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Abstract

Computational neuroscience is, to first order, dominated by two approaches: the
“bottom-up” approach, which searches for statistical patterns in large-scale neural record-
ings, and the “top-down” approach, which begins with a theory of computation and
considers plausible neural implementations. While this division is not clear-cut, we
argue that these approaches should be much more intimately linked. From a Bayesian
perspective, computational theories provide constrained prior distributions on neural
data—albeit highly sophisticated ones. By connecting theory to observation via a proba-
bilistic model, we provide the link necessary to test, evaluate, and revise our theories in
a data-driven and statistically rigorous fashion. This review highlights examples of this
theory-driven pipeline for neural data analysis in recent literature and illustrates it with
a worked example based on the temporal difference learning model of dopamine.

Introduction

The statistical toolbox for neuroscience has been steadily growing in sophistication—relaxing
restrictive assumptions, increasing expressiveness, and enhancing computational efficiency.
These advances have enabled a recent blossoming of “data-driven” approaches to neu-
roscience, which aim to provide insight into neural mechanisms without testing specific
computational theories. Data-driven approaches are appealing, at least in principle, for
several reasons: they do not require the scientist to explicitly specify a set of hypotheses,
they are unprejudiced by the scientist’s theoretical dispositions, and they avoid the prob-
lem that many computational theories are too abstract to make direct contact with neural
data.

In this paper, we argue that such faith in data-driven approaches is misplaced. Far from
escaping the explicit specification of hypotheses, any statistical model of neural data in-
evitably makes assumptions about the structure of the data, and there is no principled
distinction between statistical assumptions and scientific hypotheses. (Admittedly, a purely
data-driven approach is something of a straw-man, but we pursue this line of argument
for pedagogical purposes). A corollary of this point is that theoretical dispositions are
inescapable: it is impossible to specify a statistical model without making assumptions. The
question then becomes what assumptions to make. We argue that these assumptions should
be derived from computational theories, coupled with flexible statistical parametrizations
that compensate for inaccuracy and under-specification of the theories.

We illustrate this argument with a worked example, using a paradigmatic neurocompu-
tational theory: the temporal difference learning model of dopamine. We show how the
computational theory can be augmented with modern statistical tools to produce a powerful
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Figure 1: A theory-driven pipeline for neural data analysis based on “Box’s Loop” [1, 2]. This review
illustrates many examples of translating theory into statistical model (red box). The benefits are many.
Given a model, we may leverage a powerful toolbox of statistical techniques for inference, model
criticism, and experimental design. Equally important, theory constrains the space of models and
provides a critical lens through which to interpret the posterior. We will discuss advances in each
stage of this pipeline.

data analysis methodology. This approach generates a more complete and flexible specifica-
tion of the theory. Moreover, we show that this approach offers insights into the mechanisms
underlying neural data that are inaccessible to purely data-driven approaches.

A Theory-driven Pipeline for Neural Data Analysis

Neural data analysis is an iterative process that begins with a data set and an idea of the
underlying processes that shaped it. The first step, and arguably the most important one, is
to turn that idea into a model. With a model in hand, we fit it to the data and investigate the
learned parameters, searching for patterns that shed new light on the system under study.
But the process does not end here; we then interrogate our model, see where it captures
the data well and where it fails, and use these criticisms to suggest model enhancements or
subsequent experiments. Thus, model criticism leads to a new model and another iteration
of the process.

Statisticians have formalized and automated many pieces of this pipeline: models are
joint distributions over data, latent variables and parameters; “fitting” is performed by
posterior inference; criticism is carried out with statistical tests; and optimal experimental
design suggests what experiment to run next. This cyclic process of probabilistic modeling,
inference, and statistical criticism is known as “Box’s loop” [1, 2], and later sections of this
review will discuss many recent advances in each stage of the pipeline.

