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Abstract1

Abstract2

Genome-wide Association Studies are carried out on a large number of genetic variants in a large number3

of people, allowing the detection of small genetic effects that are associated with a trait. Natural variation4

of genotypes within populations means that any particular sample from the population may not represent5

the true genotype frequencies within that population. This may lead to the observation of marker-disease6

associations when no such association exists.7

A bootstrap population sub-sampling technique can reduce the influence of allele frequency variation in8

producing false-positive results for particular samplings of the population. In order to utilise bioinformatics9

in the service of a serious disease, this sub-sampling method has been applied to the Type 1 Diabetes dataset10

from the Wellcome Trust Case Control Consortium in order to evaluate its effectiveness.11

While previous literature on Type 1 Diabetes has identified some DNA variants that are associated with the12

disease, these variants are not informative for distinguishing between disease cases and controls using genetic13

information alone (AUC=0.7284). Population sub-sampling filtered out noise from genome-wide association14

data, and increased the chance of finding useful associative signals. Subsequent filtering based on marker15

linkage and testing of marker sets of different sizes produced a 5-SNP signature set of markers for Type 116

Diabetes. The group-specific markers used in this set, primarily from the HLA region on chromosome 6,17

are considerably more informative than previously known associated variants for predicting T1D phenotype18

from genetic data (AUC=0.8395). Given this predictive quality, the signature set may be useful alone as19

a screening test, and would be particularly useful in combination with other clinical cofactors for Type 120

Diabetes risk.21

1 Background22

Personalised medical treatment based on genome profiles is a major goal of genetic research in the 21st23

century [see 2, 10]. However, complex genotype-environment interactions for common diseases make it24

difficult to determine which specific genetic features should be used to construct such profiles. Hence the25

prediction of genetic risk is a major challenge of the 21st century.26

The introduction of large-scale Single Nucleotide Polymorphism (SNP) genotyping systems has enabled27

genetic variants to be typed en-masse, shifting the main effort required in a genetic risk study from genotyping28

to data analysis (or bioinformatics). Here we investigate genetic markers for Type 1 Diabetes (T1D),29

demonstrating how a population sub-sampling method may assist in the identification of risk markers for a30

complex disease.31
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1.1 Type 1 Diabetes32

Type 1 Diabetes mellitus (T1D) is a disorder typically characterised by an absence of insulin-producing beta33

cells in the pancreas, either through loss of the cells themselves, or through the reduction in capacity of the34

cells to produce insulin [see 1]. This disorder shares with the more common Type 2 Diabetes mellitus (T2D)35

a characteristic symptom of high blood glucose levels. In some cases, this glucose also passes through to36

the urine, creating a sticky/sweet substance that attracts ants [see 5, pp. 7,11]. In T2D, this high blood37

glucose is caused by cells not responding to insulin (insulin resistance), while in T1D the excess is caused by38

a reduction in insulin production (insulin dependence).39

The incidence of T1D varies throughout the world, with rates of incidence as low as 0.0006% per year in40

China, 0.02% in the UK, up to nearly 0.05% per year in Finland. About 50-60% of cases of T1D manifest41

in childhood (younger than 18 years), and the disease is believed to be caused by an abnormal immune42

response after exposure to environmental triggers such as viruses, toxins or food [see 3]. While a spring birth43

is correlated with T1D risk, the diagnosis of Type 1 Diabetes is more common in autumn and winter [see 1].44

1.1.1 Symptoms, Diagnosis and Management of T1D45

Typical symptoms of T1D include excess urine output (polyuria), thirst and increased fluid intake (poly-46

dypsia),blurred vision, and weight loss. When left untreated, this form of diabetes can lead to a build-up47

of ketone bodies and a reduction of blood pH (ketoacidosis), reducing mental faculties and causing a loss of48

consciousness [see 5, p. 7].49

Diabetes can be diagnosed by a single random1 blood glucose test, as long as symptoms are present and blood50

glucose levels are found to be in excess (typically > 11.1 mmol l−1) of those normally observed. In situations51

where symptoms are less obvious and/or glucose levels are at the high end of the normal range, a glucose52

tolerance test (GTT) is used for diagnosis. In this test, fasting patients have their blood glucose level tested,53

patients then consume a measured dose of oral glucose, and blood glucose levels are measured 2 hours later.54

A fasting glucose level in excess of 6.1 mmol l−1, or post-load level in excess of 11.1 mmol l−1 is considered55

diagnostic for both forms of Diabetes Mellitus. Type 1 Diabetes (as distinct from T2D) encompasses a range56

of diseases that involve autoimmunity. It can be diagnosed by the presence of antibodies to glutamic acid57

decarboxylase, islet cells, insulin, or ICA512 [see 5, p. 19].58

As the symptoms of T1D are caused by high blood glucose levels (hyperglycaemia) due to a lack of insulin,59

these symptoms can be relieved by the introduction of insulin into the blood. This is typically carried out60

by supplying measured doses of insulin via intramuscular injections or by the use of insulin pumps [see 3].61

Individuals with T1D need a constant supply of insulin for survival, together with occasional insulin bursts62

to control variable blood glucose levels throughout the day (e.g. after meals). In contrast, individuals with63

T2D only require insulin for survival in rare cases [see 5, p. 16]. Slow-release insulin and consumption of64

foods with a low glycaemic index can help to reduce the extremes of T1D symptoms.65

Improperly managed treatment can cause further medical complications in a diabetic patient. Too much66

insulin, excessive physical activity, or not enough dietary sugar can result in low blood glucose levels (hy-67

poglycaemia), which produce short-term autonomic and neurological problems such as trembling, dizziness,68

blurred vision, and difficulty concentrating. Hypoglycaemia is treated either by ingestion of sugar, or by69

intravenous glucose in severe cases [see 3].70

1.1.2 Complications of T1D71

The initial symptoms of T1D are not usually severe, and the disease may progress for a few years before a72

diagnosis is made and treatment is given. However, long-term complications can appear when the disease73

is not managed appropriately [see 5, p. 8]. Retinal damage progresses in about 20-25% of individuals with74

T1D, with later stages causing retinal detachment and consequent loss of sight. Renal failure is also a75

1i.e. taken at any time of the day, as opposed to a fasting glucose test taken at least 8 hours after the last meal
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problem in diabetic individuals, which is indicated by high urinary protein levels. When individuals have76

these high levels, progression to end-stage renal disease occurs in about 50% of cases. Neural defects are also77

a potential complication of T1D, most commonly damage to peripheral nerves, leading to ulceration, poor78

healing and gangrene unless good care is taken of the body extremities [see 3].79

1.1.3 Genetic Contribution to T1D Risk80

Type 1 Diabetes has a heritability of around 88% [6], indicating that a substantial proportion of variance in81

disease susceptibility can be attributed to genetic factors. About 50% of the genetic contribution to T1D can82

be accounted for by variation in the HLA region on chromosome 6, and 15% is accounted for by variation83

in two other genes, IDDM2 and IDDM12 [see 3]. Incidence rates in migrant populations quickly converge84

to those of the background population, suggesting that although the genetic contribution to the disease is85

high, environmental factors probably play a significant role in triggering the onset of disease [see 3].86

1.2 Wellcome Trust Case Control Consortium Study87

The Wellcome Trust Case Control Consortium (WTCCC, http://www.wtccc.org.uk) was established in88

2005 to identify novel genetic variants associated with seven common diseases, including Type 1 Diabetes [12].89

2000 individuals with T1D, and 1500 individuals from the National Blood Service (NBS)2 were genotyped90

for the WTCCC using an Affymetrix GeneChip 500k Mapping Array Set.91

The Wellcome Trust Case Control Consortium [12] reported associations near five gene regions that had92

been previously associated with T1D: The major histocompatibility complex (MHC) on chromosome 6,93

