.62
Ex. 5
TP 10461 9672 0 14779 0 10332 14164 13100
TN 330466 333514 337779 295704 340039 335566 333646 332886
FP 9573 6525 2260 44335 0 4473 6392 7153
FN 9500 10289 19961 5182 19961 9629 5797 6861
Recall 0.52 0.49 0.00 0.74 0.00 0.52 0.71 0.66
Precision 0.52 0.60 0.00 0.25 0.00 0.70 0.69 0.65
F1 0.52 0.54 0.00 0.37 0.00 0.59 0.70 0.65
Specificity 0.97 0.98 0.99 0.87 1.00 0.99 0.98 0.98
NPV 0.97 0.97 0.94 0.98 0.95 0.97 0.98 0.98
Accuracy 0.95 0.95 0.94 0.86 0.95 0.96 0.97 0.96
Cohen’s κ 0.50 0.51 0.01 0.32 0.00 0.57 0.68 0.63
MCC 0.50 0.51 0.02 0.38 0.00 0.58 0.68 0.63
Ex. 6
TP 12810 11724 0 17988 11928 13381 15435 13647
TN 327975 332715 336704 288379 331078 332761 332467 333002
FP 9588 4848 859 49184 6485 4802 5095 4561
FN 9627 10713 22437 4449 10509 9056 7002 8790
Recall 0.57 0.52 0.00 0.80 0.53 0.60 0.69 0.61
Precision 0.57 0.71 0.00 0.27 0.65 0.74 0.75 0.75
F1 0.57 0.60 0.00 0.40 0.58 0.66 0.72 0.67
Specificity 0.97 0.99 1.00 0.85 0.98 0.99 0.99 0.99
NPV 0.97 0.97 0.94 0.99 0.97 0.97 0.98 0.97
Accuracy 0.95 0.96 0.94 0.85 0.95 0.96 0.97 0.96
Cohen’s κ 0.54 0.58 0.01 0.34 0.56 0.64 0.70 0.65
MCC 0.54 0.59 0.01 0.41 0.56 0.64 0.70 0.66
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