Still, the art of carving a manageable class of models from the infinite space of possibilities
remains the province of the practitioner. It is here that computational theory can play a
vital role, since theories suggest what structure and patterns may exist in the data. In
doing so, theories constrain the class of models and make it easier to search, and provide a
lens through which to interpret model parameters. These benefits are reciprocated: once
a theory has been translated into a probabilistic model, a vast statistical toolbox can be
harnessed to test and refine it in light of data.


https://doi.org/10.1101/104737
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/104737; this version posted January 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Theory-driven statistical models are the norm in many fields, most notably in physics,
where strong quantitative predictions can be derived from first principles. For example, the
discovery of the Higgs boson relied on statistical tests based on predictions of the standard
model [3]. Perhaps it is unsurprising, then, that some of the best examples of theory-driven
statistical analyses in neuroscience arise from detailed, biophysical models of single cells.
For example, Huys and Paninski [4] use the Hodgkin-Huxley model to derive a probabilistic
model for noisy membrane potential recordings. The conductances of various ion channels
are free parameters of their model, and the time-varying channel activations are their latent
states. Given the membrane potential, their goal is to infer the conductances, integrating
over possible activation states. The highly nonlinear nature of the Hodgkin-Huxley dynamics
and the potentially large number of different channel types present a formidable challenge,
but biophysical constraints limit the space of feasible parameters. In recent work, these
methods have been extended to data in which only spike trains are observed [5], which
present an even greater challenge.

Many models in neuroscience are phenomenological rather than mechanistic in nature.
One step up from biophysical models are firing rate models like the generalized linear
model (GLM) [6, 7, 8]. Recent work has extended these classical models to make them
more flexible [9], more biophysically inspired [10], and more interpretable [11]. While the
GLM omits many mechanistic details, in fully-observed networks its weights can be roughly
interpreted as synaptic strengths [12, 13]. However, the weights of the standard GLM are
static, even though synaptic plasticity may be at work in many neural recordings. While the
space of all possible dynamic GLM’s is intractably large, theories of synaptic plasticity place
strong constraints on how synaptic weights evolve over time in response to preceding activity.
A number of authors have leveraged these constraints to develop theory-driven GLM’s with
time-varying weights and have shown how alternative models of synaptic plasticity can be
compared on the basis of their fit to spike train data [14, 15, 16].

This approach extends to computational theories as well, and is exemplified in the work
of Latimer et al. [17]. The authors reconsider the long-standing theory of evidence accu-
mulation in lateral intraparietal (LIP) cortex [18], and ask whether patterns that emerge
in trial-averaged data are borne out in individual trials. Specifically, do the firing rates of
neurons in LIP slowly ramp as evidence is accumulated, or do they exhibit a discrete jump
in firing rate? Theory suggests the former, whereas the latter would indicate that LIP may
not be the site of integration. Critically, both theories would yield the appearance of a ramp
in trial-averaged firing rate. Latimer et al. [17] formulate both theories as probabilistic
models for single trial data, fit these models with Bayesian inference, compare them on
the basis of the marginal likelihood of the data, and find that a large fraction of neurons
are better explained by the discrete jump model. This provides statistical evidence with
which to assess and reevaluate canonical theory. Indeed, this work has prompted further
assessments of their modeling assumptions and the validity of their conclusions [19]—a
prime example of Box’s loop in action post-publication.

Integrative approaches to computational theory and statistical analysis have also been
pursued in higher-level cognition. Detre and colleagues [20] used Bayesian inference to
identify a nonmonotonic relationship between memory activation (as measured by functional
MRI) and subsequent memory, as predicted by a competition-dependent theory of episodic
memory [21]. The same analytical approach was used to identify other nonmonotonic
effects of retrieval strength on memory [22, 23].

The aforementioned examples stand in contrast to many dimensionality reduction meth-
ods like PCA, tSNE [24], and others [25], and differ as well from general-purpose state
space models [26, 27, 28] and recurrent neural network models [e.g. 29] for neural data.
Such methods start with very weak assumptions—linear embeddings or low-dimensional
dynamics—and, in this sense, allow the data to speak freely. Thus, they are invaluable ex-
ploratory tools. However, in the absence of a theory, the inferred low-dimensional states and
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projections require careful interpretation. In many cases, theories correspond to special cases
of these general-purpose models, and thus help address issues of interpretability.