CTLA4 and IFIH1 on chromosome 2, PTPN22 on chromosome 1, and IL2RA on chromosome 10. The94

insulin gene (INS) on chromosome 11 was also associated with T1D; the only SNP tagging INS failed quality95

control filters, but also indicated strong association with T1D when examined. A number of other regions96

showed evidence of association with T1D in the Wellcome Trust Case Control Consortium [12] study: 4q2797

(chromosome 4); 10p15 (chromosome 10); 12p13, 12q13 and 12q24 (chromosome 12) 16p13 (chromosome 16);98

and 18p11 (chromosome 18). Most of these regions include genes involved in the immune system. However,99

only two genes are in 16p13, and both have unknown functions (KIAA0350 and dexamethasone-induced100

transcript). The strongest association signal for T1D was detected within the HLA region of chromosome 6,101

a region in which multiple SNPs had strong associations with T1D, but only one of those SNPs (rs9272346)102

was reported in the results table of the strongest associations [see 12, table 3].103

1.3 Replication Issues in GWAS104

The Genome-wide Association Study (GWAS) is a common method for discovering genetic contributions to105

complex human diseases. The outcome of these studies is to determine the degree of association between106

single genetic markers and a heritable trait. Commonly, an analysis is carried out on a large number of genetic107

variants in a large number of people, allowing the detection of small genetic effects that are associated with108

a trait. In recent years, an initial search for variants is carried out by whole-genome sequencing in a small109

sub-population to identify variants that are common in the population of interest.110

A study style that is built around correlation and association rather than a hunt for causal variants re-111

quires extreme care to ensure that observed associations are valid and causal. Studies need to have good112

within-study validation to reduce the likelihood of false-positive results being obtained and treated as true113

associations, and need to be supported by good independent validation. The distinction between association114

and causation is important – GWAS are used as hypothesis-generating tools to narrow down, through asso-115

ciation, the search for potential causative loci. After the associations have been validated, it is expected that116

they will be followed up with studies attempting to determine the true causative status of that association.117

2The study also typed 2000 individuals for each of the six other diseases: a total of 14,000 cases genotyped for seven diseases.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2017. ; https://doi.org/10.1101/104497doi: bioRxiv preprint 

http://www.wtccc.org.uk
https://doi.org/10.1101/104497
http://creativecommons.org/licenses/by/4.0/


Such causative studies are difficult, and progress towards understanding the aetiology of common disease118

has been slow [see 4].119

1.4 Sampling Errors in GWAS120

Natural variation of genotypes within populations means that any particular sample from the population121

may not represent the true genotype frequencies within that population. This may lead to the observation of122

marker-disease associations when no such association exists. This is particularly important when considering123

populations with mixed ancestry, where markers that are informative for distinguishing population ancestry124

may become accidentally associated with a particular disease [see 9].125

Bootstrapping by repeated re-sampling of a representative draw made from a group can estimate population126

variation in genotype frequencies by observing variation within the sub-samples. A re-sampling technique,127

as presented here, can reduce the influence of allele frequency variation by excluding false-positive results128

that are specific for particular samplings of the population.129

2 Method and Results130

2.1 Method Summary131

The Wellcome Trust Case Control Consortium (WTCCC) have genotyped 2000 individuals diagnosed with132

T1D, and 1500 individuals from the National Blood service (NBS) using the Affymetrix 500k chip (500568133

SNPs). These genotypes were obtained from WTCCC for subsequent computer-based research exploring the134

utility of the author’s new bootstrap sub-sampling method for genome-wide association studies. Genotype135

data were filtered at a SNP level to remove those SNPs that were present on the X chromosome; individuals136

flagged by WTCCC as having potentially invalid genotype data were removed from the dataset.137

The study group was split into two equal-sized groups: a discovery group (981 T1D cases, 729 NBS controls),138

and a validation group (982 T1D cases, 729 NBS controls). Subsequent filtering, analysis, and selection of139

SNPs was carried out on the discovery group, while the validation group was only used to test the effectiveness140

of the selected SNP set in a situation distinct from that used to generate this set of SNPs (see Figure 1).141

A bootstrap sub-sampling method was used to reduce the initial panel of 500k SNPs down to a set that142

consistently produced associations on all bootstrap sub-samples. Sub-samples of the Type 1 Diabetes (T1D)143

cases and National Blood Service (NBS) controls were used to estimate the in-group variance of association144

statistics throughout the genome. Markers that were informative and had low variance were selected as145

candidate markers for a minimal informative set of 45 markers.146

The final refinement step tested sets of SNPs in combination, rather than single SNPs alone, in the hope that147

those sets would be able to capture a wider range of genetic variation than any single marker (or combination148

of data for single markers alone) could provide. Once a suitable SNP set was found, that set was tested in149

the validation group to confirm the utility of the set for distinguishing T1D cases from NBS controls.150

2.2 Genotyping and Filtering of Individuals and SNPs151

Genotype data from 2000 T1D cases and 1500 NBS controls were provided by WTCCC. This genotyping152

had been carried out on an Affymetrix 500k SNPchip (500568 SNPs). The purpose of the initial genotyping153

procedure is to obtain a large sample of candidate markers (> 100, 000) from which to pick the most154

informative.155

Due to sex differences in expression for X-chromosome SNPs, all 10536 X chromosome SNPs were excluded.156

The WTCCC dataset also included a list of 37 T1D cases and 42 NBS controls to exclude for a number157

of reasons (e.g. high proportion of missing genotype data, duplicate individuals, non-European ancestry),158
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Figure 1: An overview of the marker set construction procedure, using an initial validation/discovery split,
bootstrap sub-sampling, set refinement, and internal validation.

so these individuals were also removed from the present study (X chromosome filtered set of 490032 SNPs,159

1963 cases, 1458 controls).160

2.2.1 Separation of Discovery and Validation Groups161

Individuals were randomly assigned into one of two groups: a discovery group with 981 T1D cases and 729162

NBS controls, and a validation group with 982 T1D cases and 729 NBS controls. To ensure a robust analysis,163

the validation group was only used for the final validation of a generated SNP set, and not used for any part164

of the SNP discovery procedures.165

2.2.2 Marker Association Values Across the Entire Genome166

Association scores were calculated across the entire autosomal genome (see Figure 2). A genotype χ2 test167

was used, comparing observed genotype counts for each group to expected genotype counts for both groups168

combined. High association scores (χ2 > 100) were found on chromosomes 3, 6, 12, 16, and 22, but the169

scores were only consistently high for a region of about 10Mb in the middle of the short arm of chromosome170

6 (30-40Mb from the 5′ end of the reference strand).171

2.3 Bootstrap Sub-sampling of the Discovery Group172

A bootstrap sub-sampling method was then carried out, generating 100 subsample replicates of the discovery173

group, each replicate having 490 T1D cases and 364 NBS controls (i.e. retaining the same proportions as174

the original 981 cases and 729 controls), sampled from the original discovery set without replacement. The175
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Figure 2: Scatter plot indicating unfiltered marker association values across the autosomal genome in the
discovery group. Values greater than the range of this graph (χ2 > 100) are shown at the top of the graphs
as a triangle symbol. A large spike of high association values can be seen near the middle of the short arm
of chromosome 6.