The landscape of neural data-analysis is not as strictly divided into top-down and bottom-up
approaches as the preceding discussion may suggest. Indeed, many models fall somewhere
in the middle, incorporating aspects of theory while allowing flexibility in aspects that
are less certain. Wiltschko et al. [30] strike such a balance in their model for depth
videos of freely behaving mice. Starting with the classic ethological theory that behavior is
composed of a sequence of discrete, resuable units, or “syllables,” the authors propose an
autoregressive hidden Markov model to discover these syllables from raw data. However,
since the number of syllables is not known a priori, the authors use a Bayesian nonparametric
prior distribution [31] to determine the number of states in a data-driven manner.

These works exhibit a diverse array of “theory-driven” neural data analyses, but the best
way to understand this pipeline is through an example.

A Worked Example

There is no single recipe for translating computational theories into probabilistic models
of data, but the conversion necessarily involves answering a few basic questions. Which
theoretical variables and parameters are observed and which are latent? How are they
encoded by the neural system under study? How do these variables evolve over time? What
are the sources of noise in the system and in the measurements? The answers to these
questions inform statistical models of data that in turn define distributions of likely patterns
of neural activity. We will illustrate this translation with a simple worked example.!

Temporal difference (TD) learning [33] is a classical algorithm by which agents, over
the course of many trials, learn to use sensory cues to predict the discounted sum of
future rewards. Assume that there are L trials, each lasting T time steps. On trial £, the
agent receives a sequence of stimuli, which are stored and encoded as vectors, u,,, and a
corresponding sequence of rewards, 1 1, ..., 7, 7, most of which may be zero. In a classical
conditioning experiment, the stimulus may be a light at time t followed by a reward some
number of time steps in the future, and u, , may encode, for example, the number of time
steps since the bell was heard. The agent then uses this encoding to compute a value function
for the given trial and time step,

‘7,“ = z;ru,_;,t. D

In reinforcement learning, the value is the total amount of future reward to be expected
after receiving input u, ,. However, according to the theory, the reward is discounted by how
long one must wait before receiving it. For example, a reward k time steps into the future is
down-weighted by a factor of y*, where y € [0, 1] is the discount factor. The agent’s goal is
to adjust the weights? of its value function, z,, such that the value function approximates
this discounted sum of expected future rewards,

T—t

7 k

ViemV, =E ZY Tot+k |- 2)
k=0

If the environment is a Markov decision process, the target value function can be written
recursively as V, =E[r,, +yV;41]. When the value function equals the cumulative

1Gode to run this example and reproduce Figures 2 and 3 is available at https://github.com/slinderman/tdlds.
2We denote the weights by z instead of something more traditional, like w, since this will highlight the connection
to state space models.
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Figure 2: An illustrative example of using the theory of TD learning to constrain a probabilistic
state space model for neural data. (a) Simulated example of a dopamine neuron encoding reward
prediction error in VTA. Over many trials, the response shifts from the delivery of reward (at t = 60)
to the onset of stimulus (at ¢t = 10, dashed line). (b) Hypothetical cortical neurons encode time
since stimulus onset with a set of temporal tuning curves, as has been suggested [32]. (c¢) Thus,
on each trial, the cortical neurons exhibit a cascade of activity. (d) We use TD learning theory to
constrain a state space model for the activity of cortex and VTA, whose graphical model is shown here
(rewards omitted). The latent states are the weights relating cortical activity to an unobserved value
function. (e) The posterior mean of the latent states of the TD learning state space model. Though
not particularly insightful on their own, when combined with cortical activity, the weights determine
the posterior distribution of the value function (f). Colors correspond to trials 1, 30, and 150, as
in (a). Dotted black line: ground truth. (g) We also learn the learning rate, a;, under two different
models: a constant model and a power-law decay model. (h) In contrast to the TD-LDS, fitting a
standard LDS to the VTA activity yields accurate predictions, but its latent states are uninformative
and do not correspond to weights of a value function.

discounted reward, the reward prediction error,
Xee =Tee TV V41— Vi (3)

will equal zero. Intuitively, the reward prediction error provides an instantaneous estimate
of how well the value function predicts the received reward. Thus, to improve its value
function, the agent should adjust its weights to reduce this error. Indeed, this is accomplished
by the simple learning rule,

T
Zp41 =2+ Qy Z XU e C))

t=1

which can be seen as a form of stochastic gradient descent on the (squared) reward prediction
error with learning rates a,...,a;. In the following experiments, we will consider two
learning schedules: a power-law schedule, a, = (£ + 1)77, and a constant schedule, a, = 7.
In both cases, assume T € [0, 1].

Schultz et al. [34] found that the firing rates of dopaminergic neurons in the ventral
tegmental area (VTA) mimic the reward prediction errors essential to the TD-learning
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algorithm. Moreover, it is hypothesized that cortex represents the stimulus, striatum
represents the value function estimate, and VTA activity modulates plasticity of synapses
from cortex to striatum [35]. Still, many important questions remain, like how learning
schedules, which affect this plasticity, vary from trial to trial in real neural circuits. As a
didactic exercise, we will we use the TD learning theory to construct a probabilistic model
for neural data, and use that model to compare between different learning schedules in a
statistically rigorous manner.

Suppose that we have access to simultaneous noisy recordings of a VTA neuron and an
upstream population of N cortical neurons. As has been hypothesized, we will assume
the VTA neuron encodes reward prediction error, x; ,, and the cortical neurons carry the
stimulus encoding, u, .. Moreover, assume we know the reward signal, r, ;. According to
the TD learning theory, the cortical and VTA signals are related via a value function, which
is determined by an unobserved and dynamic set of weights at each trial. In other words,
the theory implies that the reward prediction errors follow a latent state space model whose
hidden states are the weights, z,, and whose parameters vary from trial to trial according
to the cortical inputs, rewards, and prediction errors. If we assume Gaussian noise in the
weight updates and observations, the theory implies that the VTA activity follows a Gaussian
linear dynamical system (LDS) with non-stationary parameters.

To see this equivalence, we rewrite the TD learning updates in standard state space nota-
tion:

2e41 ~ N (Agzg + by, €]), (5)
X["\‘JV(CZ,‘ZZ‘Fd[,O'I). (6)

Here, the latent states are the weights, z, € 2", and their dynamics are determined
by A, =1 and b, =q, Zthl Xy U That is, the weights follow a random walk biased
by the learning rate, error signal, and inputs. The emissions are vectors of observed VTA
activity, x, =[x, 1,..., X, r—1], and they are determined by the matrix C, = [ch; e CZT_l],
where ¢, , = yu, .11 — Uy, and by the bias vector d, = [d; ;,...,d; r—1], where d; , =1 141.
Note that both the dynamics and emission parameters are non-stationary; that is, they vary
from trial to trial. The noise in the weight updates is governed by €, and the noise in the
observations is governed by o. Referring back to equations (1)-(4), we see that the exact TD
learning model is recovered in the noise-free limit. The free parameters are 8 = (1,7v,€,0)—
the learning rate parameters, discount factor, and noise variances.

We call this constrained model a temporal difference LDS (TD-LDS). Importantly, by trans-
lating the TD learning theory into a constrained Gaussian LDS, we have reduced it to an
essentially solved model with very mature estimation and interpretation procedures [36].
In the next section we will show how to infer the states and parameters of the TD-LDS from
data.