SNPs were then ranked by χ2, and a bootstrap-consistent set of 458 SNPs was identified, each ranked in176

the top 5% of SNPs (24501 SNPs) in every bootstrap sub-sample (see Figure 3-A). Most of these 458 SNPs177

had a maximum rank below 5000, whereas most of the remaining 489574 SNPs had a maximum rank above178

350000 (see Figure 3-B).179

The bootstrap sub-sampling method was used to eliminate those markers from the initial X chromosome180

filtered set of 490032 SNPs that were not effective for genetically distinguishing case and control groups.181

In each iteration of the bootstrap process, a sub-sample of individuals from each group was carried out,182

then markers were ranked based on a statistic that evaluates the effectiveness of each marker (see Figure 4).183

Markers that consistently had a high association statistic in each bootstrap sub-sample were selected for the184

next stage in the process.185

2.3.1 Comparison of Bootstrap Sub-sampling With a Simple Ranking Method186

The bootstrap sub-sampling process attempts to eliminate markers that are specific to the particular sample187

of individuals under study, rather than the more general population those individuals have been sampled188

from. The effect of using a simple ranking procedure that has no sub-sampling would be to identify the189

markers that are most differentiated in that particular sample of individuals. However, natural variation190

in genotype frequency introduces noise into association analyses, so markers that are differentiated in a191

particular sample may not be differentiated in the population the sample was derived from.192

The problem of discovering associated features that are not present in the more general case is known as193

overfitting [see ? , Chapter 14, pp. 661-663]. In the conventional GWAS context, overfitting produces194

false positive associations, where an association with a particular genotype does not extend to the general195

population. Using a method that includes bootstrap sub-sampling should reduce the degree of overfitting by196

removing markers that are only relevant for distinguishing between the specific groups involved in marker197

discovery.198

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2017. ; https://doi.org/10.1101/104497doi: bioRxiv preprint 

https://doi.org/10.1101/104497
http://creativecommons.org/licenses/by/4.0/


●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●● ●●● ●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●● ●● ●●● ●●●●● ●●●●●●● ●●●●● ●● ● ●●●●●●● ●●● ● ●● ● ●● ●●●●●●●● ●● ●● ●●●●● ● ●●●●● ●● ● ●●●●● ●●● ●●● ●● ●●● ●● ●●●● ●● ●● ●●● ● ●●●●● ●● ●● ● ●● ● ●●●● ● ● ●●● ● ● ●● ●● ●● ●● ●● ● ●●●● ● ●●●● ●●●●● ● ●●● ●●● ●●●●●● ●●● ●●● ● ●●●●● ●● ●●● ●● ● ●● ● ●●● ● ●● ●●●●●● ●● ● ●●● ●● ● ●●● ● ●●● ● ●● ●●● ●●●● ●● ● ●●●● ●●● ● ●●● ● ●●●● ●● ● ● ●● ●● ●● ●● ● ●●● ●●●●●● ●●● ● ●● ●● ● ●● ●● ●●● ●●● ● ●●● ● ●● ● ● ●● ● ● ●●● ●●● ●● ● ●● ●● ●● ●● ●●● ● ●● ●● ●●● ●●● ●●●●● ●●● ●●●● ●● ●● ● ●●● ●
● ●●●● ●● ●● ●● ● ●●● ●●