What assumptions did we make in deriving the TD-LDS? First, we assumed Gaussian noise
in both the observed reward prediction errors and the weight dynamics. If we observed
spike counts instead, the resulting model would be more akin to a Poisson linear dynamical
system (PLDS) [26, 27]. If we had assumed a nonlinear model for the value function,
i.e. V; . = f(2,u,,), then both the dynamics and observation models would be nonlinear
in z,, which would necessitate more sophisticated inference procedures. We will only
consider the linear Gaussian case in this didactic example.

Bayesian Inference

Bayesian inference algorithms take as input the observed data, x, and a probabilistic
model, p(x,z, 0), and output the posterior distribution over the latent variables and param-
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eters of the model, p(z, 8 | x). By Bayes’ rule, this posterior distribution is given by,

p(x12,6)p(=[0)p(6) _  plx|26)p(z|6)p(6)
p(x) [ p(x12,0)p(z|0)p(0)dzd6’

With this posterior distribution in hand, we can answer a host of scientific questions. We can
estimate the posterior mean and mode (the maximum a posteriori estimate), and we can
provide Bayesian credible intervals by computing the quantiles of the posterior distribution.
Moreover, we can predict what future data would look like with the posterior predictive
distribution,

p(z,0x)= 7

p(x*|x)= f p(x*|2*,0)p(z*|0)p(0,z|x)dz"dzd6. (8

which integrates over the space of parameters and latent variables, weighting them by
their posterior probability given the data seen thus far. As we will show below, these
functions of the posterior distribution provide principled means of comparing and checking
models.

Unfortunately, the normalizing constant on the right-hand side of Bayes’ rule, p(x), also
known as the marginal likelihood, requires an integral over all possible parameters. This
integral is intractable for all but the simplest models, so in practice we must resort to
approximate techniques like Markov chain Monte Carlo (MCMC) [37] or variational infer-
ence [38, 39]. MCMC algorithms approximate the posterior distribution with a collection
of samples collected by a Markov chain that randomly walks over the space of parameters.
With a carefully tuned random walk, the stationary distribution of the Markov chain is equal
to the desired posterior distribution so that, once the chain has converged, parameters are
visited according to their posterior probability. In contrast, variational inference algorithms
specify a family of “simpler” distributions and search for the member of this family that best
approximates the desired posterior. Thus, they convert an integration problem of computing
the denominator of Bayes’ rule into an optimization problem of searching over the varia-
tional family. Of course, both approaches present challenges—how to tell if a Markov chain
has converged? how to select and search over a variational family and diagnose errors in
the obtained approximation?—making Bayesian inference both an art and a science.

Fortunately for the practitioner, as probabilistic programming packages grow in sophistica-
tion, the nuances of approximate inference play a lesser role. Probabilistic programming
languages like Anglican [40], Stan [41], Venture [42], and Edward [43] remove the burden
of deriving and implementing an inference algorithm, and simply require the practitioner
to specify their probabilistic model and supply their data. Under the hood, these packages
automatically derive suitable MCMC or variational inference algorithms. In practice, some
care must be taken to ensure these systems provide accurate inferences, and these tools still
cannot compete with well-tuned, model-specific inference algorithms. However, they can
dramatically accelerate the scientific process by enabling rapid iteration over models. Once
a model has been selected, time may be invested in deriving bespoke inference algorithms
for peak performance.

We have taken an intermediate approach to inference in our working example. After
reducing TD learning theory to a canonical state space model, we leverage off-the-shelf
inference algorithms for the latent states and develop model-specific updates only for the
parameters. Specifically, given the discount factor and the learning schedule, the posterior
distribution over latent states is found with a standard message passing algorithm [39].
Given a distribution over latent states, we estimate the most likely learning schedule
parameters and discount factor with hand-derived updates. We alternate these two steps—
updating the latent states and re-estimating the parameters—in our variational inference
algorithm.
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Figure 2 illustrates some of the results of our Bayesian inference algorithm. Panel (e) shows
the posterior mean of the states, which in this model correspond to the weights of the
value function. From the posterior distribution over weights, we derive the distribution
over the value function, which is linear in the weights (c.f. (1)). Panel (f) shows the true
and inferred value function at early (blue), middle (red), and late (yellow) trials, along
with the uncertainty under the posterior. Likewise, panel (g) shows the inferred learning
rate under two different models: a model with constant rates and a model with rates that
decay according to a power law (the true model in this case). Posterior visualizations like
these play a critical role in the scientific process, providing views of the low-dimensional
structure of complex data. However, these visualizations are only useful to the extent that
the model captures meaningful structure. Panel (h) exemplifies this point: a standard LDS
with the same latent dimension as the TD-LDS provides a very good fit to the data, but its
latent states look like pure noise. Without a theoretical structure with which to interpret
this low-dimensional projection, the latent states are meaningless.