0 100 200 300 400 500

0

5000

10000

15000

20000

25000

Minimum Rank

M
ax

im
um

 R
an

k

A
●●

●

●

●
●

●●
●

● ●●● ●

●

●
●● ●● ● ●

●
● ●● ●

●

●● ●● ●●

●

●
● ●●

● ●●●●
●●

●

●

● ●● ●●● ●

●
● ● ● ●

●

●●●●●
●● ●

●

●● ●

●

● ●
●

●●● ● ●● ●●●● ●●●● ●
●

●

●● ●●●

●

●● ●
●

●●
●

●●

●

●

●
●

●
●

● ●

●

●
●●

●
● ● ●●● ● ●●●● ● ●●

●
● ● ●

●●

●

● ●● ● ●● ●

●

● ● ●
●

●●
●

● ●●
●●● ● ●●

●

●
● ●

●
●● ● ●●

●●

●

●● ●

●

●
●●

●

● ●●● ●

●

●
●

●

●

●
● ●● ●●●

●

●● ● ● ●
●

●

●

● ●
●

● ●
● ●●

●

● ●● ● ●● ●●
●

●● ●● ● ●
●

●● ●● ●●

●

● ●● ● ●
● ●●

●

● ●● ● ●
●

●

●

●

●

● ●●
●

● ●● ● ●●● ●
●●

●

●●● ● ●● ●●
●

●● ●● ●
● ●

●

●

● ●● ●●
●

●● ●●●●●
●

●● ● ●●

●

● ●●●

●

● ●●

●

●●
●

●●
●●

●
●

●

●

●

●

●

●
●

● ●● ● ●●
● ●

●● ●
●

●● ●
●

● ●

●

●

●

●● ● ●
●

●●
●●●

●

●●

●

● ●
●

●

●

● ●●
●

● ●●

●

● ●●
●

● ●●● ●

●

●
● ●●

●

●
●

●●● ●●● ●
●●

●

●

●

● ●●● ● ●

●

● ● ●● ●

●

●
●

●●● ●● ●●
●

●

●
● ● ●

●

●●

●

●

●

● ●●

●
●

●●● ●●● ●

●

● ●●

●●
●●

●

●

●

●● ●●
●● ● ●●

●

●
●

●
● ●● ●

●
●

●
● ●

●

●●

●

● ●
●

●

●● ●
●

● ●

●
●

● ●● ●● ●● ● ●
● ●● ●

●

● ●

●

●● ●●
●

● ●● ●●
●● ●● ●

●
●●

●

●

●●● ● ●● ●●● ●
●

● ●
●

● ●●●

●

● ●● ●

●

● ●
●

●

●

●
●

●●
●

●● ●●●● ●● ●● ●●●● ●●● ●●● ●

●

●

●

●
●●

●●
●

●
●●

●

●

●

●

●● ● ●● ●●●

●

● ●
●

●●
●

●
● ●

●●●●

●
● ● ●●● ●● ●● ●●● ● ● ●● ●●●

●

●
● ● ● ● ●● ●

●
●

●

● ●●
●

●
●

● ●
●●

● ●●

●

●

● ●●
●

●● ●
●●● ●● ●

●

● ●

●

●

●

●

●● ●●

●

● ● ●● ●
● ●● ●●

●

●
● ●

●● ●
●

●

●●
●

●

●
●● ● ●●●

●
●

●

● ●
●

●● ●

●

●●
● ●

●

●●
●

●

●

●
●

●

●●
● ●● ●●●

●

●● ●

●

● ●●
●

● ●

●

●
●

●

●● ●
●

●●●●
●

●
●

●

●● ● ●● ●
●

● ●●
● ●●●

●
● ●●

●

●

●

●

●

● ●●
●

●●●
●

●●
●

● ● ●
●●

●

●

●●●
●●

●● ●●
●

●

● ●●
● ● ●

●
●●●● ● ●● ●● ●● ●

●
● ● ● ●●

● ●●

●
●

● ●●● ●
●● ●●●

●

● ●● ● ●●●

●

● ●
●

●

●● ●●●● ● ● ●●● ●

●

●
●

●
● ●

●

●● ●
● ●

●● ●●
●

●●
●

●
●

●●● ●
● ●●●●

●●
●● ● ●● ●●

●

●

●

●

●● ●● ● ●

●

●

●

●●

●

● ●
●

●

●
● ●

●

●●

●

●

●

● ●● ●

●

●

●

●

● ●

●

●●

●

● ●● ● ●
●

●
● ●● ●

●
●● ● ●●

●

●● ● ●●
●

● ●●
● ●●

● ●
●
●

●●● ●
●

●●

●

● ●

●

●● ●●●
●

●● ●

●

●●● ● ●●

●

● ● ●●●

●

●
● ●

●

● ●● ● ●

●

● ●● ●● ●●
●● ●

●

●

●
●●

● ●● ●● ●● ●●● ●
● ●●● ●●

●
●● ● ●

●

●

●●
●

●●

●●
●● ●

●

●● ●● ●

●

● ●
●

●
● ● ●●● ●●● ● ●●● ●

●
● ●

●
● ●●● ● ●●●

●

●

●● ●
●

● ●

●

●

●

● ●● ●

●

●●
●●

● ● ● ●●● ● ● ●●●●

●

●●●● ●
●

● ● ●

●

●

●

●

● ●● ●●

●

● ●●

●

●
●

●
●

●

●●● ●● ●●● ●●● ● ●

● ●
●● ● ●

● ●
●

●

●
●●

●
●●

●

●
● ● ●●●

● ●

●

● ●●
●

●
●

●

● ●

●

●●

●

●

● ●
●

● ● ● ●●

●
● ●

●

●●● ● ●
●

●●

●

●

●
●

●

●
● ●●●

● ●● ●● ●● ●
● ●● ●●

●

●●● ●●

●

●
●

●●● ●● ●●

●

●●
●

● ●●
●

● ●
●

● ●● ●● ● ●●●●●● ●
●

●

●

●

●
●

●

●
●

●●●●

●

●● ● ● ●●●

●

● ●

●

● ●●
● ● ● ●●● ●●●

●●

● ●
●

●

●
●

●
●

●

●
●

●

●
●

●
●● ●●

● ●
●●

●

●●
● ●

●
● ●●●● ● ● ● ●●

●

●● ●

●

● ●●
●● ●

●●

●

●
● ●

● ●● ●●

●

●● ●● ●
●●●●

●● ●● ●

●
●●

● ●
●●●

● ●

●

●● ●
●

●● ●● ●●

●

● ●
●

●
●

● ●

●

●●●

●

●

●
● ●●●

●● ●● ● ●●

●

●

●
●

●

●

●●

●

●●
●

● ● ●● ●●● ●● ●

●

●
●

● ● ●● ● ●●
● ●

●
● ●● ●

●
●●

●

● ● ●● ●

●

● ●

●

●●
●

●

●●●
●

● ●

●

●

● ●● ● ●●●

●

●
●

●

●●● ●● ● ● ●
●

●

● ●● ● ● ●●● ● ●●
● ● ●

●● ●●

●

● ● ●●

●

●● ● ●●●

●●
●

●
●● ●●●

●
●

●
●

●
●

●
● ●

●

●

●

●●

●

●●● ● ●
●

●
●

●●
●

●

●
●

●● ● ●● ●
●

● ●●
●

●

●

●
● ●●●

●

●●
● ●

●
●

●

● ● ●●

●
●●

●● ●●● ●● ●● ●

● ●

● ●

● ●●●
●

●●

●●
●

●
● ●● ●

●
●● ●

●
●

● ●●

●

●

●
●

●●● ●

●
● ● ●

●●

●

●●

●

●
●

●

●

● ●● ● ●●●
●

●●
●

●●●● ● ● ●
●● ● ●●

●● ●●● ●● ●● ●● ●
●

●● ●● ●●● ●●
●

●

● ●●●●
●

●●●

●

●
● ●● ● ●

●
● ●

●
●

● ●
●

●
● ●

●

●

● ●
●●

●

●●● ●

●

●

●

● ● ●

●●

●

●

●
●●

●

● ●● ● ●● ●

●
●

●● ●

●

●

●● ●● ●● ●
●

● ●

●

●●● ●
●

●●

●

●●
●●● ● ● ● ●● ● ●

●
● ●

●

● ●

●

●

●

●

●
●

●●
● ●● ●

●

●● ● ●

●

●
● ●

●
● ●●

●

● ●
●

● ●●● ●●

●

●●

●

●●● ●

●

●●●
●●

● ●

●

● ●●● ●
●

●

●

●● ●●● ● ●● ●
●

● ●●
●

● ●● ● ●●● ●● ●
● ●● ●●

●

●● ●● ● ● ●●● ●

●

● ●●

●

●●●●

●

● ●

● ●

●
●

●

●

● ●

●

●
●

● ●●● ● ●● ●
●

●

● ●
● ● ●●●● ●

●

●
●

●● ● ●
●

●
●

●● ●●
●●

●

●
●

●●

● ●
●● ● ● ●● ● ●

●

● ●●
●

●●

●

● ●
●

●

●●
●

●●● ●● ● ●● ● ●●● ●●
● ●

● ●●
●

●

●
●

●●
●

●

● ●● ●
●

● ●●●

●

● ●
●

● ●
●

●● ●
●

●●

●

●●
●

●● ●●

●●

●
●● ●

●

● ● ●●● ●● ●●● ● ●●

●

● ●● ●

●

●

● ●● ●● ●
●

●● ●

●

● ● ●●●
●

●●

● ●
●

●
● ● ●●● ● ●

●
●● ●●

●

● ●

●

●
● ●● ●

● ●
●

●
●●

●

●

●●● ●●

●

●●● ●● ● ●●●

●

●● ●
● ●●●

●

●●● ●●
●

●

●
●

● ●
● ● ●

●●

●

● ● ●●
●

● ●●● ●●● ●● ●●
●

● ●●●● ●● ● ●●●●● ●
● ●

●
●

●

●

●

● ●
●
● ●

●
● ●●

●

● ● ●●

●

● ●●

●

● ●

●
●● ●

●
●

●● ●● ●
●

●● ●

●
●

●

●
●

●●● ●●● ●

●

●●●●●

●
●

●● ●
●● ●● ●

●●●
●●● ●●●

●

●

●●

●

●●● ●● ●● ●
●

● ●● ●●

●
●●●

●●● ●● ●●
●●

●
●

●

● ●●● ●● ●●●●

●

●
●● ●●●

●
● ●● ●

●● ●
●

●
●

● ●●● ●

●
●●● ●●●●

●

●
●

●●

●

●

●
●

●● ●
●

●●●
●

● ●●
●

●
●

●
●

●
●

● ●● ●
● ●●

●

●●● ●

●

●● ● ●● ●●● ●● ● ●

●

●

●

●● ●●

●

●● ● ● ●●● ●●

●

●
●

●

●

● ● ●● ●●

●

●● ●

●
●

●
●

●●● ● ●●● ●
●

●

● ● ●●● ●
● ● ●

●

●●
●

● ●
●

● ●● ● ●●
●

●
●

● ● ●●

●

●● ●● ●● ●
●

●
●

●
●

● ●

●
●

●●● ●

●●

● ●●●

●
●

●

●

● ●

●

●●●●●

●

●● ●● ●

●

●

●
●

● ●
●

●● ●● ●●
●●

●
●

●

●

●

● ● ●
●

●

●
●

● ● ●
● ●● ●● ●●● ●

●
● ●● ●● ●● ●
●

●

●

●
●

●●● ● ●

●

●

●

●

●●
●

●

●

●
● ● ●●●●

●
●

●

●

●● ●
●

●●●

●

● ●
●

● ●● ●

●

●● ●●●
●
●

●

● ● ●●
● ●

●●

●

● ●
●

●●●●

●
●● ●●

●
● ●● ●

●

●● ●
●

●
●● ●

●

●

●

●

● ●

●

●●●
●

●
●

● ● ●●●●
●

● ●●●
●

●
●

●● ●● ●

●

●●●● ● ●
●

●●

●

●

● ●
●●

●

●● ● ●●●
●

● ●

●

●● ● ●
● ●

●

● ●●
● ●

● ●● ●
●

●●
●

●

●

●●●●
●●

●●
●

●

●

● ●●●●
●

●●
●

●

● ●

●

● ●● ●●

●

● ●●●

●
●

●
●

●
●

●
●● ●●●

●

●● ●
●● ● ●●●● ●●●

●
●

● ●
●

● ● ●● ●●●
●●● ●

●●
● ● ●

●
●

● ●● ●●
●

● ●●

●

●
●

●● ●● ●
●

● ●● ●
● ●

●
● ● ●● ● ●● ●

●

●

●

●
●

●●
●

●
●

●
●● ●

●

●● ● ●● ●● ●●● ●
●

● ●● ●●●

●

● ●●● ● ●
●

●
●

● ●● ●
●

● ●●●●● ●
● ● ●●

●
●

● ●

●

● ●●●●● ● ●
● ●

●
●●

●
●● ●

●
●

● ●

●

● ●

●

●
●

●● ●● ●

●

●
●● ● ●●

●

●

●
●

●
● ●

●

●● ●
●

●●● ● ●

●

●
●●

●
●●●

●

●
●

●

● ● ●●
● ●

●● ●● ●
●

●
● ●

●
●

●
● ● ●●

●

●
●

● ● ●●
●●●

●●●● ●
●

● ●

●
●

●

●●● ●

●

●● ●
●

●

●
●

●● ●●

●

●●
●●

● ● ● ● ●●● ●●●
●●

●
● ● ● ●

●● ●
● ●

●

●

●

●
●

●
●

● ●● ● ● ●● ●● ● ●● ● ●
●

● ●

●

● ● ●
●

● ●● ●●

●

●● ● ●

●

●●● ●●● ●●●●
●●● ●

●

●
●

●

●
●● ● ●

●● ●

●
●

●

●●

●

●

●

●
●● ●

●

●
●

● ●●
●

●
●● ●● ● ●● ●

●

●●

●

●● ●

●
●

● ● ●●

●
● ● ●●● ●

●

● ●● ●● ●●● ●●● ●● ●

●

● ●● ●● ● ●● ●
●

● ● ●
● ●● ● ●● ●

●
● ● ●

●
●●

●

● ● ●●
● ●

●

●
●

●

●
●●●

●●

● ●
●

●● ●●● ●● ● ●●

● ●

●●● ●

●

● ●● ●
● ●

●
●

● ● ● ●● ●● ●● ●●● ● ●
●● ●● ●●

●

●
● ● ●●

●

● ●●●

●

●

●

●● ●●
●

● ●●●●● ●

●

● ●
●

●● ●●● ●

●

● ● ●
●

● ●
● ●

●
●●● ●

●
●

● ●●● ●● ●

●

●●●

●
●

●

● ●●

●

●● ●●●
● ●

●

●● ● ●●● ●
●

●

●●● ●

●

●
● ●

●

●● ● ● ●
●● ●● ●●

●
●

●●● ● ●●●
●● ● ●● ● ●

●●

●

●●● ●●

●

●
●

●
●●

●

● ● ●
●●

● ●
●

●
●

●● ●● ●● ●● ●● ●●

●
●

●●
●

●

●

●

●

●

● ●● ●● ● ●
●

●

●
●●●

● ●●

●
●● ● ● ●

● ●
●● ● ● ● ●●

●
● ●
● ● ●● ● ●●●●

●●●
●

●

●

● ●●
●

● ● ● ●

●

●●

●

●

●

●

●

● ●

●

● ● ●●

●

● ●
● ●● ●●

●●
●

●
●

●

●

●
● ●● ●● ● ● ● ●●

●● ●●●●● ●●
●

●
●●

●
●●● ● ●●

●

● ●●
●

● ●

●●

●

● ●

●

● ● ●

●

●●● ●●●
●

●

●
●

●● ●
●● ● ● ●

●

●●●
●

● ● ●● ● ●●

●

●
● ●●● ●● ●

●
●●

●

●

●
● ●●

●

● ●● ●●● ●●
●

●
●●

●●

●

●●●

●

● ● ●
●

●

● ●
●

● ●
● ●● ●

●
●

●
●

●
● ●●●● ●● ● ●●●

●●
●

●
●

●

●● ●●
● ●●

●

● ●●

●

●●
●● ● ●

●

●● ●●
●

●●
●

● ●●
● ●

●●
● ●

●●
●●●

●
● ●●

●●
●

●

●

●
●

●

●

●

● ● ●

●
●

●

●

●
●● ●● ●

● ●
●●●

●
● ● ●●●

●● ●

●

●●
●

●●

●

●● ●● ● ● ●
●

●

●
●

● ●● ●● ●● ●
●

●
● ● ● ●●●

●

●

●
●● ●●

●●
●●● ● ●

● ● ●● ●● ●●● ● ●● ●●

●

● ●●● ●●● ●● ●●●
● ● ●● ●

●
●●

●

●●
●

●

●

●
●

●

●
●

●● ● ●●
● ●

●● ● ●

●

● ●● ●● ●● ●●●
●

●●● ● ●
●●

●

● ● ●●
●

●

● ●●
●

●

●●●

●

● ●●
● ●●

●
●

●

●
●

●●

●

●

●

● ●● ●● ●●
●

● ●●

●

●●
●

● ●
●

● ●
● ● ●

●
●

●

●
●

●● ●●● ●
●

●●
●

●
●●

● ●●

●

● ●

● ●●● ● ●
● ●● ●

●
●

●
● ●

● ●●
●

●

● ● ●
●

● ●● ●
●

●
●●

●

● ●●●
●

●● ●●●●● ●●
●

●

●

● ●
● ●

● ●

●
●●

●

●

●

● ●●

●

●

●

●● ●●● ●● ●

●
● ●●●●

●

● ● ●●● ●● ●●
●

●
● ● ●● ●

●●

●● ●●● ●● ●●● ●● ●
● ●●

●

●
●● ●

●

● ●●
●●

●● ● ●● ●
● ●●●● ●

●

●● ●

●

● ●●
●● ●● ●

● ●

●● ●● ●●● ●

●

●● ●●●
●

●

●

● ●● ●●●
●●● ●● ●●● ●● ● ●● ●

●
● ●

●● ● ● ● ●●
● ● ● ●● ●

●●
●● ● ●●

●● ●
●

●

●
●● ●●

●

●
● ●

●

● ●●

●

●●●

●

● ● ● ●● ●
●

●
●● ●

●
●

●

●

●
●

●●●
●●

●
●●

●
●●

●●●
●

●
●

● ●●● ●
●

●

●

●●● ●●

●

● ●●

●

● ●●
● ●●

●●
● ●

●

● ●●● ●●

●

●● ●
●

●
●

●● ● ●●● ● ●●●

●

● ●

●

●
●

●● ●

●

●

●

●● ● ●
● ●

●

●
●

●

●
● ●●

●
●

●
●● ●

●

●

●

●

●● ●●

●

● ● ●●●
● ●●

●

●
●

●
● ●
● ●

●

●●

●

●
●●● ●● ● ●●● ●●● ●

●●
●

●
●●

● ●
● ●

● ●● ●●●● ●● ●

●

●● ●● ●●

●

●
●

●

●●
● ● ●●● ●

●

●●

●

●●●●

●

● ● ● ●●
● ● ●●

●
●

●

●

●
●

●

● ● ●● ●● ●

●
●

●● ● ●
●

● ●● ● ● ●●
●●

●

●

●

●

●
●● ●●

●
●

●

●
●●●●●●

●

●● ● ●● ●●●

●

● ●● ●
●●

●

● ●

●

●
●●

●
●

●

●

●

●

● ●● ●
●

●
●

●

●

●

●

● ●● ●

●

●

●●●● ●

●

●
● ● ● ●

●● ●●

●

●●
●

●● ●
●

●

●

●
●

●

● ●
● ●● ●
●

●●● ● ●
●

●●●● ●
●

● ●●●● ●●
●

●

●

●

● ●● ●
●

●●
●

●● ●

●

●●●
●

●● ●
●

●

●

●●● ● ●
●

● ●● ● ●
● ●●

● ●● ●● ● ●●

●

● ● ●● ●
●●

●

●●
●

●

●●●
●

●

●

●
●

●

● ●
●

●
●

● ●●
●

●
●

●● ●● ● ●
●●● ● ●

●

●

● ●
●

● ●
●

●● ●
●

●● ●● ● ●
●●

● ●●
●● ●● ●

●

●

●

●

●●

●

●
●

●

●

● ● ● ●●

● ●
● ●●

●
●● ●

● ●

●

●● ● ●●● ●

●

●●
●

● ●● ● ●●
●

● ●●● ●● ● ●●
● ●●●● ●

● ●● ●

●

● ●
●

●
● ●● ●

● ●● ●● ●● ●
●

●●

●

● ● ● ●

●

●
●

●
●

●

●● ●
●● ●●● ●●

●

●

●
●● ●

●

●

● ●
● ●●

●
●

●

●●
●●

●
●

● ●●● ●

●

●

●

●

●● ●

●

●
●● ●●

●

●● ●
●

●● ●● ●

●

●●● ●

100 200 500 1000 2000 5000 10000 20000 50000 100000

50000

100000

150000

200000

250000

300000

350000

400000

Minimum Rank

M
ax

im
um

 R
an

k

B

Figure 3: Scatter plot indicating maximum rank over all bootstrap sub-samples vs. minimum rank in any
bootstrap sub-sample for the bootstrap-consistent set of 458 SNPs (A), and a random sample of 5000 of the
remaining SNPs (B). A total of 126519 SNPs (not included when generating these graphs) were unranked
in at least one bootstrap sub-sample, as no genetic difference was observed between case and control groups
with that SNP. The difference between minimum and maximum rank gives an indication of the reliability
of a particular marker for association testing in a general population. Of those markers in the bootstrap-
consistent set of 458 SNPs, 57% were ranked in the top 5000 markers in all bootstraps. Of the remaining
489574 SNPs, 95% (4464977) had a maximum rank of 350000 or more (including 126519 unranked SNPs).