Model Criticism and Comparison

Bayesian inference is not the end of the scientific process, but rather an intermediate step in
the iterative loop of hypothesizing, fitting, criticizing, and revising a model. Still, posterior
inference provides a rigorous and quantifiable method of guiding model criticism and
revision. Intuitively, if the model is a good match for the data, then samples from the fit
model should “look like” the observed data. Posterior predictive checks (PPC’s) [1, 2, 44],
which are essentially Bayesian goodness-of-fit tests, formalize this intuition in a statistically
rigorous manner. Our presentation here parallels that of Blei [2].

PPC’s compare the observed data to datasets sampled from the posterior predictive distri-
bution (8) of the model. If the sampled data differs from the observed along important
dimensions, the model fails the PPC. These “important dimensions” are determined by the
practitioner’s choice of a test statistic, T(x): a function that identifies a particular aspect
of the data, x. For example, in our TD learning simulations, a salient characteristic is the
propagation of error signal from the onset of reward to the presentation of the cue. Thus, a
simple statistic is amplitude of the error signal in particular trials and time bins. The PPC is
defined as the probability that the test statistic of sampled data exceeds that of observed
data, PPC = Pr(T(x*) > T(x) | x).

The choice of test statistic is left to the practitioner. Clearly, probabilistic modeling under
computational constraints necessitates trade-offs and assumptions; no model is perfect.
PPC’s are a diagnostic tool for assessing whether the model recapitulates salient features of
the data, as determined by the practitioner. In this sense, PPC’s provide a targeted means of
criticizing models, shining spotlights on the most important parts. Moreover, there is no limit
to the number of PPC’s that may be applied, and the marginal cost of estimating multiple
PPC’s is negligible since they can all be estimated using the same sampled data.

Figure 3 illustrates a very simple posterior predictive check for the TD learning model.
Panels (a-c) show the observed data (black) and the quantiles of the posterior predictive
distribution for the tenth trial, estimated with 1000 samples from the posterior predictive
distributions. In this case, the true model uses a power law learning rate, and indeed this is
the only model that consistently captures the data. The constant model overestimates the
response to the reward (time 60) and the standard LDS incorrectly predicts a response at
cue onset. We quantify this with PPC’s for the simplest statistics, T; (x) = x; ,. Panels (d-f)
show the PPC’s for each trial and time bin. This reveals the delayed responses of the constant
model in early trials, and the tendency of the standard LDS to predict a response at cue onset
regardless of trial. Under the true model, these PPC’s are uniformly distributed on [0, 1].
Panels (g-f) show that only the power law achieves this.
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Figure 3: Model criticism using posterior predictive checks (PPC’s). (a-c) PPC of the data on trial 10
for three models: the TD-LDS with a power-law learning schedule (i.e. the true model that generated
the data); the TD-LDS with a constant learning rate; and a standard LDS. Blue line: posterior predictive
median; blue shading: posterior predictive quantiles; black line: observed data. The constant learning
rate fails the PPC because it generates a much larger prediction error at time t = 59. The standard
LDS fails because it always predicts large signals at t = 10, regardless of trial. (d-f) A summary view
of the PPC for all trials and time points. Color denotes the PPC value estimated from 1000 generated
trajectories. Blue: model predictions larger than data; red: data larger than model predictions. Values
close to zero or one indicate model mismatch. (g-i) A histogram of values in (d-f), respectively. The
true model should yield uniformly distributed PPC’s(dotted line), as indeed the power law does. The
other models generated data that systematically differs from the true data.