2.3.2 Choosing a Marker Ranking Statistic199

A ranking statistic is necessary for the bootstrap process to determine which markers are more likely to be200

associated with the phenotype of interest.201

The purpose of the ranking statistic is to rank the effectiveness of markers in distinguishing groups, rather202

than give a precise indication of their utility. This means that the actual statistic used is not important, as203

long as it is generally able to rank an informative marker higher than a less informative marker. In this case, a204

genotype-based χ2 statistic was chosen for evaluating marker effectiveness. This statistic considers situations205

where a heterozygous genotype may have a strong association that is not present in either homozygous206

genotype, as well as identifying strong associations for homozygous genotypes.207

2.3.3 Ranking Markers Using the Observed Distribution of Ranking Statistics208

A non-parametric ranking method selected markers based on rank order across all bootstraps. Markers are209

assigned a rank within each bootstrap: the marker with the most informative statistic is assigned rank 1, the210

second-most informative is assigned rank 2, and so on. The minimum, maximum, and mean marker rank211

are determined for each marker in all bootstrap sub-samples (see Table 1).212

2.3.4 Identifying Group-specific Markers213

Markers that are not ranked in the top 5% of markers in any sub-sample are excluded from further analysis.214

When using this process on the T1D discovery group, a bootstrap-consistent set of 458 group-specific markers215
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Marker Min Rank Max Rank Mean Rank
rs2027852 9 27 17.8
rs3135342 42 1598 196.2
rs16917773 48 2196 261.5
rs10144861 59 2817 491.3
rs10842028 44 3028 543.4
rs10742084 61 5290 679.9
rs7158350 84 6736 730.4
rs16854531 126 13477 735.1
rs1429445 54 7451 975.9
rs17023486 472 16210 2903.6
rs12117563 1508 377782 77651.8
rs11189528 1563 385065 162459.9
rs17038075 47938 453037 172338.7
rs11081211 13893 376453 185579.0
rs11249611 1731 376943 190683.0
rs16831752 119403 461199 222291.4
rs1006931 22398 369366 232357.9
rs9317562 15117 383671 235382.3
rs11205709 477789 477983 477890.9
rs1027341 487082 487165 487114.9

Table 1: A sample of markers from the T1D study, showing minimum, maximum, and mean rank in 100
bootstrap sub-samples. In order to demonstrate differences between included (low rank in all bootstrap
sub-samples) and excluded markers, the first ten markers were sampled randomly from the group of 458
markers with maximum rank less than 24502, and the remaining ten markers were sampled randomly from
the remaining 489574 markers.
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Figure 4: Visual representation of the key points of the bootstrap process. The groups are sub-sampled a
number of times, and marker ranking statistics are calculated for each sub-sample (bootstrap). Markers are
then ranked, identifying the markers with the highest association statistic for each sub-sample. Markers that
were consistently ranked in the top 5% in all sub-samples were passed onto the next stage of the selection
process.

(GSMs) were found in the top 245013 markers in all 100 sub-samples. Of these GSMs, 182 (40%) are located216

between 30Mb and 33Mb from the beginning of chromosome 6, near the HLA region. The remaining217

276 GSMs are distributed fairly evenly throughout the genome (see Figure 5). From these observations218

of chromosomal location, T1D appears to have a very strong association signal near the HLA region on219

chromosome 6, and limited signal elsewhere in the genome.220

2.4 Linkage Refinement221

Linked GSMs were removed in order to reduce the redundancy of associative signal produced by the generated222

GSM set. Markers were ordered based on mean rank order and any SNPs that were linked (r2 > 0.1) with223

a higher-ranked GSM were removed from the set, leaving an unlinked set of 34 GSMs.224

Markers within a signature marker set should be unlinked, so it is a good idea to calculate a linkage-associated225

statistic such as D′ or r2 during the discovery phase of the analysis, and remove the least informative marker226

among linked high-association pairs. This step is carried out after the bootstrap sub-sampling process in227

order to reduce the number of pairwise calculations required for linkage analysis – pairwise calculations for228

500 markers would require 124,750 linkage comparisons,4 while pairwise calculations on 500,000 markers229

would require around 1.25 × 1011 comparisons.230

2.5 Set Size Refinement231

The optimal marker set size was identified using an Area Under the Curve (AUC) test on the Q-values232

generated by structure (10,000 bootstraps, and 100,000 total runs), finding marker sets with large differences233

in mean Q value between the two groups (see Figure 6). Increasing numbers of markers were selected from234

the unlinked GSM set based on mean rank order identified during the previous (bootstrap sub-sampling)235

stage. The effectiveness of a given set of markers was evaluated using the structure program, followed by an236

AUC calculation for each set of markers based on Q values reported by the program.237

324501 = b0.05 ∗ 490032c
4124, 750 = (5002 − 500)/2
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Figure 5: Scatter plot indicating marker association values for the consistent set of 458 GSMs across the
autosomal genome in the discovery group. Values greater than the range of this graph (χ2 > 100) are shown
at the top of the graphs as a triangle symbol. The large spike of high association values still remains near
the middle of the short arm of chromosome 6.

The structure program outputs values that represent to how genetically similar an individual is to a particular238

group (Q values), attempting to cluster pooled individuals into two “populations”.5 The Q values produced239

by structure are continuous in the range between 0 and 1 inclusive, and are treated as an estimate of the240

probability that an individual has a particular trait.241

Analysis of Q values was used to determine false positive and true positive rates for given Q-value cutoffs242

(see Figure 8). The true positive rate was calculated as the proportion of T1D cases with Q below the cutoff243

value, and false positive rate was calculated in the same way for NBS controls. The area under the curve of244

this graph can be used as an indication of the effectiveness of a quantitative test. An AUC of 1 indicates245

a perfect test (no misclassification), while an AUC of 0.5 indicates a test that cannot distinguish between246

groups.247

The greatest difference between cases and controls was observed when the top 5 GSMs were selected, pro-248

ducing an AUC of 0.8449. This signature set of 5 GSMs was considered to be the most appropriate T1D-249

informative set.250

2.6 Validation of Final 5 GSM Set251

The signature set of 5 GSMs (see Table 2) was finally tested on the validation group (982 T1D cases, 729252

NBS controls) using structure, followed by an AUC analysis of the Q values. There is a small overlap between253

some T1D cases and some NBS controls (Figure 7), but most T1D cases cluster together, and are separate254

from the cluster of NBS controls.255

The AUC value associated with this test of the signature set of 5 GSMs in the validation group was 0.8395.256

Setting the false positive rate to 5% (cutoff Q value 0.129) produced a true positive rate of 43%, while setting257

5The structure program is designed for population analysis, but is used here for group analysis.
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Marker Chromosome Location (Mb) χ2 Mean Rank
rs9273363 6 32734250 485 1
rs3957146 6 32789508 317 2.2
rs3135377 6 32493377 264 4.3
rs7431934 3 40268801 199 13.7
rs1046089 6 31710946 108 37.9

Table 2: Location information for the top 5 GSMs discovered in a bootstrap sub-sampled GWAS for T1D
associations, after removing linked GSMs, and choosing the set with the highest AUC value. Mean rank
reported in this table is based on the marker rank for 100 bootstrap sub-samples. Out of the five markers,
four are within a 2Mb region of chromosome 6.

the true positive rate to 85% (cutoff Q value 0.5583) produced a false positive rate of 38%. The position on258

the curve nearest to a true positive rate of 100% and a false positive rate of 0% was when the cutoff Q value259

was set at 0.506, with a true positive rate of 78%, and a false positive rate of 29%.260
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Figure 6: A marker refinement plot, showing the effectiveness score (AUC) for increasing numbers of SNPs
in the discovery group. The highest AUC value (0.835 for 5 SNPs) is circled in red.