While PPC’s check, in absolute terms, how well the model fits the data, in some cases we
seek a relative comparison of two models instead. For example, we often cascade models of
increasing complexity—factor analysis is a special case of an LDS, which in turn is a special
case of a switching LDS—and we need means of justifying this increased capacity. The most
straightforward approach is to measure predictive likelihood on held-out data. A better
model should assign higher posterior predictive probability, p(x* | x), to the held-out data.
We see that the predictive probability (8) is an expectation with respect to the posterior.
Since this is typically intractable, we estimate the predictive probability with samples from
the approximate posterior.

This is by no means the only method of comparing models. In “fully Bayesian” analyses, it is
common to compare models on the basis of their marginal likelihood, p(x) [45, 46]. Recall
that this is the denominator in Bayes’ rule (7), and it is generally intractable. Variational
methods provide a lower bound on this quantity, and Monte Carlo estimates like annealed
importance sampling [47] can yield unbiased estimates of it. In general, however, marginal
likelihood estimation is an active area of research [48, 49, 50].

Model criticism suggests not only new theories to test, but also new experiments to run.
Specifically, we should choose an experiment that is most likely to reduce the uncertainty
of the posterior. Equivalently, we should perform the experiment that yields the maximal
information gain in expectation. This intuition is the basis of Bayesian optimal experimental
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design [45, 51, 52, 53] and is also the guiding principle underlying Bayesian optimiza-
tion [54]. In our working example, these methods could suggest the combination of stimulus
and reward patterns that would be most informative of the underlying learning rate. These
methods have been proposed for sampling the voltage on dendritic trees in high-noise
settings [55], as well as for designing training regimes for animals [56].

Just as probabilistic programming languages and automated inference algorithms are
relieving the burden of Bayesian inference, recent work has attempted to automate model
criticism and model comparison. Automatic two-sample tests [57, 58] search for test
statistics that best discriminate between the observed data and a model’s samples. In
this sense, these approaches are similar to generative adversarial networks [59], which
simultaneously train competing generator and discriminator networks. Likewise, automatic
model composition methods [60, 61] iteratively construct models, adding increasingly
sophisticated structure to capture nuances of the data and comparing on the basis of
marginal likelihood. While these advances have still not taken the human “out of the loop,”
recent work suggests that these approaches do indeed mimic the process by which humans
learn the complex structure of data [62].

Conclusions

The idea of combining statistical models with computational theories is not new (see [63]),
but researchers are only beginning to appreciate the range of possibilities that have opened
up with advances in probabilistic modeling. Richly expressive probabilistic programming
languages, efficient inference algorithms, and flexible Bayesian nonparametric priors allow
complex models to be specified and fit to data much more easily than in the past. Model
criticism and comparison techniques can be used to guide the refinement of modeling
assumptions, as in Box’s loop. We have shown how this statistical toolbox can be seam-
lessly integrated with computational theory, using a worked example from reinforcement
learning. The key lesson from this modeling exercise is that data-driven and theory-driven
approaches to neuroscience need not be mutually exclusive; indeed, the most powerful in-
sights can be gained by using computational theories as constraints on data-driven statistical
models.

Conversely, flexible statistical models can enrich computational theories. Historically, com-
putational tractability has biased the kinds of models we fit towards simplicity (conjugacy,
convex optimization problems, unimodal posteriors, low-dimensional parametrizations).
With faster computers, larger datasets and new algorithms, machine learning has increas-
ingly pushed the envelope towards much more complex models [64, 29, 65], altering the
usual tradeoff between neuroscientific realism and computational tractability. We are now
in a position to start experimentally testing a vast range of computational theories.
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