2.7 Comparison with SNP set from Literature261

Todd et al. [11] carried out an analysis of 11 SNPs that were found to be associated with Type 1 Diabetes262

in genome-wide association studies. This group of SNPs, in combination with the most informative SNP263

from the WTCCC study [12], was selected to be compared with the signature set of 5 GSMs in the present264

study (see Table 3). The structure program was used in combination with an AUC analysis to evaluate the265

effectiveness of this group of 12 SNPs for 1963 WTCCC T1D cases and 1458 NBS controls (see Figure 9 and266

Figure 10).267

This 12-SNP comparison set had an AUC of 0.73 when tested with 1963 T1D cases and 1458 NBS controls.268

Setting the false positive rate to 5% (cutoff Q value 0.933) produced a true positive rate of 18%, while setting269

the true positive rate to 85% (cutoff Q value 0.895) produced a false positive rate of 53%. The position on270
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Figure 7: Structure output (K=2) for the top 5 SNPs discovered in a bootstrap sub-sampled GWAS for
T1D associations, showing Q values for individuals from T1D and NBS groups (using validated group).

the curve nearest to a true positive rate of 100% and a false positive rate of 0% was when the cutoff Q value271

was set at 0.910, with a true positive rate of 65%, and a false positive rate of 35%. These results indicate272

that the signature GSM set discovered in the present study is considerably more informative than a set of273

T1D-associated SNPs found in other genome-wide association studies.274

3 Discussion275

This study has identified a group of 5 GSMs that classify individuals with T1D with good reliability (AUC276

= 0.84, see Figure 8). The heritability of Type 1 Diabetes is around 88% [6], so the maximum possible277

sensitivity (true positive rate) of a genetic test for T1D should be 88%, with the remaining 12% of variation278

being due to non-genetic factors.279

One of the assumptions made in GWAS is that the individuals selected as candidates for the phenotypic280

groups (cases and controls) are ideal members of those groups – affectation status tends to be a binary or281

integer value that does not allow for intermediate values. Due to the difficulty in qualitatively describing282

traits, as well as mutation and admixture effects (particularly for population-derived groups), this assumption283

may be invalidated.284

The marker construction method used a bootstrapping procedure as an internal validation to remove markers285

that had substantial variation in χ2 values within the tested groups. In an ideal case, a bootstrapping286

procedure would not be necessary as the genetic makeup of the total population will reflect the makeup of287

any given subgroup of that population. In such a case, the ranking after each bootstrap will be the same288

as the overall ranking. However, the comparison of minimum and maximum rankings for SNPs across all289

bootstrap sub-samples has demonstrated that this is clearly not the case (see Section 2.3).290
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Figure 8: Line graph of true positive rate vs. false positive rate (Receiver-Operator Curve) based on
structure plot of validated set of 5 SNPs.

3.1 Type 1 Diabetes Study Results291

It is known that genetic variation within the HLA region on chromosome 6 plays an important role in292

T1D, accounting for about 50% of the genetic susceptibility for T1D [see 3]. This role is supported by293

the preliminary results in the present study, which show consistently strong predictive power using genetic294

markers, all but one from this region alone (see Table 2).295

3.1.1 Accuracy of the Signature SNP Set296

The interpretation of accuracy of a genetic test is difficult, particularly when considering what would be297

expected if the test were used in an untested population. A statistic that can be useful in this case is the298

positive predictive value (how likely a test is positive, given a positive result).299

In order to determine the positive predictive value of a test, it is necessary to establish the prevalence of300

the trait in the population of individuals who are to be tested. A country which is considered to have a301

very high incidence of T1D, Finland, has an overall cumulative incidence of around 0.5-0.6% at the age of302

35 years [6]. Also, there has been a general trend of a 2-3% increase in the incidence rate of childhood T1D303

in South West England over the past 20-30 years, with the incidence in 2003 at around 0.16% per year [13].304

Even at the higher incidence rate in Finland, fewer than 0.6% of individuals in a typical non-enriched control305

population would be expected to have T1D.306
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SNP Chr Region Gene Locus
rs9270986 6q21 HLA
rs6679677 1p13 PHTF1-PTPN22
rs17696736 12q24 C12orf30
rs2292239 12q13 ERBB3
rs12708716 16p13 KIAA0350
rs2542151 18p11 PTPN2
rs3741208 11p15 INS
rs17388568 4q27 Tenr-IL2-IL21
rs7722135 5q14 Q8WY63
rs9653442 2q11 AFF3-LOC150577
rs6546909 2p13 DQX1
rs2666236 10p11 NRP1

Table 3: A list of SNPs found by other researchers to be associated with T1D risk. The first SNP (rs9270986)
yielded the most extreme statistic in the WTCCC analysis [12]. Marker names and locations for the remaining
11 SNPs are from Table 1 of Todd et al. [11].
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Figure 9: Structure output (K=2) for 12 SNPs found by other researchers to be associated with T1D risk
(see Table 2).

The NBS controls for the WTCCC study had not been enriched to remove individuals that have T1D. Given307

an expected prevalence of T1D of 0.6%, it would be expected that around 4 individuals from the validation308

NBS control group (or 9 from the discovery and validation groups combined) have T1D. Setting the false309

positive error rate to this value (i.e. 0.6%) is unrealistic for the current data set, as only a small fraction of310

T1D cases would be identified with that cutoff (just over 5%, see Figure 8). However, if a more moderate 5%311

false positive error rate is accepted (identifying 43% of T1D cases, see Section 2.6), then 36 NBS individuals312

would be identified by this test as at risk for T1D. This is about ten times that expected by cumulative313

incidence rates for T1D, indicating a positive predictive value of 10% with the discovered signature set of314

5 GSMs. Given that the population prevalence of T1D is so low, the NBS control group should not differ315

substantially from an enriched control group, and the positive predictive value of this genetic test will remain316
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Figure 10: Line graph of true positive rate vs. false positive rate based on structure plot of SNPs found by
other researchers (see Table 2).

around 10%.317

However, if it is the case that a substantial proportion of Type 2 Diabetes cases are actually Type 1 Diabetes,318

there may be an underestimation of of T1D incidence in the general population [see 1]. Such a disparity319

would substantially increase the predictive value of a genetic test using the GSMs discovered here.320

3.1.2 Accuracy in Other Populations321

The low positive predictive value of the marker set, together with heritability values of less than 100%, means322

that it is unlikely that a genetic test using these T1D markers would be useful as a diagnostic test for a323

general population. However, if used in conjunction with other clinical indicators, it may be appropriate to324

use these genetic markers for a screening test, identifying individuals that should be more closely monitored325

for T1D symptoms. This is because it will still exclude a large proportion of the normal population, while326

also identifying a high proportion of at-risk individuals. However, the signature GSM set has not been327

validated in groups of individuals outside the WTCCC study, and caution should be taken in attempting to328

extrapolate results to non-validated populations.329

Taken in the context of disease, it can be very difficult to accurately determine the phenotype of an individual330

– this is a particular problem when the disease is a continuous (rather than discrete) trait, as often happens331

with common complex diseases. Phenotype identification is further complicated by non-Mendelian patterns332

of inheritance. It is possible for there to be numerous paths to the same apparent end disease, and numerous333
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gene-gene interactions that contribute to the same disease. Furthermore, trait variation is often a mixture334

of genetic and environmental factors (i.e. heritability is less than 100%), so potential gene-environment335

interactions also need to be taken into account when describing phenotype.336

The effectiveness of any given set of markers will be reduced due to the presence of erroneous false positive337

results (i.e. some of the false positives will later turn out to have T1D). In a situation where the marker set is338

constructed to remove as many false positive results as possible, this may result in a refined test that is over-339

fitted to the initial discovery group of case and control individuals, and is not reliably generalisable to other340

populations. It is possible that such situations would be apparent when follow-up studies on independent341

case/control groups for the same trait are carried out, and it is recommended that such validations are342

carried out before using this signature GSM set.343

3.2 Overfitting Generates Spurious Associations344

For a genetic association study to be successful, individuals must be separable into distinct groups based345

on a particular phenotype, and some differences between the groups must be attributable to genetic factors.346

Methods for identifying associated markers in a GWAS relies on a clear distinction between trait and non-347

trait individuals. In situations where the trait of interest is not easy to classify, an associated marker may348

not reflect the true distinction between those groups. In addition, a low genetic influence for the expression349

of a particular trait can mean that even when a trait can be classified completely, the genetic component350

of that trait (the only component able to be identified by any DNA marker-based method) will not always351

determine the observed phenotype completely.352

Overfitting is the generation of a set of distinctive parameters that relies on irrelevant attributes for the353

model being observed. The problem exists when vital information about the model is missing, and the354

discovery algorithm ends up being required to derive a model based on other spurious distinctions between355

discovery groups [see ? , Chapter 14, pp. 661-663]. Overfitting is applicable to the case of generating minimal356

marker sets because any such method assumes that a minimal set can be found for the data. When cases357

and controls are not genetically distinct, and distinct only due to the trait under test, any resultant marker358

set will be invalid. In such a situation, the set of markers generated is informative only for the specific group359

of individuals that were used for discovery of that set of markers, and will not be applicable for individuals360

outside the discovery group. Internal validation within groups, and external validation of results in similar361

populations, is essential to ensure that overfitting has not occurred.362

Bootstrap sub-sampling uses variance among group sub-samples to remove markers that are associated363

because of genetic chance effects rather than the particular phenotype under test. However, it cannot364

distinguish between genetic differences due to the tested phenotype and genetic differences due to sampling365

bias. The problem of overfitting is especially relevant for genetic data, where one pattern of genotypes due366

to a group-associated factor with high heritability may outweigh the disease-causing factor under test. This367

is similar to the population stratification problem that has been discussed by Pritchard [8] and Pritchard368

& Donnelly [9] who say that due to the influence of genetic chance (e.g. genetic drift, founder effects,369

non-random mating), alleles can appear with high frequency differences between groups within a given370

population sample even though the differences are not directly associated with the trait of interest. This371

is particularly important when a population group has a high incidence of a given disease, and the genetic372

history of the case and/or control subgroups is not known. Pritchard & Donnelly [9] recommend testing for373

structured association in case and control groups before carrying out further association tests in order to374

remove confounding genetic factors that may be present in a case/control study.375

3.2.1 Genome-wide Trait Contributions376

While there may be many gene-gene interactions throughout the genome that all contribute to a particular377

disease, it is unlikely that all genetic variants in the subgroup will influence the trait. In addition, some378

variants may influence the trait more than others and in some cases may even negate the effects of another379
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variant. Both of these factors increase the potential for spurious associations and false positive results when380

carrying out a whole genome scan.381

Genotyping carried out in an association study is restricted to a subset of the total genome, because full-382

genome sequencing is still prohibitively expensive. Also, only a subset of interactions between multiple383

genetic factors can be studied (if any), because multi-factorial analysis is computationally expensive.6384

It is expected that any reduction of GSM set size will result in decreased reliability, as there is an information385

loss when fewer markers are typed. For a reduction method to be useful, the information lost due to typing386

fewer markers must be compensated by cost reduction. However, in this investigation, the opposite appears387

to be true – a small number of markers are useful to distinguish the case and control groups, and appear to388

provide more information than a full genome set.389

3.2.2 Interactions from Multiple Genetic Variants390

In some cases, a first-pass single association analysis of markers will not be useful for the classification of391

a trait. This will be the case for traits that have complex interactions that result in non-linear association392

patterns between marker frequency and trait prevalence. As an example of a complex interaction, two393

causative variants may interact in a neutralising fashion (i.e. the effects of one variant are cancelled out394

by another variant). In this sort of case, a simple one-way association test would not work as expected,395

retaining a lack of observed association even when there is a strong signal [7]. Other non-linear interactions396

between different markers would also reduce the effectiveness of an association test to determine informative397

markers.398

The ideal situation for investigating complex traits at a genetic level is an analysis of the effectiveness of399

every possible set of marker interactions. Once such an analysis is carried out, the best set of markers will400

be identified as being the set that is most informative for classifying individuals into groups. However, the401

computational requirements for such testing combined with the increased danger of overfitting due to small402

cell sizes, make such an analysis effectively useless when carried out on the total marker set [see 10].403

The bootstrapping approach as outlined here does not consider combinations of genetic markers. However,404

it provides an efficient way to reduce a large set of markers down to a much smaller set. This smaller set can405

then be used by programs that determine multi-way interactions, which are typically very computationally406

expensive procedures.407

4 Conclusion408

The application of the bootstrap sub-sampling process to marker selection is a useful complement to current409

GWAS. It can be used to remove potential spurious associations that are specific to the tested groups, and410

may help to reduce the set of individuals required for initial large-scale genotyping. Bootstrap sub-sampling411

acts as an internal validation of association signals, which helps to reduce the likelihood of false positive412

associations in publications. This, in turn, would hopefully make clinicians less likely to use these false413

positive associations when evaluating disease risk.414

The method for identifying a minimal set of GSMs is an association-based method that discovers genome-415

wide combinations of markers for the identification of a particular trait. The method relies on a clear416

distinction between trait and non-trait individuals, and in situations where the trait of interest is not easy417

to qualify, the identified GSM set may not reflect the true distinction between those groups. In addition,418

the non-genetic influence for the expression of a particular trait can mean that even when a trait can be419

classified completely, the genetic component of that trait (the only component able to be identified by any420

DNA marker-based method) will not always determine the observed phenotype.421

6It has an exponential complexity with respect to the number of factors studied in tandem.
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It is essential that this set be externally validated in other populations, but given reasonable validation the422

set may also be used for a global indicator of T1D risk. Even without such validation, the Wellcome Trust423

study was a fairly large study that recruited a substantial proportion of UK individuals. Given this, the424

signature set of 5 GSMs identified here should be suitable for estimating T1D risk for screening purposes in425

at least the UK population.426

5 Author Contributions427

DAE carried out the data analysis and wrote the paper. GKC and RAL provided academic support for the428

research project, as well as editorial advice for the paper.429

References430

Atkinson, M. A., Eisenbath, G. S., & Michels, A. W. (2014, January). Type 1 diabetes. The Lancet, 383,431

69-82.432

Avery, P., Mousa, S. S., & Mousa, S. A.(2009). Pharmacogenomics in type II diabetes mellitus management:433

Steps toward personalized medicine. Pharmacogenomics and personalized medicine, 2, 79-91.434

Daneman, D.(2006, March). Type 1 Diabetes. The Lancet, 367 (9513), 847-858.435

Dermitzakis, E. T., & Clark, A. G.(2009, October). Life After GWA Studies. Science, 326 (5950), 239-240.436
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